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Abstract. Small fluctuations of the electron system from the equilibrium state due to electron-

acoustic phonon intraband, intravalley random scatterings in graphene have been analyzed. In the 

linearization approximation of the Boltzmann transport equation a second-order linear partial 

differential equation for the time and energy dependences of the symmetric component of the 

fluctuations of the electron distribution function has been obtained. This equation can be considered 

as the Fokker-Planck equation in the momentum space, which describes the chaotic movement of 

the electron along the energy axis, i.e. the electron diffusion in the momentum space. 
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1. Introduction 

 

Since its discovery [1], graphene has been one of the most studied materials because of its 

unique properties which are very useful in various fields of micro- and nanoelectronics (see, e.g., 

[2-4]). From this point of view, the study of current noises in graphene is one of the important areas 

of modern research in solid state physics. Here, as in bulk semiconductors and metals, as well as in 

various nanostructures, the main unsolved problems are associated with low-frequency current 

noise (1/f-noise) (see, e.g., [5-8]). 

The development of the theory of electron mobility fluctuations could serve as good basis for 

explanation of the basic mechanisms of 1/f-noise in semiconductors. This is confirmed by some 

experimental results (see, e.g., [9, 10]). The main sources of carrier mobility fluctuations are: 

random intraband scattering, generation-recombination transitions, and the shot effect [11, 12], out 

of which electron-phonon intraband scattering has significant importance. 

It was established [13] that in general cases electron mobility fluctuation ~  is the result of the 

fluctuations of the electron quasi-momentum relaxation time k  ( k
~ -source) and the occupancy of 

energy levels of the conduction band kn  ( kn~ -source). As shown in [13] for the theory of 1/f-noise 

the kn~  component of the mobility fluctuations is of basic interest [12, 13]. The occupancy 

fluctuations kn~ , in turn, are expressed by 
0 ( )f t

k  fluctuations of the equilibrium distribution function 

of conduction electrons 
0f

k . Here k  is the electron quasi-wave vector, and by the index “0” it is 

emphasized the important fact that fluctuations are equilibrium fluctuations which arise in 

equilibrium semiconductors, too. 

The function 
0 ( )f t

k  can be represented as a sum of symmetric 
0, ( )sf t

k  (i.e. 
0, 0,s sf f

k k ) and 

asymmetric 
0, ( )af t

k  (i.e. 
0, 0,a af f 

k k ) components. Then, 
0f

k can be represented as: 

 
0 0 0 0 0, 0, ,a sf f f f f f    

k k k k k k  (1) 

where 
0f

k  is the statistical average distribution function of the equilibrium electron system which is 

determined by the Fermi-Dirac (or Boltzmann) statistics. 
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It was stated that the electron mobility fluctuations ( )t  are caused by the symmetric 

component 
0, ( )sf t

k . Moreover, asymmetric component 
0, ( )af t

k  has no contribution to the mobility 

fluctuations [13]. Hence, to find out the features of the time dependence of the mobility fluctuations 

( )t , first of all, it is necessary to find out the time dependence of the 
0, ( ) .sf t

k  

Damping peculiarities of small deviations (fluctuations) of electron system from equilibrium 

state due to electron-acoustic phonon random scattering have been analysed in Ref. [14]. A second-

order linear partial differential equation for 
0, ( )sf t

k  was obtained via linearization of the Boltzmann 

equation. Another equation which describes the time dependence of electron lattice mobility 

fluctuations was obtained. These results are very important for further study of the mechanisms of 

1/f-noise in semiconductors. Since the methods developed and used in Ref. [14] are somewhat 

universal, they can be used in two-dimensional materials, including graphene. 

 

2. Derivation of the equation 

 

The methods based on the solution of the Boltzmann transport equation are powerful 

theoretical tools for the study of the transport phenomena in different materials (see, e.g., [2, 3, 15-

17]). It was shown that a semi-classical approach for the transport properties of graphene based on 

the Boltzmann equation is accurate and very effective [3, 18]. 

In some special cases to solve the Boltzmann equation it is necessary to determine the 

scattering mechanisms. Important scattering mechanisms in graphene are (see, e.g., [2, 3, 19-24]): 

short range scattering due to localized defects, charged impurity scattering and deformation 

potential scattering by acoustic and optical phonons. The role of optical phonon scattering is 

significant above 300K [24]. 

