Известия НАН Армении, Физика, т.57, №4, с.520–527 (2022)

УДК 535, 343.1 DOI:10.54503/0002-3035-2022-57.4-520

СПЕКТРОСКОПИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛА LiNbO₃:Er³⁺ В ОБЛАСТИ ДЛИН ВОЛН 1470–1635 НМ

Г. ДЕМИРХАНЯН^{1,2}, Н. КОКАНЯН^{3,4}, М. АЙЛЛЕРИ⁴, Э. КОКАНЯН^{1,2*}

 ¹Армянский государственный педагогический университет, Ереван, Армения
 ²Институт физических исследований НАН Армении, Аштарак, Армения
 ³Кафедра фотоники, Laboratoire Matériaux Optiques Photonique et Systèmes (LMOPS), CentraleSupélec, Мец, Франция
 ⁴Laboratoire Matériaux Optiques Photonique et Systèmes (LMOPS), Университет Лоррена, Мец, Франция

*e-mail: edvardkokanyan@gmail.com

(Поступила в редакцию 20 мая 2022 г.)

Проведено теоретическое исследование спектроскопических свойств кристалла LiNbO₃:Er³⁺ в области длин волн 1470–1635 нм с учетом штарковской структуры оптического спектра примесного иона. Построены волновые функции штарковских подуровней основного ${}^{4}I_{15/2}$ и первого возбужденного ${}^{4}I_{13/2}$ мультиплетов иона Er³⁺ в LSJM-представлении, вычислены силы линий, индуцированные косвенными электро-дипольными переходами и рассчитаны основные спектроскопические характеристики оптического спектра примесного иона.

1. Введение

Легированный трехвалентными ионами редких земель ($P3^{3+}$) кристалл ниобата лития (LN) по сей день является перспективным материалом для многофункциональных малогабаритных лазеров в инфракрасной и видимой областях спектра. Это прежде всего связано с нелинейно-, акусто- и электрооптическими свойствами кристалла LN, позволяющими в одном элементе получить лазерное излучение с самоудвоением частоты [1–4]. Кристаллы HЛ-P3³⁺ (P3 = Yb, Nd, Er, Ho и Tm) являются хорошим материалом для создания на их основе оптических охлаждающих систем [5–8], оптических сенсоров температуры [8].

Оптические спектры примесного иона ${\rm Er}^{3+}$ в кристалле LN детально исследованы в [13, 14]. В частности, в [9] на основе анализа низкотемпературных спектров поглощения и испускания построена схема энергетических уровней штарковских состояний, в [10] определены параметры Джадда–Офелта: $\Omega_2 = 4.96 \times 10^{-20}$, $\Omega_4 = 1.74 \times 10^{-20}$, $\Omega_6 = 0.62 \times 10^{-20}$ (см²).

В настоящей работе проведено теоретическое исследование спектроскопических свойств кристалла LN: Er^{3+} в диапазоне длин волн 1470–1635 нм с учетом штарковской структуры оптического спектра: определены волновые функции штарковских подуровней основного ${}^{4}I_{15/2}$ и первого возбужденного ${}^{4}I_{13/2}$ мультиплетов иона Er^{3+} , вычислены основные спектроскопические характеристики (силы линий, вероятности переходов и т.д.).

2. Волновые функции штарковских уровней ⁴*I*_{15/2} и ⁴*I*_{13/2} мультиплетов

В кристаллическом поле (КП) 16-кратно и 14-кратно вырожденные мультиплетные состояния ${}^{4}I_{15/2}$ и ${}^{4}I_{13/2}$ свободного иона Er^{3+} расщепляются соответственно на 8 и 7 крамерсовские дублеты, волновые функции которых, в приближении слабого КП (LSJM–представление), строятся в виде линейной комбинации

$$\left|\nu\right\rangle = \sum_{M} a_{JM}^{(\nu)} \left| LSJM \right\rangle, \tag{1}$$

где L и S – угловой и спиновый моменты, M – проекция полного углового момента J, $a_{JM}^{(v)}$ – численные коэффициенты, значения которых в нулевом порядке теории возмущений определяются внутри мультиплетной диагонализацией потенциала КП на основе базисных функций неприводимых представлений соответствующей точечной группы симметрии.

