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VERIFICATION OF THE MEMORY TEST AND DIAGNOSIS FLOW 
IMPLEMENTATION IN SOFTWARE POST-SILICON ANALYSIS 

AUTOMATION TOOLS 

With rapidly increasing density and capacity of nanoscale memory devices embedded in 
modern system-on-chips (SoC), new design problems are being introduced, as well as the 
requirements are strengthened towards test and diagnosis for achieving higher quality and 
increased yield. This leads to modification of existing and/or development of new memory 
test, fault detection, localization and classification flows that are being implemented in 
various software post-silicon analysis automation tools. In this paper, an approach for 
verification of those tools is proposed. 
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Introduction. The rapid increase of density and capacity in memory IP 
cores embedded in modern system-on-chip (SoC) creates new challenges of 
preserving test and repair cost while also minimizing time-to-market. The on-chip 
infrastructure IP is proposed in [1] to maximize the test and repair efficiency 
utilizing the memory design knowledge and providing the analysis on failure data. 
Considering the increasing complexity of SoC design, it becomes crucial for silicon 
embedded memory test and repair solutions to keep up with the technology 
advances in order to consistently provide superior chip quality and yield 
optimization [2]. Some aspects of implementation of the corresponding solutions 
for post-silicon analysis automation that extend the mentioned infrastructure to 
cover challenges of today's designs which are much bigger, faster, hierarchical and 
sensitive to area, timing and power are considered in the current work. 

With the technology shrinking, new types of memory defects and 
corresponding memory fault models [3] for the memory test have been observed 
during post-silicon analysis [1]. That posed new challenges in the test and 
diagnosis of embedded memories of systems-on-chip (SoC) using all-in-one 
solutions [2, 4]. We follow the approach of task distribution between the hardware 
(HW) memory built-in self-test (MBIST) engine and software (SW) automation 
tools adduced in [2], where the management and control of test and diagnosis flow 
is implemented via SW, while the actual at-speed basic test and diagnosis 
procedures are performed by the MBIST engine.  
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The interaction between SW and HW sides of this mature solution is 
managed via creation of test patterns at the SW side, their application to MBIST 
engine via standard interfaces [5-7] and analysis of obtained results/chains from the 
MBIST engine at the SW side. The proposed mature test and diagnosis flow [8] 
comprises three main phases: fault detection, classification and localization, where 
each phase requires specific test patterns to be created and analyzed, so that results 
can be propagated to the next phase preparation step. Specific march test 
algorithms and march-like test algorithms should be developed and used for each 
phase for generating the corresponding test patterns, which in their turn, will be 
passed to the MBIST engine for further at-speed execution. 

Since it is crucial to ensure the correctness of diagnosis flow implementation 
before it is applied to a real SoC, a fault-prone environment for pattern verification 
is required for modeling the test pattern execution on the MBIST engine using 
some accurate models of memory faults to be tested by the MBIST engine. It is 
also essential to estimate the execution run time for being time-efficient and allowing a 
variety of different scenarios to be quickly passed through the MBIST engine.  

The aim of this paper is to build the mentioned environment for test patterns 
and obtained chain verification.  

With the introduction of FinFET technology, new types of memory defects 
have been observed [9-11]. Test and diagnosis flows designed for faults present in 
previous designs were not applicable as they were not able to provide the necessary 
coverage and required modification of detection, classification and localization 
phases. At the same time, solutions elaborated for current designs will face the 
same issue in future because of continuous changes in memory designs due to 
technology shrinkage. A natural demand for prediction of new fault types and 
modifications of solutions required for the test and diagnosis arose. The issue was 
addressed with introduction of multidimensional prediction mechanism for 
memory fault classification [12], that systemizes all known memory faults in 
periodic manner and gives a view on impending new faults that may appear in 
memories with new technology nodes. Furthermore, the mechanism offers a 
generic flow for efficient new march test algorithm generation for the new faults 
based on a test algorithm template. The use of the mentioned mechanism is added 
to the generation process of memory fault models for the SW side.  