One can notice that for relatively pure graphene the main scattering mechanism of interest can 

be the electron-acoustic phonon intraband scattering [2,3,19-24]. Thus, in this paper the electron-

acoustic phonon intraband, intravalley scattering is considered on the basis of the following 

physical model. Assume that at the time instance 0t   , the electron absorbs (or emits) acoustic 

phonon with energy 
q  and changes its state of equilibrium and this causes fluctuations 

0, ( )sf t
k . 

At random time instances the electron randomly changes its energy by absorbing or emitting 

phonons with random energies 
q . Therefore, the movement of the electron along the energy axis 

is a chaotic movement which is known as diffusive movement of an electron along the energy axis 

[25]. This movement is described by the symmetric component of the function 
0, ( )sf t

k . 

Using the Boltzmann transport equation one can determine the time dependence 
0, ( )sf t

k . 

In our case the Boltzmann equation has the following form [15, 25]: 

 
0

0 0( )
( ), ( ) .e ph

f t
J g t f t

t



   

k
q k  (2) 

Here pheJ   is the collision integral for electron-phonon scattering, 
0 ( )g tq  is the phonon distribution 

function, q  is the quasi-wave vector of phonons. 

For the more probable case of electron-single phonon scattering e phJ   is represented as [15, 

25] 

 




0 0 0 0 0 0

0 0 0 0 0 0

W (1 )(1 ) (1 ) ( )

(1 ) (1 ) (1 ) ( ) .

e ph qJ f f g f f g

f f g f f g

   

   

   

  

         

        

 k q k q k q k q k q k q

q

k q k q k q k q k q k q

 (3) 
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Here k
 is the electron energy in a state which is described by the quasi-wave vector k , and the 

factor Wq
 in the case of electron-acoustic phonon deformation interaction in graphene is defined as 

(see, e.g., [3, 23]) 

 
2 2

W (1 cos ) ,ac
q

q

D q

A




 
    (4) 

where  is the mass density, acD  is the acoustic deformation potential constant, and A  is the area. 

Using the linear dispersion law 
q sv q  , for Wq  one can write: 

 
2

0W (1 cos ) W (1 cos ) .ac
q

s

D q
q

Av


 


     (5) 

where 
sv  is the sound velocity in graphene and 

 
2

0W .ac

s

D

Av




  (6) 

Taking into account the quasi-momentum conservation law ( '  k k q ) Eq. (2) can be 

represented as: 

    

    

0
0 0 0 0 0 0

' ' ' ' ' ' '

'

0 0 0 0 0 0

' ' ' ' ' ' '

'

( )
W 1 1 1 ( )

W 1 1 1 ( ) .

df t
f f g f f g

dt

f f g f f g

   

   

   

   

        
 

       
 





k
k k k k k k k k k k k k k k

k

k k k k k k k k k k k k k k

k

(7) 

Here the peculiarities 

 '' ,sv    
q k k

k k  (8) 

 ' 0W W W ' (1 cos ) .   
q k k

k k   (9) 

are used. Here and above   is the angle between vectors k and 'k . 

In general, due to the phonon absorption or emission the equilibrium of both electron and 

phonon systems is disturbed. The equilibrium state of the phonon system restores due to the 

phonon-phonon scattering which generally are more intense and fast processes. Therefore, one can 

suppose that the equilibrium of the phonon system restores very quickly: it is assumed that the 

absorption or emission of a phonon by the electron practically does not change the equilibrium of 

the phonon system [26]. Hence, fluctuations of the phonon system are neglected. It is supposed that 

the phonon distribution function 
0g
q  (or 

0

'g k k ) is time-independent quantity and determined by the 

Bose-Einstein distribution: 

 
0 0

' '

1
.

exp 1
B

g g

k T


 



 
 

 
 

k k k k

k k'

 (10) 

Substituting Eq. (1) into Eq. (7) and linearizing it in the case of small deviations, for the function 
0, ( )sf t

k  one obtains the following equation: 

 
 

 

0,
0, 0 0, 0

' ' ' ' ' '

'

0, 0 0, 0

' ' ' ' ' '

'

( )
W 1 ( )

W 1 ( ) .

s
s s

s s

df t
f g f g

dt

f g f g

   

   

   

   

      
 

     
 





k
k k k k k k k k k k k k

k

k k k k k k k k k k k k

k

 (11) 

Substituting (10) into (11) one gets: 
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 

'

'
0,

0, 0,

'

' ' '

' ' ' '

exp
( ) 1

W

exp 1 exp 1

( ) ( ) .

s

Bs s

B B

df t k T
f f

dt

k T k T



 

 

   

       



 

  
  

    
     

     
     

     

k

k k

k k

k k

k k k k k

k k k k k k k k

 (12) 