Известно, что в матрице LN конгруэнтного состава примесные $P3^{3+}$ ионы в основном замещают литиевые позиции с точечной симметрией C_{3v} [15]. В рамках приближения точечных зарядов потенциал КП, инвариантный относительно преобразований группы C_{3v} , в представлении эквивалентных операторов Стивенса имеет вид [16]

$$V_{cr} = \alpha_J A_{20} O_2^0 + \beta_J A_{40} O_4^0 + \gamma_J A_{60} O_6^0 + \beta_J A_{43} O_4^3 + \gamma_J A_{63} O_6^3 + \gamma_J A_{66} O_6^6,$$
(2)

где α_J , β_J и γ_J – постоянные Стивенса, соответствующие полному угловому моменту J, A_{kq} – параметры КП, O_k^q – эквивалентные операторы, матричные элементы которых приведены в [11].

Численные значения постоянных Стивенса мультиплета ${}^{4}I_{15/2}$ приведены в [11]

$$\alpha_{15/2} = \frac{4}{7 \times 9 \times 25}, \, \beta_{15/2} = \frac{2}{5 \times 7 \times 9 \times 11 \times 13}, \, \gamma_{15/2} = \frac{8}{7 \times 27 \times 121 \times 169}$$

а для возбужденного мультиплета ${}^4I_{13/2}$ – рассчитаны, используя значения генеалогических коэффициентов иона Er^{3+} ,

$$\alpha_{13/2} = \frac{1}{13 \times 25}, \, \beta_{13/2} = \frac{4}{5 \times 9 \times 13 \times 121}, \, \gamma_{13/2} = \frac{1}{27 \times 121 \times 169}.$$

Базисные функции неприводимых представлений точечной группы C_{3v} для J = 15/2 и J = 13/2 имеют вид [12]:

$$D^{(15/2)} = 5\Gamma_{4}^{T} + 3\Gamma_{56}^{T} :$$

$$\left|{}^{1}\Gamma_{4}^{T}\right\rangle = \pm \left|\frac{15}{2}, \pm \frac{1}{2}\right\rangle, \left|{}^{2}\Gamma_{4}^{T}\right\rangle = \pm \left|\frac{15}{2}, \pm \frac{11}{2}\right\rangle, \left|{}^{3}\Gamma_{4}^{T}\right\rangle = \pm \left|\frac{15}{2}, \pm \frac{13}{2}\right\rangle, \left|{}^{4}\Gamma_{4}^{T}\right\rangle = -\left|\frac{15}{2}, \pm \frac{5}{2}\right\rangle, \quad (3)$$

$$\left|{}^{5}\Gamma_{4}^{T}\right\rangle = -\left|\frac{15}{2}, \pm \frac{7}{2}\right\rangle, \left|{}^{6}\Gamma_{56}^{T}\right\rangle = \left|\frac{15}{2}, \pm \frac{3}{2}\right\rangle, \left|{}^{7}\Gamma_{56}^{T}\right\rangle = \left|\frac{15}{2}, \pm \frac{9}{2}\right\rangle, \left|{}^{8}\Gamma_{56}^{T}\right\rangle = -\left|\frac{15}{2}, \pm \frac{15}{2}\right\rangle, \quad (3)$$

$$D^{(15/2)} = 5\Gamma_{4}^{T} + 2\Gamma_{56}^{T} :$$

$$\left|{}^{1}\Gamma_{4}^{T}\right\rangle = \left|\frac{13}{2}, \pm \frac{1}{2}\right\rangle, \left|{}^{2}\Gamma_{4}^{T}\right\rangle = \left|\frac{13}{2}, \pm \frac{11}{2}\right\rangle, \left|{}^{3}\Gamma_{4}^{T}\right\rangle = \left|\frac{13}{2}, \pm \frac{13}{2}\right\rangle, \left|{}^{4}\Gamma_{4}^{T}\right\rangle = \pm \left|\frac{15}{2}, \pm \frac{5}{2}\right\rangle, \quad (4)$$

$$\left|{}^{5}\Gamma_{4}^{T}\right\rangle = \pm \left|\frac{13}{2}, \pm \frac{7}{2}\right\rangle, \left|{}^{6}\Gamma_{56}^{T}\right\rangle = \pm \left|\frac{15}{2}, \pm \frac{3}{2}\right\rangle, \left|{}^{7}\Gamma_{56}^{T}\right\rangle = \pm \left|\frac{13}{2}, \pm \frac{9}{2}\right\rangle.$$