A System Verilog environment [13] is considered as a basis for implementation 
of the environment for pattern verification. The existing tools [14] are enriched to 
cover the new requirements above. The application of the enriched tools for generation 
of several memory faults inherent to modern manufacturing technologies [15] is 
also considered.  
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The structure of the paper is as follows: section 1 provides brief information 
on the approach for building verification environment for test patterns used for 
post-silicon analysis. Fault model generation and injection flows are outlined in 
section 2. The verification step for test patterns is defined in section 3 along with 
the verification step of the output chain analysis of the test and diagnosis flow in 
section 4. The experimental results are provided in section 5. The use of the 
approach for the predicted faults is proposed in section 6. Section 7 concludes the 
paper.  

1. An approach for building the verification environment for post-
silicon analysis of test patterns. Throughout this paper, we will consider the test 
patterns used for the test and diagnosis flow described in [8]. Each step of the test 
and diagnosis flow, when implemented in test automation tools, requires creation 
of a corresponding test pattern, application of the pattern on the BIST system and 
the analysis of the obtained chains. The analyzed information is utilized at creating 
the test patterns in the next step.  

However, test pattern creation and chain analysis are fault-prone for 
implementation. Therefore, they require an adequate environment for being tested 
and verified before interactions with manufactured SoCs. Since the test pattern 
generation in each phase of the flow depends on the results of test pattern execution 
in the previous phase, verification of this flow implementation is essential. The 
verification environment is constructed on the basis of MBIST register transfer 
level representation (Fig. 1). The process of building the environment can be 
divided into 3 parts which will be discussed further, throughout this paper.  

 

Fig. 1. Verification flow for the software post-silicon analysis automation tool 
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2. Fault model generation and injection. The fault DFA generation flow 
[14] was used in this step which consists of the following major steps: 

1. Parsing input files and storing the obtained data as separate constructs: fault 
primitives (FPs) [3], fault injection memory cell addresses, memory configuration 
file. 

 2. Generating a fault description table (FDT) for FP (<S/F/R> for single-cell 
and <Sa: Sv/F/R for coupling faults>). FDT is a table representation of the DFA 
model, where each row of the table contains information on DFA state and 
transitions going out from it. 

3. Generating the System Verilog code for FDT and including it into the 
memory test bench, while considering the information provided in point 1. 

The fault DFA is intended to model the memory internal faults. It is shown 
how the fault model is extended by increasing the number of the affected cells and 
operations in FP [16]. In addition, fault model extension for linked faults that 
comprise multiple FPs [17] was derived in [18].  

2.1. Fault injection. During the inclusion of fault model in RTL, the test 
bench fault memory cell address must be provided. Since memories generally use 
words for storage of the information rather than single bits, the memory cell 
address can be provided via memory word address and the position of the faulty bit 
in it. Fault models with several memory cells require multiple addresses and bit 
positions to be specified. Furthermore, memories may consist of multiple banks, 
thus the bank index must be provided. Finally, as soon as multiple instances of a 
memory device may be present in the MBIST network, the hierarchical path to a 
memory must also be provided (Fig. 2).  

 

Fig. 2. A fault injection file example 
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Another important issue to be considered is that memory address used for 
fault injection is generally a logical address. Thus, two bits logically preceding one 
another (within the same word or two words logically neighboring each other), are 
not necessary neighboring each other inside the memory device. This behavior is 
determined by the memory address and data scrambling that is usually present in 
most modern memories [19]. Assuming the data on memory address and data 
scrambling information is provided, the second address for coupling the faults is 
calculated by providing the logical address of either aggressor or victim cell, 
calculating the logical addresses of the neighboring cells (Fig. 3), using the 
scrambling information and picking the address of the second cell from the list of 
calculated logical addresses. 

 

Fig. 3. Victim cell V, with potential aggressor cells 1,2,3,4,5,6,7,8 

Fault injection or the process of including the DFA fault model in the RTL 
test bench requires knowledge of memory device pins for addressing, obtaining and 
shifting in the data, application of read and write operations. This information can 
be provided with the memory configuration file [14].  

3. Verification of test patterns. Since the test patterns command the 
MBIST to run march test algorithms/march-like adaptive test algorithms on the 
memory devices, a way to determine if the test pattern was successfully executed is 
to observe the behavior of the fault model injected into the MBIST. 