In the quasielastic approximation  -functions can be represented by Taylor series and one 

obtains: 

 '
' ' ' ' '

'

( )
( ) ( ) 2

d

d

  
        


  


       k k

k k k k k k k k k k

k

 (13) 

Confining to the first term of series (13), from Eq. (12) one obtains: 

 
'

'
0,

0, 0,

'

' ' '

'
'

'

exp
( ) 1

2 W

exp 1 exp 1

( )
.

s

Bs s

B B

df t k T
f f

dt

k T k T

d

d



 

 

   

  








  
  

     
     

     
     




k

k k

k k

k k

k k k k k

k k
k k

k

 (14) 

Using Eq. (9), (14) can be represented as shown below: 

 
'

0,

0

'

2 0, 0,

' ' '

'

'

( )
2 W

exp
1

' (1 cos )

exp 1 exp 1

( )
.

s

s

Bs s

B B

df t
v

dt

k T
f f

k T k T

d

d



 

 


   

  



  

  
  

      
     

     
     






k

k k

k k

k k k k k

k k

k

k k  (15) 

Taking into account the spin degeneracy and using the following transition for graphene 

 
max

min

2

2 2

0

( ) ( ) ,
2 2

k

BZ k

A A
d k dk d




 

        
k

k  (16) 

then integrating over angle   , (15) can be represented as shown below: 

  
max

'

min

0,

0 2

'

2 2 0, 0,

' '

'

'

( )
2 W 2

2

exp
1

exp 1 exp 1

( )
.

s

s

k

Bs s

k

B B

df t A
v

dt

k T
dk k k k k k f f

k T k T

d

d



 




 

   

  



  

  
  

         
     

     
     






k

k k

k k

k k k k

k k

k

 (17) 

Taking into account that in graphene Fv k k
, hence 
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 ,
F

k
v


 k  (18) 

and using the dimensionless quantity x : 

 ', ,
B B

x x
k T k T

 
 k k  (19) 

then substituting 
0W  from (6), from Eq. (17) one obtains the following equation: 

 

 

 
 

 

   

220,
2 2

4

0

0, 0,

2( )

exp 1 ( )
.

exp 1 exp 1

s
ac Bx

F

s s

x x

D k Tdf t
dx x x x x x

dt v

x x d x x
f f

x x x x dx









       

    
  

      


  (20) 

Here Fv  is the Fermi velocity. 

Using the  -integration, from Eq. (20) one gets: 

 

 

 

 
 

   

220,

4

3 2 2 0, 0,

2( )

exp 1
.

exp 1 exp 1

s
ac Bx

F

s s

x x

x x

D k Tdf t

dt v

x xd
x x x x x f f

dx x x x x







 

    
       

        

  (21) 

The right-hand side of Eq. (21) is a 0/0 type uncertainty. Using the L'hopital's rule to calculate 

it, one obtains the following equation: 

 
 

 

220, 2 0, 0,3 3
2 2 0,

4 2

( )
2 2 .

2 2

s s s
ac B sx x x

x

F

D k Tdf t d f dfx x
x x f

dt dx dxv

  
     

  
 (22) 

Using the following notation: 

 
 

 

22

4

1
,

2

ac B

M F

D k T

v 
   (23) 

one can write the Eq. (22) in the following form: 

  
0, 2 0, 0,

3 3 2 2 0,

2

( ) 1
4 4 .

s s s
sx x x

x

M

df t d f df
x x x x f

dt dx dx

 
    

 
 (24)

 
 

 

3. Discussion and conclusions 

 

Equation of the form (24) is a second-order linear partial differential equation of parabolic 

type which can be considered as the special case of the Fokker-Planck equation in k -space [27-30]. 

Eq. (24) describes the chaotic movement (diffusion) of the electron along the energy axis. Both 

diffusion and drift coefficients are not constant quantities and depend on electron energy x . 

Eq. (24) was obtained on the basis of electron - acoustic phonon intraband scattering. 

Intraband scattering does not change the concentration of conduction electrons n . It must be a 

time-independent constant quantity: 

 
( )

0 ,
dn d n n dn

dt dt dt


    (25) 

hence it is obvious that Eq. (24) and its solution must satisfy the above mentioned condition. 
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To show that the function determined by Eq. (24) truly satisfies the above given condition one 

can use the following relation [2,3] between conduction electron concentration and electron 

distribution function: 

 
 

0

2

0

2
.

F

n d f
v

 




  kk k  (26) 

Therefore 

 0,

0

( ) ( ) ,s

xn t b dxxf t



   (27) 

where the dimensionless quantity x  and the following notation were used: 

 
 

 

2

2

2
.