Используя значения параметров КП, определенных из условия наилучшего согласия рассчитанных и экспериментальных значений штарковских расщеплений мультиплетов ${}^{4}I_{15/2}$ и ${}^{4}I_{13/2}$: $A_{20} = 1476.3$, $A_{40} = -1212.1$, $A_{60} = 70.3$, $A_{43} = -1568.7$, $A_{63} = 299.2$, $A_{66} = -571.5$ (в см⁻¹), на основе базисных функций (3) и (4) построены волновые функции штарковских состояний:

$$\begin{split} {}^{4}I_{15/2}: \\ \mu_{1} &= \pm 0.5151 \Big| \frac{15}{2}, \mp \frac{11}{2} \Big\rangle + 0.5742 \Big| \frac{15}{2}, \mp \frac{5}{2} \Big\rangle \pm 0.1718 \Big| \frac{15}{2}, \pm \frac{1}{2} \Big\rangle \\ &\quad -0.5798 \Big| \frac{15}{2}, \pm \frac{7}{2} \Big\rangle \pm 0.1982 \Big| \frac{15}{2}, \pm \frac{13}{2} \Big\rangle; \\ \mu_{2} &= \mp 07490 \Big| \frac{15}{2}, \pm \frac{71}{2} \Big\rangle \mp 0.0189 \Big| \frac{15}{2}, \pm \frac{5}{2} \Big\rangle \pm 0.4531 \Big| \frac{15}{2}, \pm \frac{1}{2} \Big\rangle \\ &\quad -0.4796 \Big| \frac{15}{2}, \pm \frac{7}{2} \Big\rangle \mp 0.0189 \Big| \frac{15}{2}, \pm \frac{13}{2} \Big\rangle; \\ \mu_{3} &= 0.8890 \Big| \frac{15}{2}, \pm \frac{9}{2} \Big\rangle - 0.4354 \Big| \frac{15}{2}, \pm \frac{3}{2} \Big\rangle + 0.1415 \Big| \frac{15}{2}, \pm \frac{15}{2} \Big\rangle; \\ \mu_{4} &= \mp 0.1424 \Big| \frac{15}{2}, \pm \frac{71}{2} \Big\rangle - 0.1712 \Big| \frac{15}{2}, \pm \frac{5}{2} \Big\rangle \mp 0.2077 \Big| \frac{15}{2}, \pm \frac{15}{2} \Big\rangle; \\ \mu_{5} &= -0.1810 \Big| \frac{15}{2}, \pm \frac{9}{2} \Big\rangle - 0.0504 \Big| \frac{15}{2}, \pm \frac{3}{2} \Big\rangle + 0.9822 \Big| \frac{15}{2}, \pm \frac{15}{2} \Big\rangle; \\ \mu_{6} &= -0.4205 \Big| \frac{15}{2}, \mp \frac{9}{2} \Big\rangle - 0.8988 \Big| \frac{15}{2}, \pm \frac{3}{2} \Big\rangle - 0.1237 \Big| \frac{15}{2}, \pm \frac{15}{2} \Big\rangle; \\ \mu_{7} &= \mp 0.2587 \Big| \frac{15}{2}, \pm \frac{71}{2} \Big\rangle \pm 0.1381 \Big| \frac{15}{2}, \pm \frac{13}{2} \Big\rangle; \\ \mu_{8} &= \pm 0.2942 \Big| \frac{15}{2}, \pm \frac{71}{2} \Big\rangle \pm 0.1872 \Big| \frac{15}{2}, \pm \frac{5}{2} \Big\rangle \pm 0.8434 \Big| \frac{15}{2}, \pm \frac{1}{2} \Big\rangle \\ &\quad + 0.2954 \Big| \frac{15}{2}, \pm \frac{71}{2} \Big\rangle \pm 0.2658 \Big| \frac{13}{2}, \mp \frac{5}{2} \Big\rangle - 0.8864 \Big| \frac{13}{2}, \pm \frac{1}{2} \Big\rangle \\ &\quad \pm 0.3236 \Big| \frac{13}{2}, \pm \frac{7}{2} \Big\rangle - 0.1031 \Big| \frac{13}{2}, \pm \frac{13}{2} \Big\rangle; \\ \nu_{2} &= \mp 0.2314 \Big| \frac{13}{2}, \mp \frac{9}{2} \Big\rangle - 0.1029 \Big| \frac{13}{2}, \pm \frac{3}{2} \Big\rangle; \\ \end{split}$$

