ISSN 0002-306X. Proc. of the RA NAS and NPUA Ser. of tech. sc. 2019. V. LXXII, N2.

UDC 004.451.3 MICROELECTRONICS

D.L. HAYRAPETYAN

VERIFICATION OF THE MEMORY TEST AND DIAGNOSIS FLOW
IMPLEMENTATION IN SOFTWARE POST-SILICON ANALYSIS
AUTOMATION TOOLS

With rapidly increasing density and capacity of nanoscale memory devices embedded in
modern system-on-chips (SoC), new design problems are being introduced, as well as the
requirements are strengthened towards test and diagnosis for achieving higher quality and
increased yield. This leads to modification of existing and/or development of new memory
test, fault detection, localization and classification flows that are being implemented in
various software post-silicon analysis automation tools. In this paper, an approach for
verification of those tools is proposed.

Keywords: Verification, Memory test, Memory diagnogtics, Memory faults, Test pattern.

Introduction. The rapid increase of density and capacity in memory IP
cores embedded in modern system-on-chip (SoC) creates new challenges of
preserving test and repair cost while also minimizing time-to-market. The on-chip
infrastructure IP is proposed in [1] to maximize the test and repair efficiency
utilizing the memory design knowledge and providing the analysis on failure data.
Considering the increasing complexity of SoC design, it becomes crucia for silicon
embedded memory test and repair solutions to keep up with the technology
advances in order to consistently provide superior chip quality and yield
optimization [2]. Some aspects of implementation of the corresponding solutions
for post-silicon analysis automation that extend the mentioned infrastructure to
cover challenges of today's designs which are much bigger, faster, hierarchical and
sensitive to area, timing and power are considered in the current work.

With the technology shrinking, new types of memory defects and
corresponding memory fault models [3] for the memory test have been observed
during post-silicon analysis [1]. That posed new challenges in the test and
diagnosis of embedded memories of systems-on-chip (SoC) using all-in-one
solutions [2, 4]. We follow the approach of task distribution between the hardware
(HW) memory built-in self-test (MBIST) engine and software (SW) automation
tools adduced in [2], where the management and control of test and diagnosis flow
is implemented via SW, while the actual at-speed basic test and diagnosis
procedures are performed by the MBIST engine.

235

The interaction between SW and HW sides of this mature solution is
managed via creation of test patterns at the SW side, their application to MBIST
engine via standard interfaces [5-7] and analysis of obtained results/chains from the
MBIST engine at the SW side. The proposed mature test and diagnosis flow [8]
comprises three main phases: fault detection, classification and localization, where
each phase requires specific test patterns to be created and analyzed, so that results
can be propagated to the next phase preparation step. Specific march test
algorithms and march-like test algorithms should be developed and used for each
phase for generating the corresponding test patterns, which in their turn, will be
passed to the MBIST engine for further at-speed execution.

Sinceit iscrucia to ensure the correctness of diagnosis flow implementation
before it is applied to areal SoC, afault-prone environment for pattern verification
is required for modeling the test pattern execution on the MBIST engine using
some accurate models of memory faults to be tested by the MBIST engine. It is
also essentia to estimate the execution run time for being time-efficient and alowing a
variety of different scenarios to be quickly passed through the MBIST engine.

The aim of this paper is to build the mentioned environment for test patterns
and obtained chain verification.

With the introduction of FInFET technology, new types of memory defects
have been observed [9-11]. Test and diagnosis flows designed for faults present in
previous designs were not applicable as they were not able to provide the necessary
coverage and required modification of detection, classification and localization
phases. At the same time, solutions elaborated for current designs will face the
same issue in future because of continuous changes in memory designs due to
technology shrinkage. A natural demand for prediction of new fault types and
modifications of solutions required for the test and diagnosis arose. The issue was
addressed with introduction of multidimensional prediction mechanism for
memory fault classification [12], that systemizes all known memory faults in
periodic manner and gives a view on impending new faults that may appear in
memories with new technology nodes. Furthermore, the mechanism offers a
generic flow for efficient new march test algorithm generation for the new faults
based on a test algorithm template. The use of the mentioned mechanism is added
to the generation process of memory fault models for the SW side.

A System Verilog environment [13] is considered as a basis for implementation
of the environment for pattern verification. The existing tools [14] are enriched to
cover the new requirements above. The application of the enriched tools for generation
of several memory faults inherent to modern manufacturing technologies [15] is
also considered.