B

F

k T
b

v
  (28) 

Using relation (27), multiplying Eq. (24) by b xdx , and making integration over dx  within 

the range [0, ) , one obtains: 

  
2 0, 0,

3 3 2 2 0,

2

0

( )
4 4 .

s s
sx x

x

M

d f dfdn t b
dxx x x x x f

dt dx dx

  
    

 
  (29) 

Using transformations of integration by parts it is not difficult to make sure that the right-hand 

side of Eq.(29) is equal to zero. So, one obtains: 

 
0,

0

( )
( ) 0 .s

x

dn t d
b dxxf t

dt dt

 
  

 
  (30) 

Therefore Eq. (24) satisfies the condition n(t) const . 

Now let us calculate the numerical value of the coefficient M  which can be considered as 

some characteristic time. Using the following numerical values for given quantities [23]: 

 
o

7 37.6 10 kg m , 18eV , 5.75eVA ,ac FD v      

one can obtain the following numerical value for M : 

 
For comparison, one can note that  this value is much larger than the value of the electron 

at 300KT  . quasimomentum relaxation time due to acoustic phonon scattering [23]: 

The analysis of literature on second-order linear partial differential equations in two variables 

(see, e.g., [31]) shows that analytic solutions of equations of type Eq. (24) practically are not 

investigated. In the given case it is possible to find only either numerical solutions or approximate 

analytic solutions of Eq. (24) based on the known approximate methods [31]. 

Eq. (24) can be represented as follows: 

 
0, 2 0, 0,

0,

1 2 32

( )
( ) ( ) ( ) ,

s s s
sx x x

x

df t d f df
h x h x h x f

dt dx dx
    (31) 

where 

 
 3 23 2

1 2 3

4 4
( ) , ( ) , ( ) .

M M M

x xx x
h x h x h x

  


    (32) 

It is known that equations of type Eq. (31) have particular solutions with separable variables, 

which can be represented as [31]: 

    0, ( ) exp ,s

xf t t u x    (33) 
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where the function  u x  can be found by solving the following ordinary linear differential equation 

with parameter  : 

 
   

   
2

1 2 32
( ) ( ) ( ) 0 .

d u x du x
h x h x h x u x

dx dx
     (34) 

However, the analysis of literature shows (see, e.g., [32]) that analytic solutions of equations 

of type Eq. (34) in the general case are also practically not investigated. Moreover, it is obvious that 

the solution of Eq. (31) (or Eq. (24)) does not have to be of form Eq. (33). The solution of Eq. (24) 

is the subject of further research. 

 

4. Conclusion 

 

The main conclusions of the paper are as follows: 

i. In the linearization approximation of the Boltzmann transport equation the time and energy 

dependences of the symmetric component of the fluctuations of the electron distribution function 

in graphene in the case of electron - acoustic phonon intraband, intravalley scattering is given by 

the second-order linear partial differential equation (24) which can be considered as the Fokker-

Planck equation in k -space. This equation describes the chaotic movement (diffusion) of the 

electron along the energy axis. 

ii. Eq. (24) satisfies the condition of conservation of the concentration of conduction electrons. This 

is a necessary condition, since intraband scattering does not change the concentration of 

conduction electrons. 

iii. In Eq. (24) both diffusion and drift coefficients are not constant quantities and depend on 

electron energy. The numerical value of the characteristic coefficient M  is much larger than the 

value of the electron quasimomentum relaxation time due to acoustic phonon scattering. 

 
References 

 

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, 

Science 306 (2004) 666. 

[2] L.E.F. Foa Torres, S. Roche, J.-C. Charlier, Introduction to Graphene-Based Nanomaterials: from Electronic 

Structure to Quantum Transport (2
nd

 Edition, Cambridge University Press, Cambridge, 2020). 

[3] M.I. Katsnelson, The Physics of Graphene (2
nd

 Edition, Cambridge University Press Cambridge, 2020). 

[4] M. Grundmann, The Physics of Semiconductors: an Introduction Including Nanophysics and Applications (4
th

 

Edition, Springer, 2021). 

[5] N. Sun, K. Tahy, H. Xing, D. Jena, G. Arnold, S.T. Ruggiero, J. Low Temp. Phys. 172 (2013) 202. 

[6] A. Balandin, Nature Nanotech. 8 (2013) 549. 

[7] S. Takeshita, S. Matsuo, T. Tanaka, S. Nakaharai, K. Tsukagoshi, T. Moriyama, T. Ono, T. Arakawa, K. 