$$v_{3} = -0.2884 \left| \frac{13}{2}, \pm \frac{11}{2} \right\rangle \pm 0.7977 \left| \frac{13}{2}, \pm \frac{5}{2} \right\rangle + 0.1502 \left| \frac{13}{2}, \pm \frac{1}{2} \right\rangle$$
$$\pm 0.4919 \left| \frac{13}{2}, \pm \frac{7}{2} \right\rangle + 0.1267 \left| \frac{13}{2}, \pm \frac{13}{2} \right\rangle;$$

$$\begin{aligned} v_{4} &= 0.3024 \left| \frac{13}{2}, \mp \frac{11}{2} \right\rangle \pm 0.2337 \left| \frac{13}{2}, \mp \frac{5}{2} \right\rangle - 0.2006 \left| \frac{13}{2}, \pm \frac{1}{2} \right\rangle \\ &\mp 0.0129 \left| \frac{13}{2}, \pm \frac{7}{2} \right\rangle + 0.9020 \left| \frac{13}{2}, \pm \frac{13}{2} \right\rangle; \\ v_{5} &= \mp 0.9729 \left| \frac{13}{2}, \mp \frac{9}{2} \right\rangle \pm 0.2314 \left| \frac{13}{2}, \pm \frac{3}{2} \right\rangle; \\ v_{6} &= -0.3086 \left| \frac{13}{2}, \mp \frac{11}{2} \right\rangle \mp 0.1306 \left| \frac{13}{2}, \mp \frac{5}{2} \right\rangle + 0.3384 \left| \frac{13}{2}, \pm \frac{1}{2} \right\rangle \\ &\pm 0.7511 \left| \frac{13}{2}, \pm \frac{7}{2} \right\rangle + 0.4572 \left| \frac{13}{2}, \pm \frac{13}{2} \right\rangle; \\ v_{7} &= -0.7834 \left| \frac{13}{2}, \mp \frac{11}{2} \right\rangle \pm 0.4603 \left| \frac{13}{2}, \mp \frac{5}{2} \right\rangle - 0.1218 \left| \frac{13}{2}, \pm \frac{1}{2} \right\rangle \\ &\mp 0.3758 \left| \frac{13}{2}, \pm \frac{7}{2} \right\rangle - 0.1354 \left| \frac{13}{2}, \pm \frac{13}{2} \right\rangle; \end{aligned}$$

где нумерация штарковских состояний проведена с нижайшего подуровня соответствующего мультиплета.

3. Спектроскопические характеристики кристалла LN:Er³⁺

При теоретическом исследовании спектроскопических свойств примесных кристаллов с учетом штарковской структуры оптических спектров наиболее удобной величиной является сила линии *S* межштарковского перехода [13]:

$$S_{i \to f} = \chi_{ed} \sum_{t=2,4,6} \Omega_t A_t^{(ied)} (i \to f) |\langle f || U_t || i \rangle|^2 + \chi_{md} A_{i \to f}^{(md)} S_{md} , \qquad (7)$$

где $\chi_{ed} = n(n^2 + 2)^2/9$ и $\chi_{md} = n^3$ – поправки локального КП для электро- и магнитных дипольных (МД) переходов (n – коэффициент преломления на длине волны перехода), $\langle f \| U_t \| i \rangle$ – приведенный матричный элемент неприводимого единичного оператора U_t ранга t, $A_t^{(ied)}(i \to f)$ и $A_{i\to f}^{(md)}(i \to f)$ – коэффициенты косвенного электро-дипольного (КЭД) и МД межштарковского $i \to f$ переходов и S_{md} – сила линии межмультиплетного МД перехода, явные выражения которых приведены в [14].