236

The structure of the paper is as follows: section 1 provides brief information
on the approach for building verification environment for test patterns used for
post-silicon analysis. Fault model generation and injection flows are outlined in
section 2. The verification step for test patterns is defined in section 3 along with
the verification step of the output chain analysis of the test and diagnosis flow in
section 4. The experimental results are provided in section 5. The use of the
approach for the predicted faults is proposed in section 6. Section 7 concludes the
paper.

1. An approach for building the verification environment for post-
silicon analysis of test patterns. Throughout this paper, we will consider the test
patterns used for the test and diagnosis flow described in [8]. Each step of the test
and diagnosis flow, when implemented in test automation tools, requires creation
of a corresponding test pattern, application of the pattern on the BIST system and
the analysis of the obtained chains. The analyzed information is utilized at creating
the test patternsin the next step.

However, test pattern creation and chain anaysis are fault-prone for
implementation. Therefore, they require an adeguate environment for being tested
and verified before interactions with manufactured SoCs. Since the test pattern
generation in each phase of the flow depends on the results of test pattern execution
in the previous phase, verification of this flow implementation is essential. The
verification environment is constructed on the basis of MBIST register transfer
level representation (Fig. 1). The process of building the environment can be
divided into 3 parts which will be discussed further, throughout this paper.

Fig. 1. Verification flow for the software post-silicon analysis automation tool

237

2. Fault model generation and injection. The fault DFA generation flow
[14] was used in this step which consists of the following major steps:

1. Parsing input files and storing the obtained data as separate congtructs: fault
primitives (FPs) [3], fault injection memory cell addresses, memory configuration
file.

2. Generating a fault description table (FDT) for FP (<S/F/R> for single-cell
and <S; S/F/R for coupling faults>). FDT is a table representation of the DFA
model, where each row of the table contains information on DFA state and
transitions going out from it.

3. Generating the System Verilog code for FDT and including it into the
memory test bench, while considering the information provided in point 1.

The fault DFA isintended to model the memory internal faults. It is shown
how the fault model is extended by increasing the number of the affected cells and
operations in FP [16]. In addition, fault model extension for linked faults that
comprise multiple FPs [17] was derived in [18].

2.1. Fault injection. During the inclusion of fault model in RTL, the test
bench fault memory cell address must be provided. Since memories generally use
words for storage of the information rather than single bits, the memory cell
address can be provided via memory word address and the position of the faulty bit
in it. Fault models with several memory cells require multiple addresses and bit
positions to be specified. Furthermore, memories may consist of multiple banks,
thus the bank index must be provided. Finally, as soon as multiple instances of a
memory device may be present in the MBIST network, the hierarchical path to a
memory must also be provided (Fig. 2).

server |
[processorl [1]]

MEMORY [1]
// Address in range: [1023 : 0], Number of Bits = 133

single cell faults:
ADDR = 3, BIT 2, FTYPE
ADDER = 2, BIT 1, FTIYFE

<R0O/0/1>
<0/1/->

coupling faults:
ADDRA = 900, BITA = 5, ADDRV = 915, BITV = 2, FTYPE = <1W1;0/1/->

[processor2 [2]]
MEMORY2 [1]
£k Address in range: [4991 : 0], Number of Bits = 61
MEMORY2 [2]
/7 Address in range: [4991 : 0], Number of Bits = 61

Fig. 2. Afault injection file example

238

Another important issue to be considered is that memory address used for
fault injection is generally alogical address. Thus, two bits logically preceding one
another (within the same word or two words logically neighboring each other), are
not necessary neighboring each other inside the memory device. This behavior is
determined by the memory address and data scrambling that is usually present in
most modern memories [19]. Assuming the data on memory address and data
scrambling information is provided, the second address for coupling the faults is
calculated by providing the logical address of either aggressor or victim cell,
calculating the logical addresses of the neighboring cells (Fig. 3), using the
scrambling information and picking the address of the second cell from the list of
calculated logical addresses.

I Z |3

8 |V |4

7 6 5

Fig. 3. Victimcell V, with potential aggressor cells 1,2,3,4,5,6,7,8

Fault injection or the process of including the DFA fault model in the RTL
test bench requires knowledge of memory device pins for addressing, obtaining and
shifting in the data, application of read and write operations. This information can
be provided with the memory configuration file [14].