Kobayashi, Appl. Phys. Lett. 108 (2016) 103106. 

[8] G. Liu, S. Rumyantsev, M.S. Shur, A.A. Balandin, Appl. Phys. Lett. 102 (2013) 093111. 

[9] T. Kang, Optimization of Signaol-to-Noise Ratioin Semiconductor Sensors via On-Chip Signal Amplification and 

Interface-Induced Noise Suppression (Ph. D. Thesis, The University of Michigan, 2015). 

[10] M.D. Hammig, T. Kang, M. Jeong, M. Jarrett, IEEE Transactions on Nuclear Science 60 (2013) 2831. 

[11] S.V. Melkonyan, F.V. Gasparyan, H.V. Asriyan, Proc. of SPIE, Noise and Fluctuations in Circuits, Devices and 

Materials 6600 (2007) 66001K-1. 

[12] S.V. Melkonyan, Physica B 405 (2010) 379. 

[13] S.V. Melkonyan, H.V. Asriyan, Ash.V. Surmalyan, J.M. Smulko, Armenian Journal of Physics 4 (2011) 62. 

[14] S.V. Melkonyan, T.A. Zalinyan, S.S. Melkonyan, Fluctuation and Noise Letters 17 (2018) 1850018. 

[15] C. Jacoboni, Theory of Electron Transport in Semiconductors: a Pathway from Elementary Physics to 

Nonequilibrium Green Functions (Springer, 2010). 

[16] M.V. Fischetti, W.G. Vandenberghe, Advanced Physics of Electron Transport in Semiconductors and 

Nanostructures (Springer, 2016). 

[17] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E.M.Viggen, The Lattice Boltzmann Method: 

Principles and Practice (Springer, 2017). 

[18] T. Stauber, N. M.R. Peres, F. Guinea, Phys. Rev. B 76 (2007) 205423. 

https://arxiv.org/search/cond-mat?searchtype=author&query=Takeshita%2C+S
https://arxiv.org/search/cond-mat?searchtype=author&query=Matsuo%2C+S
https://aip.scitation.org/author/Liu%2C+Guanxiong
https://aip.scitation.org/author/Rumyantsev%2C+Sergey
https://aip.scitation.org/author/Shur%2C+Michael+S
https://aip.scitation.org/author/Balandin%2C+Alexander+A
https://www.worldscientific.com/worldscinet/fnl
https://www.worldscientific.com/worldscinet/fnl
https://arxiv.org/search/cond-mat?searchtype=author&query=Stauber%2C+T
https://arxiv.org/search/cond-mat?searchtype=author&query=Peres%2C+N+M+R
https://arxiv.org/search/cond-mat?searchtype=author&query=Guinea%2C+F


Zalinyan and Melkonyan || Armenian Journal of Physics, 2022, vol. 15, issue 4 

 

119 
 

[19] N.M.R. Peres, J.M.B. Lopes dos Santos, T. Stauber, Phys. Rev. B 76 (2007) 073412. 

[20] J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E. D. Williams, and M. Ishigami, Nature Phys. 4 (2008) 377. 

[21] S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, Proc. Nat. Aca. Sci. 104 (2007) 18392. 

[22] E.H. Hwang, S. Das Sarma, Phys. Rev. B 77 (2008) 115449. 

[23] T. Stauber, N.M.R. Peres, F. Guinea, Phys. Rev. B 76 (2007) 205423. 

[24] R.S. Shishir, D.K. Ferry, J. of Phys.: Condensed Matter 21 (2009) 232204. 

[25] V.F. Gantmakher, I.B. Levinson, Carrier Scattering in Metals and Semiconductors (Elsevier Science, 1987). 

[26] V.L. Gurevich, Kinetics of Phonon Systems (Nauka, Moscow, 1980). 

[27] E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (v. 10, Butterworth-Heinemann, Oxford, 1999). 

[28] H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (2
nd

 Edition, Springer, 1996). 

[29] J. Grasman, О.A. van Herwaarden, Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in 

Applications (Springer, 1999). 

[30] V.I. Bogachev, N.V. Krylov, M. Röckner, S.V. Shaposhnikov, Fokker-Planck-Kolmogorov Equations (Publishing 

House “Institute of Computer Research”, Izhevsk, 2013). 

[31] A.D. Polyanin, V.E. Nazaikinskii, Handbook of Linear Partial Differential Equations for Engineers and Scientists 

(Chapman and Hall/CRC Press, Boca Raton, 2016). 

[32] A.D. Polyanin, V.F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (Chapman and 

Hall/CRC Press, Boca Raton, 2003).  

 