Приведенные матричные элементы межмультиплетного перехода ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ равны

$$\left|\left\langle {}^{4}I_{\frac{15}{2}} \left\| U_{2} \right\| {}^{4}I_{\frac{15}{2}} \right\rangle \right|^{2} = 0.0199 , \quad \left|\left\langle {}^{4}I_{\frac{15}{2}} \left\| U_{4} \right\| {}^{4}I_{\frac{15}{2}} \right\rangle \right|^{2} = 0.1173 , \quad \left|\left\langle {}^{4}I_{\frac{15}{2}} \left\| U_{6} \right\| {}^{4}I_{\frac{15}{2}} \right\rangle \right|^{2} = 1.4742 .$$

Зная силы линий, можно по известным формулам вычислить основные спектроскопические характеристики примесных кристаллов: вероятность спонтанного перехода

$$A_{i \to f} = \frac{64\pi^4 e^2}{3h\lambda_{i \to f}^3} \times \frac{1}{g_i} S_{i \to f}, \qquad (8)$$

коэффициент ветвления люминесценции

$$\beta_{i \to f} = A_{i \to f} \exp\left(\frac{\varepsilon_1 - \varepsilon_i}{kT}\right) / \sum_{j,m} A_{j \to m} \exp\left(\frac{\varepsilon_1 - \varepsilon_j}{kT}\right), \tag{9}$$

интегральное поперечное сечение поглощения

$$\sigma_{i \to f} = \int \sigma_{i \to f} \left(\lambda \right) d\lambda = \frac{8\pi^3 e^2 \lambda_{i \to f}}{3chn^2} \times \frac{1}{g_i} S_{i \to f}$$
(10)

и интегральный коэффициент поглощения

$$\alpha_{i \to f} = N_i \int \sigma_{i \to f} \left(\lambda \right) d\lambda = N \sigma_{i \to f} \times \exp\left(\frac{\varepsilon_1 - \varepsilon_i}{kT}\right) / \sum_j \exp\left(\frac{\varepsilon_1 - \varepsilon_j}{kT}\right)$$
(11)

с штарковских подуровней основного мультиплета. В формулах (8)–(11) введены следующие обозначения: $\overline{\lambda}_{i\to f}$ – средняя длина волны перехода $i \to f$, g_i – кратность вырождения начального состояния, e – заряд электрона, \hbar – постоянная Планка, c – скорость света, N – концентрация примесных ионов в кристалле, ε_i и N_i – энергия и населенность *i*-ого штарковского уровня, k – постоянная Больцмана и T – температура. Результаты расчетов приведены в табл.1–3.

Мультиплет	Штарковские подуровни	${}^4I_{15/2}$, $10^{-21}{ m cm}^2$								
		μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_7	μ_8	
⁴ <i>I</i> _{13/2}	ν_1	2.309	2.940	1.613	0.929	0.364	2.312	1.786	3.326	
	ν_2	1.597	0.691	2.470	1.600	0.440	4.431	2.295	2.017	
	ν_3	1.761	1.772	0.955	1.436	1.405	1.930	4.186	2.054	
	ν_4	1.391	2.092	1.822	3.279	5.036	0.823	1.166	0.772	
	ν_5	1.870	3.329	3.076	1.254	2.230	1.032	1.038	2.163	
	ν_6	2.801	0.933	2.497	1.545	2.628	2.018	1.369	1.661	
	v_7	1.925	2.269	1.416	3.543	1.689	1.312	1.560	1.775	

Табл.1. Силы линий межштарковских переходов

Радиационное время жизни нижнего штарковского подуровня $v_1({}^4I_{13/2})$, оцененное по приведенным в Табл.2 данным, равно 3.5 мс, что неплохо согласуется с экспериментальным значением $\tau({}^4I_{13/2}) = 3$ мс [14].