3. Verification of test patterns. Since the test patterns command the
MBIST to run march test algorithms/march-like adaptive test algorithms on the
memory devices, away to determine if the test pattern was successfully executed is
to observe the behavior of the fault model injected into the MBIST.

The fault model is traversable through the transition flags in FDT
representation [14]. Each time a transition from a state occurs, the transition flag of
current FDT row for corresponding operation is set to 1. After the simulation is
over, the resulting FDT is compared with a reference FDT which shows what is
expected after the execution of the pattern (Fig. 4). This template is created on the
basis of generated fault model FDT and is traversed separately via the march test
algorithm that is used in the test pattern.

239

Fig. 4. Verification of test patterns

4. Verification of chain analysis for test and diagnosis flow. Since the
memory test and diagnosis is time-sensitive, parallel testing of multiple memory
instances is crucid. BIST instructions for multiple memory instances that need to be
executed smultaneoudy are usualy combined in groups during the test pattern creation.

Generally, the test and diagnosis flow implementation in test automation
tools consists of four phases (test, detection, classification and localization) [8]
described below viatest pattern templates. Templates are used to generate a pattern
instance for the corresponding phase. Each phase requires specific analysis of the
MBIST output chains.

Test. Pattern template:

1. SELECT_MEMORY_GROUP

2. LOAD_TEST_ALGORITHM

3. RUN_BIST

4. READ_FAILED_MEMORY _INFO

Description: This pattern loads the test algorithm into the BIST, while
instructing to run it on the specified memory groups. Information on failed
memories is obtained from BIST, which can help to narrow the set of memories for
further diagnostics, by excluding them from memory groups for the next test patterns.

Verification of the chain anaysis: Verification of the reported information
on failed memories is based on the conformity with memories used for fault
injection in the fault injection file.

Detection. Pattern template:

1. SELECT _MEMORY_GROUP

2. LOAD_TEST_ALGORITHM
240

3. SET_SONE |

4. RUN_BIST

5. READ_DIAGNOSTIC_INFORMATION

Description: This pattern also loads the test algorithm into the BIST while
specifying the value of stop on N-th error register. This will command the BIST to
stop the test algorithm execution after the N-th error has been encountered (totally
N read operation of march test algorithm have returned the value that was not
expected). Diagnostic information on the last failed memory cell and applied test
operation is obtained from BIST as a binary chain with the last instruction of the
test pattern, and further evaluated by software tools for convenient representation.
The general information provided is:

1. Memory failed word address.

2. Memory failed bit.

3. March test failed operation.

Verification of the chain analysis: The verification of the reported diagnosis
information is based on the conformity with banks, addresses and bits used for fault
injection in the fault injection file.

Classification. Description: The fault classification step uses the test pattern
template which was the described point a, while applying fault classification march
test algorithms specifically designed for this diagnosis phase, n number of pattern
executions need to be made while modifying value | to make sure that n read
operations have been applied on the faulty cell, where n is the number of read
operations present in test algorithm [8]. The test syndrome is generated as a resullt,
which is n-bit signature, where the order of bits corresponds to the sequence of the
read operations in the test algorithm. The faults are classified based on the obtained
signature.

Verification of the chain analysis: The verification of this phase is done by
checking the conformity of the classified fault type with FP used in the fault
injection file.

Localization.

Thetest pattern template for this phaseis as follows:

1. SELECT_MEMORY_GROUP

2. APPLY_ADAPTIVE_TEST_ALGORITHM

3. READ_DIAGNOSTIC_INFORMATION

Description: This pattern is generally used with coupling faults for locating
the aggressor cell. An adaptive march-like algorithm is applied [8] to the
neighborhood of a memory victim cell (Fig. 2), usually determined after execution
of pattern b. Theidea of the algorithmis:

1. Set the potential aggressor cell values opposite to the fault activation
initial value of aggressor for the coupling fault.

241

2. Apply the sequence of the fault activating operations to the potential
aggressor or victim cell depending on the type of the coupling fault.

3. Read the value of the victim cell.

4. If the fault is not triggered, repeat steps 1-3 for the next potentia
aggressor.

5. The algorithm stops when the faulty value is finally observed on the
victim cell.

Veification of the chain analysis: The verification is based on the conformity
with banks, addresses and bits of aggressor cells used in fault injection files.

