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Abstract. We study the polaronic effect on the differential cross section (DCS) for an electron 

Raman scattering process in a spherical anisotropic semiconductor quantum dot in the presence of 

a homogeneous external electric field. The Fröhlich coupling of electrons with confined and 

surface polar optical phonon modes for resonance Raman scattering is considered.  The influence 

of electron-phonon coupling on the energy spectrum is taken into account in the framework of 

perturbation theory. The emission spectra are discussed for different anisotropy cases. Resonant 

peaks in the spectra are found and interpreted. 
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1. Introduction 

 

Semiconductor quantum dots (QDs) are widely used in modern electronics and quantum 

technologies not only due to the availability of fabrication and the ability to connect to solid state 

systems [1], but also due to the design capabilities of their electronic and phonon spectra, which are 

determined by structural parameters (size, shape). Therefore, the study of the electronic and phonon 

spectra of QDs provides valuable information about their material composition and structural 

parameters, such as the size and shape of QDs, as well as mechanical deformations and mixing of 

atoms in the system. Features of the interaction of light and quantum dots, the probability of which 

depends significantly both on the energy spectrum of charge carriers and on the features of the 

phonon system, is manifested when Raman scattering processes are considered. Therefore, among 

optical methods, Raman spectroscopy is the most informative method for determining the 

quasiparticle spectra of semiconductor nanostructures. Experimental research on Raman scattering 

in nanocrystals has been extensively reported [2-7]. To interpret experimental results, theoretical 

research usually focus on the calculation of the differential cross section for Raman scattering [8-

11]. 

In this work, we consider Raman scattering of light in a quantum dot of spherical symmetry in 

a nonpolar dielectric matrix. It is assumed that, in comparison with electrons, the contribution of 

holes to the Raman scattering intensity can be neglected. The electron-phonon interaction of the 

Frohlich type is considered within the framework of the dielectric continuum model. Stokes 

processes were studied in the scattering of electrons both by bulk and surface phonons. 

 

 

2. Theory 
 

2.1 Electronic states in a spherical quantum dot 
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We consider a spherical quantum dot (QD) with an anisotropic parabolic confining potential 

in an external uniform electric field  . Choosing the z axis along the electric field, the Hamiltonian 

of the system in the effective mass approximation can be written as 
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where    is the electron effective mass,   is the electron charge,    ,     and     are the 

parabolic potential frequencies along the  ,   and   directions, respectively. The eigenfunctions and 

eigenvalues of the Hamiltonian  ̂  are given by 
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is the normalized wave function of the one-dimensional oscillator,   | |     
 ⁄ ,    

√      ⁄           and   ( ) is the Hermite polynomial. 

 

2.2 Polaron states in a spherical quantum dot 

 

The Hamiltonian of the electron-phonon interaction in a spherical quantum dot is given by 

[12] 
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where    (   
 ) is the annihilation (creation) operator of the  -type phonon with frequency     and 

the set of quantum numbers   (     ) for      and   (   ) for     . The frequencies of 

the    and    optical phonons as well as electron-phonon coupling coeffcients are determined by 

the expressions [12] 
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where   ( ) is the spherical Bessel function of order  ,      is its  -th zero,      (   ) is the 

spherical harmonic function,    √    ̅ ⁄  is the effective radius of the QD,                           

 ̅  √         
 . 

The eigenfunction of the electron-phonon interaction (6) can be written as |  
 ⟩, where   

  

shows the number of  -type phonons in the state described by the quantum number  . We consider 

the electron-phonon interaction Hamiltonian (5) to be a weak perturbation of the unbeturbed 
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Hamiltonian (1) and derive the polaron wavefunctions and energy spectra using the first order 

perturbation theory. Therefore, the polaron wavefunctions and energy spectra are given by 
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Further we are going to assume that the system is initially in the phonon vacuum state | ⟩ and the 

electron-phonon interaction emits one type of phonon (SO or CO) in the mode  . Thus (9) and (10) 

can be rewritten as 

 

|    ⟩  |         
⟩  ∑

⟨            
|  ̂    |         

⟩

         
             

    
 |            

⟩ 
           

     

                     (  ) 

    
( )

          
 ∑

|⟨            
|  ̂    |         

⟩|
 

         
             

    
  

           

     

                               (  ) 

 

2.3 Differential cross-section for polaronic Raman scattering 
 

The general expression for the Raman scattering differential cross-section is given by [13] 
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where   is the speed of light,  ( ) is the refraction index as a function of the radiation frequency, 

   and     (          ) are the polarization vector and photon energy of the emitted secondary 