4. Заключение

Результат количественных вычислений основных спектроскопических характеристик кристалла LN:Er³⁺ в полосе ${}^{4}I_{15/2} \leftrightarrow {}^{4}I_{13/2}$ нм в области длин волн 1470–1635 показывает неоднородное распределение коэффициентов поглощения и ветвления люминесценции по штарковским компонентам. Примечательно, что при комнатных температурах коэффициенты ветвления люминесценции и коэффициенты поглощения с возбужденных штарковских состояний достаточно

переход	λ, нм	п	A, c^{-1}	β, % 300 K	переход	λ, нм	п	A, c^{-1}	β, % 300 K
$\nu_1 \rightarrow \mu_1$	1531.4	2.2117	46.5	3.98	$\nu_4 \rightarrow \mu_5$	1545.4	2.2113	98.7	4.64
$\rightarrow \mu_2$	1546.1	2.2112	57.5	4.93	$\rightarrow \mu_6$	1566.4	2.2106	15.5	0.73
$\rightarrow \mu_3$	1562.3	2.2107	30.6	2.62	$\rightarrow \mu_7$	1586.8	2.2099	21.1	0.99
$\rightarrow \mu_4$	1568.9	2.2105	17.4	1.49	$\rightarrow \mu_8$	1602.8	2.2093	13.6	0.64
$\rightarrow \mu_5$	1575.8	2.2102	6.7	0.57	$\nu_5 \rightarrow \mu_1$	1485.9	2.2133	41.2	1.35
$\rightarrow \mu_6$	1597.7	2.2095	41.0	3.51	$\rightarrow \mu_2$	1499.5	2.2129	71.4	2.33
$\rightarrow \mu_7$	1618.9	2.2088	30.4	2.60	$\rightarrow \mu_3$	1514.7	2.2123	64.0	2.09
$\rightarrow \mu_8$	1635.6	2.2083	55.0	4.71	$\rightarrow \mu_4$	1520.9	2.2121	25.8	0.84
$\nu_2 \rightarrow \mu_1$	1512.9	2.2124	33.3	1.93	$\rightarrow \mu_5$	1527.4	2.2119	45.3	1.48
$\rightarrow \mu_2$	1527.0	2.2119	14.0	0.81	$\rightarrow \mu_6$	1548.0	2.2112	20.1	0.66
$\rightarrow \mu_3$	1542.7	2.2114	48.7	2.83	$\rightarrow \mu_7$	1567.9	2.2105	19.5	0.64
$\rightarrow \mu_4$	1549.2	2.2111	31.1	1.81	$\rightarrow \mu_8$	1583.5	2.2100	39.4	1.29
$\rightarrow \mu_5$	1555.9	2.2109	8.4	0.49	$\nu_6 \rightarrow \mu_1$	1476.7	2.2137	62.9	1.68
$\rightarrow \mu_6$	1577.3	2.2102	81.7	4.75	$\rightarrow \mu_2$	1490.1	2.2132	20.4	0.54
$\rightarrow \mu_7$	1598.0	2.2095	70.7	4.11	$\rightarrow \mu_3$	1505.1	2.2127	53.0	1.42
$\rightarrow \mu_8$	1614.2	2.2090	34.7	2.02	$\rightarrow \mu_4$	1511.3	2.2124	32.4	0.87
$\nu_3 \rightarrow \mu_1$	1506.3	2.2126	37.3	1.89	$\rightarrow \mu_5$	1517.7	2.2122	54.4	1.45
$\rightarrow \mu_2$	1520.2	2.2121	36.5	1.85	$\rightarrow \mu_6$	1538.0	2.2115	40.1	1.07
$\rightarrow \mu_3$	1535.9	2.2116	19.1	0.97	$\rightarrow \mu_7$	1557.6	2.2109	26.2	0.70
$\rightarrow \mu_4$	1542.3	2.2114	28.3	1.43	$\rightarrow \mu_8$	1573.1	2.2103	30.9	0.83
$\rightarrow \mu_5$	1549.0	2.2111	27.3	1.38	$\nu_7 \rightarrow \mu_1$	1469.5	2.2139	43.9	1.00
$\rightarrow \mu_6$	1570.1	2.2104	36.1	1.83	$\rightarrow \mu_2$	1482.8	2.2134	50.3	1.15
$\rightarrow \mu_7$	1590.6	2.2098	75.2	3.80	$\rightarrow \mu_3$	1497.7	2.2129	30.5	0.70
$\rightarrow \mu_8$	1606.7	2.2092	35.8	1.81	$\rightarrow \mu_4$	1503.8	2.2127	75.4	1.72
$\nu_4 \rightarrow \mu_1$	1502.9	2.2127	29.6	1.39	$\rightarrow \mu_5$	1510.1	2.2125	35.5	0.81
$\rightarrow \mu_2$	1516.8	2.2123	43.4	2.04	$\rightarrow \mu_6$	1530.2	2.2118	26.5	0.60
$\rightarrow \mu_3$	1532.3	2.2117	36.6	1.72	$\rightarrow \mu_7$	1549.7	2.2111	30.3	0.69
$\rightarrow \mu_4$	1538.7	2.2115	65.1	3.06	$\rightarrow \mu_8$	1565.0	2.2106	33.5	0.76