5. Experimental results. Diagnosis flow implementation aong with the
implementation of fault model generation flow were verified with VLP1(26N),
VLP2(26N), VLP3(22N), March FFDD (42N) algorithms [5]. The MBIST flow
was simulated separately for each fault and faults were detected. Using the fault
classification step of diagnosis flow FinFET-specific faults were successfully
determined and classified.

An example of FinFET-specific <RORORORORO/L/1> fault traversed by
March FFDD algorithm is provided in Fig. 5.

R W1 Rt

¥
2" 71 %
= 3 A WiRea

Fig. 5. <ROROROROR0/1/1> fault traversed by March FFDD
242

6. Use of the approach for the predicted faults. Asit was mentioned above,
a multidimensional prediction mechanism for memory fault classfication introduced
in [12] alows to predict new types of faults in memory. The suggested verification
approach can avail of the mechanism if several additional changes will be made in
the fault model generation and injection part to reflect the knowledge reflected in
the prediction mechanism.

Conclusion. A built verification environment for test and diagnosis flow
implementation within software post-silicon analysis automation tools is described
in this paper. The test results on the fault DFA model behavior on recently
considered fault types, using the fault classification flow are provided.

The verification environment is implemented in DesignWare STAR
Memory System Yield Accelerator [2] tool that is currently used both in the
development of MBIST and during the test and diagnosis of SoCs with an
embedded MBIST engine. Some further work connected with the extension of the
approach for the predicted new types of faultsis outlined too.

REFERENCES

1. Zorian Y., Shoukourian S. Embedded memory test and repair: infrastructure IP for
SOC yield // IEEE Design and Test of Computers.- 2003.- Issue 6.- P. 58-66.

2. Zorian Y., Shoukourian S. Test Solutions for Nanoscale Systems-on-Chip: Algorithms,
Methods and Test Infrastructure // Selected papers of Ninth International Conference
on Computer Science and Information Technologies.- |EEE.- 2013.- P. 1-3.

3. Van de Goor A.J. Testing Semiconductor Memories: Theory and Practice.- Wiley &
Sons Inc, 1998.- 512 p.

4. Quality assurance in memory built-in self-test tools/ A. Au, A. Pogiel, J. Rajski, et al
/I 17th International Symposium on Design and Diagnostics of Electronic Circuits &
Systems.- 2014.- P. 39-44.

5. 1149.1-2013 - IEEE Standard for Test Access Port and Boundary-Scan Architecture -
|EEE Standard.

6. 1500-2005 - |IEEE Standard Testability Method for Embedded Core-based Integrated
Circuits - |IEEE Standard.

7. 1687-2014 - |EEE Standard for Access and Control of Instrumentation Embedded
within a Semiconductor Device - IEEE Standard.

8. Harutyunyan G., Martirosyan S., Shoukourian S., Zorian Y. Memory Physical
Aware Multi-Level Fault Diagnosis Flow // IEEE Transactions on Emerging Topicsin
Computing.- 2018.- P. 1-12.

9. LiuY., Xu Q. OnModeling Faultsin FinFET Logic Circuits // IEEE International Test
Conference.- 2012.- P. 1-9.

243

10.

11.

12.

13.

14.

15.

16.

17.

18.

10.

Lin C.-W., Chao M. C.-T., Hsu C.-C. Investigation of Gate Oxide Short in FinFETs
and The Test Methods for FinFET SRAMs// VLS| Test Symposium.- 2013.- P. 1-6.
Chi M.-H. Challenges in Manufacturing FInFET at 20nm Node and Beyond //
Globalfoundries.- 2012.-P. 1-2.

Harutyunyan G., Shoukourian S., Zorian Y. Fault Awareness for Memory BIST
Architecture Shaped by Multidimensional Prediction Mechanism // IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems.- 2019.- Vol. 38, No.
3.- P. 562-575.

Synopsys Inc. // https.//lwww.synopsys.com/verification/simulation/ves.html, VCS
Functional Verification Solution.

Hayrapetyan D., Manukyan A., Tshagharayn G. Implementation of memory static,
coupling and dynamic fault models at the register transfer level // IEEE East-West
Design & Test Symposium.- 2018.- P. 744-748.

Harutyunyan G., Tshagharayn G., Vardanyan V., Zorian Y. Fault Modeling and
Test Algorithm Creation Strategy for FinFET-Based Memories // IEEE 32nd VLSI
Test Symposium.- 2014.- P. 1-6.