(absorbed incident) radiation field respectively,        
    is the QD volume. The transition 

probability  (             ) is given by [13] 
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Here | ⟩ and | ⟩ denote the initial and final states of the system corresponding to energies    and   , 

| ⟩(| ⟩) is the intermediate state corresponding to the energy   (  ),   (  ) is a lifetime 

broadening parameter. The initial state | ⟩ consists of a polaron with energy     
( )

 and an incident 

photon of energy     (       
( )

    ). The intermediate state | ⟩(     ) includes a polaron in 

an excited state with energy     
( )

 (       
( )

) . The final state | ⟩  contains a polaron in an excited 

state and a scattering photon of energy     (       
( )

    ). Therefore           
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. In Eq. (16) we have approximated the Dirac delta function as follows: 

 

 (     )  
 

 
 

  

(     )
 

   
 

                                                   (  ) 

 

The operator     
( )

(    
( )

) describes the interaction with the incident(emitted) radiation field in 

the dipole approximation 
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where    is the bare electron mass. In (  ) we have neglect the difference between electron and 

polaron effective masses. 

 

3. Numerical results and discussion 

 

In this section, the Raman scattering differential cross-section of a CdSe spherical QD in the 

presence of a uniform electric field as a function of     is investigated numerically. The values of 

physical parameters are chosen as:          ,         ,         ,     ,              
meV and              meV [14]. We have set         meV,      meV. We consider that 

the polarization vectors of incident and scattered radiations are along the y-axis. Because the 

resonant peaks corresponding to different transitions can appear at the same photon energies we  

only present a few transitions with unique peak positions at all spectra. In all the plots the peak 

positions mediated by photons do not depend on the incident radiation energy and only depend on 

the difference of the subbands involved in the transition. 

Fig. 1 is the numerical representation of the electron (solid lines) and polaron (dotted lines) 

energies for differend states as a function of the dot radius. Naturally, the energy of the electron in 

different states decreases as the radius of the quantum dot increases, since the spatial confinement 

of particle motion weakens. At the same time, it should be noted, that the difference between the 

energies of the polaron and electron states with the same quantum numbers decreases with 

increasing quantum numbers. This pattern is also clearly visible in Table 1, in which the energy 

values of the electron and polaron for states (0,0,0), (0,0,1), (0,1,1), (1,1,1), (1,1,2)  and (1,2,2) are 

presented at quantum dot radii    ,       and     . 

In Fig. 2 the emission spectrum for parallel polarizations of the incident and secondary photon 

is shown forQD radii        ,           and         and electric field strength    
        . The excitation energy is        . Here we can observe the appearance of peaks due to 

photon emission. The solid (red) lines and blue (dotted) lines correspond to electron and polaron 

transitions, respectively. It should be noted that, due to the strong spatial confinement of the 

electron (polaron), the effect of the electric field on the states is insignificant. 
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Fig. 1. Electron and a polaron energies in different quantum states depending on the radius of 

the quantum dot at electric field strength F= 1kV/cm. 

 

 
Table 1. Electron and polaron energies for the states (0,0,0), (0,0,1), (0, 1,1), (1, 1,1), (1, 1,2)  and  

(1, 2,2) at quantum dot radii 2nm, 2.5nm and 3 nm 

 

 

 

Quantum states (        ) 

0,0,0 0,0,1 0,1,1 1,1,1 1,1,2 1,2,2 

Dot radius (  ) Polaron energies (in meV) 

                                              

                                                

                                            

Dot radius (  ) Electron energies (in meV) 
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Fig. 2. DCS as a function of emitted photon energy     for transitions from a few excited states to the ground state (      ) 

in case of            ,             for wire radii (a)        , (b)          , (c)        . 

 

4. Conclusions 

 

In summary, we have presented a formal method for the calculation of the Raman differential 

cross-section for polaron Raman scattering in a semiconductor quantum dot, considering a 

homogeneous electric field. The main feature of polaron Raman scattering is the appearance of a 

rich multi-frequency spectrum, due to the non-equidistance of polaron energy levels, as wel as the 

presence of a selection rule for transitions with a change in quantum numbers         . The 

theoretical study of the dependence of the differential cross section on the frequency parameters of 
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the system, which determine the energy spectrum of an electron, can be used for the spectroscopic 

characterization of such systems. 
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