Табл.2. Основные параметры спектра излучения кристалла LN:Er³⁺

высоки (Табл.2 и Табл.3), что открывает перспективу использования кристаллов LN:Er³⁺ в системах оптического охлаждения, а также при создании лазеров с самоохлаждением. Действительно, как известно в рассматриваемой спектральной области средняя длина люминесценции кристалла LN: Er³⁺ равна 1543 nm [15],

поэтому в интервале длин волн 1543–1635 nm возможно антистоксовое поглощение, приводящее к охлаждению. Что касается возможности получения радиационно-балансированной генерации (radiation balanced lasing), то предварительные оценки показали, что наиболее эффективным является накачка на длинах волн 1546 ± 1 ($\mu_2 \rightarrow \nu_1, \mu_5 \rightarrow \nu_4$) и 1557 ± 1 nm ($\mu_7 \rightarrow \nu_6$) и генерации излучения на длинах волн 1557 ± 1 и 1570 ± 1 nm, соответственно.

переход	λ. нм	σ, 10 ⁻²⁷ cm ²	$\alpha, 10^{-27} N$	переход	λ. ΗΜ	σ, 10 ⁻²⁷ cm ²	α , 10 ⁻²⁷ N
$\mu_1 \rightarrow \nu_1$	1531.4	6.93	1.84	$\mu_5 \rightarrow \nu_1$	1575.8	1.13	0.12
$\rightarrow v_2$	1512.9	4.74	1.26	$\rightarrow v_2$	1555.9	1.34	0.15
$\rightarrow v_3$	1506.3	5.20	1.38	$\rightarrow v_3$	1549.0	4.27	0.47
$\rightarrow v_4$	1502.9	4.10	1.09	$\rightarrow v_4$	1545.4	1.53	0.17
$\rightarrow v_5$	1485.9	5.44	1.44	$\rightarrow v_5$	1527.4	6.68	0.74
$\rightarrow v_6$	1476.7	8.10	2.15	$\rightarrow v_6$	1517.7	7.82	0.86
$\rightarrow v_7$	1469.5	5.54	1.47	$\rightarrow v_7$	1510.1	5.00	0.55
$\mu_2 \rightarrow \nu_1$	1546.1	8.92	1.76	$\mu_6 \rightarrow \nu_1$	1597.7	7.26	0.53
$\rightarrow v_2$	1527.0	2.07	0.41	$\rightarrow v_2$	1577.3	1.37	0.10
$\rightarrow v_3$	1520.3	5.28	1.04	$\rightarrow v_3$	1570.1	5.95	0.43
$\rightarrow \nu_4$	1516.8	6.22	1.23	$\rightarrow \nu_4$	1566.4	2.53	0.18
$\rightarrow v_5$	1499.5	9.78	1.93	$\rightarrow v_5$	1548.0	3.13	0.23
$\rightarrow v_6$	1490.1	2.72	5.38	$\rightarrow v_6$	1538.0	6.09	0.44
$\rightarrow v_7$	1482.8	6.59	1.30	$\rightarrow v_7$	1530.2	3.94	0.29
$\mu_3 \rightarrow \nu_1$	1562.3	4.95	0.71	$\mu_7 \rightarrow \nu_1$	1618.9	5.68	0.28
$\rightarrow v_2$	1542.7	7.47	1.07	$\rightarrow v_2$	1598.0	7.21	0.10
$\rightarrow v_3$	1535.9	2.88	0.41	$\rightarrow v_3$	1590.6	1.31	0.06
$\rightarrow \nu_4$	1532.3	5.47	0.78	$\rightarrow \nu_4$	1586.8	3.63	0.18
$\rightarrow v_5$	1514.7	9.13	1.31	$\rightarrow v_5$	1567.9	3.19	0.16
$\rightarrow \nu_6$	1505.1	7.36	1.06	$\rightarrow \nu_6$	1557.6	4.18	0.20
$\rightarrow v_7$	1497.7	4.15	0.60	$\rightarrow v_7$	1549.7	4.74	0.23
$\mu_4 \rightarrow \nu_1$	1568.9	2.86	0.36	$\mu_8 \to \nu_1$	1635.6	1.07	0.04
$\rightarrow v_2$	1549.2	4.86	0.61	$\rightarrow v_2$	1614.2	6.40	0.23
$\rightarrow v_3$	1542.3	4.34	0.55	$\rightarrow v_3$	1606.7	6.49	0.23
$\rightarrow v_4$	1538.7	9.90	1.25	$\rightarrow \nu_4$	1602.8	2.43	0.09
$\rightarrow v_5$	1520.9	3.74	0.47	$\rightarrow v_5$	1583.5	6.73	0.24
$\rightarrow v_6$	1511.3	4.58	0.58	$\rightarrow v_6$	1573.1	5.13	0.19
$\rightarrow v_7$	1503.8	1.04	0.13	$\rightarrow v_7$	1565.0	5.45	0.20