Hayrapetyan D., Manukyan A. Modeling dynamic single-cell and coupling faults via
automata models // Computer Science and Information Technologies (CSIT).- 2017.-
P. 65-68.

Hamdioui S., Al-Ars Z., Van de Goor A.J., Rodgers M. Linked Faults in Random
Access Memories: Concept, Fault Models, Test Algorithms, and Industrial Results //
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.-
2004.- Vol. 23, No. 5.- P. 737 — 757.

Hayrapetyan D. Modeling linked faults via automata models // |EEE East-West
Design & Test Symposium.- 2017.- P. 237-241.

US 7,768,840 B1. Memory modeling using an intermediate level structural description
/ K. Aleksanyan, K. Amirkhanyan, S. Shoukourian, et al.- 2010.

Y erevan State University. The material is received on 01.04.2019.

244

1.L. 2U3runesS3auL

2GSUPLPUNULUSHUL 4GLLNARONRE3UL UdSNUUSUSUUL
Oruaruspu aNrorLLELNRU 2NN RE3UL BBEUSUYNITUUL B9
urusnrncuuy eNrocueusuerh hrtuuuvusuuy USNhanhut

Upnh pmiptnh pu hwdwljupgbpnid (SoC) ubplunnigyus twinguthwlwui hhonn
uwpphph wpugnpk wénn jonnipyudp b hgnpnipjudp wwjdwiudnpyuws b hwpn kb qu-
1hu twjuwgddwt unp juunhpubp, husybu twl, pupdp npulp b wpnugpoqujwinipniup
wwwhnyybnt tyyuwunulny, punwugnud t ywuwhwetbpp phunnwynpdwi b wpwwnnpny-
dwb tjundwdp: Uw hwtigkgunid E hbwnuhjhnbughtt Epnusnipjutt wjunndwinnugdu
Spwgpuyhtt nuppkp gnpshpubtpnid hpuljuwiggwsé hhonnnipjut phunwynpdwb, upiwjukph
hwynbwpbpdwt, nknujtugdut b guuuljupgdut wnw qopépupwgutph thnthnjudwb
W/Yuwd unpkph unbnddwi wthpwdbonnipyuip: Uju hnpdusnid wowewpyynud Lk wyy
gnpshpubph unniquut Uninkgnid:

Unwigpuypli punkp. uinnignid, hhonnnipjut phutnwynpnud, hhonnnipjut wpwnn-
nnonwd, hhpnnnipjut ujpwukp, phunwynpiub junuwwn:

N.JI. AMPAIIETSIH

BEPUO®UKALIUSA PEAJIN3AIIMU ITPOLECCOB TECTUPOBAHUSA N
JANATHOCTUPOBAHMUSA TAMSTHU B IPOI'PAMMHBbIX
NHCTPYMEHTAX ABTOMATHYECKOI'O HIOCTCUJINKOHOBOI'O
AHAJIN3A

Peskoe yBenuueHHE MJIOTHOCTH M MOIIHOCTH HAHOMETPOBBIX YCTPOMCTB MAMSTH,
BCTPOEHHBIX B cucTeMbl Ha KpucTamie (CHK), MpUBOIUT K HOBBIM MPOOGIEMaM MPOEKTHPO-
BaHMs, a TAK)KE Y)KECTOUEHHIO TPeOOBaHUI K TECTUPOBAHHIO M JHATHOCTUPOBAHHIO. JTO
BBI3BIBACT HEOOXOIMMOCTD MOIU(HKAIIMHA UMEIOIIUXCS WIIH PEaH3allii HOBBIX IIPOIIECCOB
TECTUPOBAHUSI; HAXOXKACHHS, JIOKAIM3AUUK U KiIacCH(PUKAIMU OUIMOOK B MPOTPAMMHBIX
MHCTPYMEHTaX aBTOMATHYECKOr0 MOCTCHIIMKOHOBOTO aHanmu3a. B crarbe mpemnaraercs
MOJIXO0/] K BepUBHUKALUK ITUX UHCTPYMEHTOB.

Knroueevie cnosa: Bepudukanys, TCCTUPOBAHIE TAMSTH, THATHOCTUPOBAHUE TTAMSITH,
OIIHOKY ITaMSTH, TECTOBBIH I1a0JIOH.

245