The fault model is traversable through the transition flags in FDT 
representation [14]. Each time a transition from a state occurs, the transition flag of 
current FDT row for corresponding operation is set to 1. After the simulation is 
over, the resulting FDT is compared with a reference FDT which shows what is 
expected after the execution of the pattern (Fig. 4). This template is created on the 
basis of generated fault model FDT and is traversed separately via the march test 
algorithm that is used in the test pattern. 
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Fig. 4. Verification of test patterns 

4. Verification of chain analysis for test and diagnosis flow. Since the 
memory test and diagnosis is time-sensitive, parallel testing of multiple memory 
instances is crucial. BIST instructions for multiple memory instances that need to be 
executed simultaneously are usually combined in groups during the test pattern creation.  

Generally, the test and diagnosis flow implementation in test automation 
tools consists of four phases (test, detection, classification and localization) [8] 
described below via test pattern templates. Templates are used to generate a pattern 
instance for the corresponding phase. Each phase requires specific analysis of the 
MBIST output chains. 

Test. Pattern template: 
1. SELECT_MEMORY_GROUP 
2. LOAD_TEST_ALGORITHM 
3. RUN_BIST 
4. READ_FAILED_MEMORY_INFO 
Description: This pattern loads the test algorithm into the BIST, while 

instructing to run it on the specified memory groups. Information on failed 
memories is obtained from BIST, which can help to narrow the set of memories for 
further diagnostics, by excluding them from memory groups for the next test patterns.  

Verification of the chain analysis: Verification of the reported information 
on failed memories is based on the conformity with memories used for fault 
injection in the fault injection file. 

Detection. Pattern template: 
1. SELECT_MEMORY_GROUP 
2. LOAD_TEST_ALGORITHM 
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3. SET_SONE I 
4. RUN_BIST 
5. READ_DIAGNOSTIC_INFORMATION 
Description: This pattern also loads the test algorithm into the BIST while 

specifying the value of stop on N-th error register. This will command the BIST to 
stop the test algorithm execution after the N-th error has been encountered (totally 
N read operation of march test algorithm have returned the value that was not 
expected). Diagnostic information on the last failed memory cell and applied test 
operation is obtained from BIST as a binary chain with the last instruction of the 
test pattern, and further evaluated by software tools for convenient representation. 
The general information provided is: 

1. Memory failed word address. 
2. Memory failed bit. 
3. March test failed operation.  
Verification of the chain analysis: The verification of the reported diagnosis 

information is based on the conformity with banks, addresses and bits used for fault 
injection in the fault injection file. 

Classification. Description: The fault classification step uses the test pattern 
template which was the described point a, while applying fault classification march 
test algorithms specifically designed for this diagnosis phase, n number of pattern 
executions need to be made while modifying value I to make sure that n read 
operations have been applied on the faulty cell, where n is the number of read 
operations present in test algorithm [8]. The test syndrome is generated as a result, 
which is n-bit signature, where the order of bits corresponds to the sequence of the 
read operations in the test algorithm. The faults are classified based on the obtained 
signature. 

Verification of the chain analysis: The verification of this phase is done by 
checking the conformity of the classified fault type with FP used in the fault 
injection file. 

Localization. 
The test pattern template for this phase is as follows: 
1. SELECT_MEMORY_GROUP 
2. APPLY_ADAPTIVE_TEST_ALGORITHM 
3. READ_DIAGNOSTIC_INFORMATION 
Description: This pattern is generally used with coupling faults for locating 

the aggressor cell. An adaptive march-like algorithm is applied [8] to the 
neighborhood of a memory victim cell (Fig. 2), usually determined after execution 
of pattern b. The idea of the algorithm is:  

1. Set the potential aggressor cell values opposite to the fault activation 
initial value of aggressor for the coupling fault. 
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2. Apply the sequence of the fault activating operations to the potential 
aggressor or victim cell depending on the type of the coupling fault. 

3. Read the value of the victim cell. 
4. If the fault is not triggered, repeat steps 1-3 for the next potential 

aggressor. 
5. The algorithm stops when the faulty value is finally observed on the 

victim cell. 
Verification of the chain analysis: The verification is based on the conformity 

with banks, addresses and bits of aggressor cells used in fault injection files. 
5. Experimental results. Diagnosis flow implementation along with the 

implementation of fault model generation flow were verified with VLP1(26N), 
VLP2(26N), VLP3(22N), March FFDD (42N) algorithms [5]. The MBIST flow 
was simulated separately for each fault and faults were detected. Using the fault 
classification step of diagnosis flow FinFET-specific faults were successfully 
determined and classified. 