Табл.3. Основные параметры спектра поглощения LN: Er³⁺

ЛИТЕРАТУРА

- 1. L.F. Johnson, A.A. Ballman. J. Appl. Phys., 40, 297 (1969).
- 2. A. Cordova-Plaza, M. Digonnet, H.J. Shaw. IEEE J. Quantum Electron., 23, 262 (1987).
- E. Lallier, J.P. Pocholle, M. Papuchon, M. de Micheli, M.J. Li, Q. He, D.B. Ostrowsky, C. Crezes-Besset, E. Pelletier. Opt. Lett., 15, 682 (1990).
- 4. W. Jinhao, Z. Yueping, X. Haiping, S. Jiawei. Bull. Mater. Sci., 32, 183 (2009).
- 5. X.L. Ruan, M. Kaviany. Phys. Rev. B, 73, 155422 (2008).
- 6. A.J. Garcia-Adeva, R. Balda, J. Fernandez. Phys. Rev. B, 79, 033110 (2009).
- 7. G.G. Demirkhanyan, E.P. Kokanyan, H.G. Demirkhanyan, D. Sardar, M. Aillerie. J. Contemp. Phys., 51, 28 (2016).
- N. Kokanyan, N. Mkhitaryan, G. Demirkhanyan, A. Kumar, M. Aillerie, D. Sardar, E. Kokanyan. Crystals, 11, 50 (2021).
- 9. J.B. Gruber, D.K. Sardar, R.M. Yow, B. Zandi, E.P. Kokanyan. Phys. Rev. B 69, 195103 (2004).
- R. Burlot-Loison, J.L. Doulan, P. Le Boulanger, T.P.J. Han, H.G. Gallagher, R. Moncorge, G. Boulon. J. Appl. Phys., 85, 4165 (1999).
- 11. Ю.С. Кузьминов. Ниобат и танталат лития. Материалы для нелинейной оптики. Москва: Наука, 1975.
- 12. А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Москва: Мир, 1972.
- 13. **А.М.** Леушин. Таблицы функций, преобразующихся по неприводимым представлениям кристаллографических точечных групп. Москва: Наука, 1968.
- 14. G.G. Demirkhanyan. Laser Physics, 16, 1054, (2005).
- 15. V.G. Babajanyan. Laser Physics, 23, 126002, (2013).

SPECTROSCOPIC PROPERTIES OF LiNbO₃:Er³⁺ CRYSTAL IN THE WAVELENGTH OF 1470–1635 NM

G. DEMIRKHANYAN, N. KOKANYAN, M. AILLERIE, E. KOKANYAN

Theoretical study of spectroscopic properties of LiNbO₃: Er^{3+} crystal in the wavelength range of 1470–1635 nm was carried out taking into account the Stark structure of optical spectrum of the impurity ion. Wave functions of the Stark sublevels of both ground ${}^{4}I_{15/2}$ and first excited ${}^{4}I_{13/2}$ manifolds of the Er^{3+} ion were constructed in LSJM-representation, line strengths induced by indirect electric-dipole inter-Stark transitions were calculated, and the main spectroscopic characteristics of emission and absorption spectra of impurity ion were determined.