An example of FinFET-specific <R0R0R0R0R0/1/1> fault traversed by 
March FFDD algorithm is provided in Fig. 5. 

 

Fig. 5. <R0R0R0R0R0/1/1> fault traversed by March FFDD 



243 

6. Use of the approach for the predicted faults. As it was mentioned above, 
a multidimensional prediction mechanism for memory fault classification introduced 
in [12] allows to predict new types of faults in memory. The suggested verification 
approach can avail of the mechanism if several additional changes will be made in 
the fault model generation and injection part to reflect the knowledge reflected in 
the prediction mechanism. 

Conclusion. A built verification environment for test and diagnosis flow 
implementation within software post-silicon analysis automation tools is described 
in this paper. The test results on the fault DFA model behavior on recently 
considered fault types, using the fault classification flow are provided.  

The verification environment is implemented in DesignWare STAR 
Memory System Yield Accelerator [2] tool that is currently used both in the 
development of MBIST and during the test and diagnosis of SoCs with an 
embedded MBIST engine. Some further work connected with the extension of the 
approach for the predicted new types of faults is outlined too. 
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Դ.Լ. ՀԱՅՐԱՊԵՏՅԱՆ 

ՀԵՏՍԻԼԻԿՈՆԱՅԻՆ ՎԵՐԼՈՒԾՈՒԹՅԱՆ ԱՎՏՈՄԱՏԱՑՄԱՆ 

ԾՐԱԳՐԱՅԻՆ ԳՈՐԾԻՔՆԵՐՈՒՄ ՀԻՇՈՂՈՒԹՅԱՆ ԹԵՍՏԱՎՈՐՄԱՆ ԵՎ 

ԱՐԱՏՈՐՈՇՄԱՆ ԳՈՐԾԸՆԹԱՑՆԵՐԻ ԻՐԱԿԱՆԱՑՄԱՆ ՍՏՈՒԳՈՒՄԸ 

Արդի բյուրեղի վրա համակարգերում (SoC) ներկառուցված նանոչափական հիշող 

սարքերի արագորեն աճող խտությամբ և հզորությամբ պայմանավորված՝ ի հայտ են գա-

լիս նախագծման նոր խնդիրներ, ինչպես նաև, բարձր որակը և արտադրողականությունը 

ապահովվելու նպատակով, խստացվում են պահանջները թեստավորման և արատորոշ-

ման նկատմամբ։ Սա հանգեցնում է հետսիլիկոնային վերլուծության ավտոմանտացման 

ծրագրային տարբեր գործիքներում իրականցված հիշողության թեստավորման, սխալների 

հայտնաբերման, տեղայնացման և դասակարգման առկա գործընթացների փոփոխման 

և/կամ նորերի ստեղծման անհրաժեշտությանը։ Այս հոդվածում առաջարկվում է այդ 

գործիքների ստուգման մոտեցում: 

Առանցքային բառեր. ստուգում, hիշողության թեստավորում, hիշողության արատո-

րոշում, հիշողության սխալներ, թեստավորման կաղապար:  

Д.Л. АЙРАПЕТЯН 

ВЕРИФИКАЦИЯ РЕАЛИЗАЦИИ ПРОЦЕССОВ ТЕСТИРОВАНИЯ И 
ДИАГНОСТИРОВАНИЯ ПАМЯТИ В ПРОГРАММНЫХ 

ИНСТРУМЕНТАХ АВТОМАТИЧЕСКОГО ПОСТСИЛИКОНОВОГО 
АНАЛИЗА 

Резкое увеличение плотности и мощности нанометровых устройств памяти, 
встроенных в системы на кристалле (СнК), приводит к новым проблемам проектиро-
вания, а также ужесточению требований к тестированию и диагностированию. Это 
вызывает необходимость модификации имеющихся или реализации новых процессов 
тестирования; нахождения, локализации и классификации ошибок в программных 
инструментах автоматического постсиликонового анализа. В статье предлагается 
подход к верификации этих инструментов.  

Ключевые слова: верификация, тестирование памяти, диагностирование памяти, 
ошибки памяти, тестовый шаблон.  

 

 

 
 
 
 
 


