УДК 621.317

АВТОМАТИЗАЦИЯ И СИСТЕМЫ УПРАВЛЕНИЯ

С.О. СИМОНЯН, Г.В. АДАМЯН, А.В. МЕЛИКЯН

МЕТОДЫ РЕШЕНИЯ ОДНОПАРАМЕТРИЧЕСКИХ КУБИЧЕСКИХ МАТРИЧНЫХ УРАВНЕНИЙ (II)

(Декомпозиционный подход)

Рассмотрены однопараметрические кубические матричные уравнения, для решения которых предложены декомпозиционные аналитический, а также последовательный и параллельный численно-аналитические методы. Аналитический метод служит основой для разработки численно-аналитических методов, базирующихся на дифференциальных преобразованиях. Для всех методов получены соответствующие условия разрешимости задачи.

Ключевые слова: однопараметрические кубические матричные уравнения, декомпозиционные аналитический и численно-аналитические методы решения, условия разрешимости задачи, современные средства информационных технологий.

Введение. В работе [1] были предложены прямые аналитический, а также последовательный и параллельный численно-аналитические методы решения однопараметрических кубических матричных уравнений

$$A_0(t) \cdot X^3(t) + A_1(t) \cdot X^2(t) + A_2(t) \cdot X(t) + A_3(t) = [0], \tag{1}$$

где $A_0(t)$, $A_1(t)$, $A_2(t)$, $A_3(t)$ - однопараметрические квадратные матрицы порядка m, а X(t) - неизвестная однопараметрическая квадратная матрица также порядка m, подлежащая определению. Проблемы, связанные как с вычислительными схемами решения степенных матричных уравнений вообще, так и с определением количеств этих решений в каждом конкретном случае в частности, достаточно хорошо известны (см., напр. [2-8]).

В настоящей работе рассматриваются декомпозиционные методы решения однопараметрических кубических матричных уравнений (1).

Математический аппарат

1. Аналитический метод решения. Однопараметрическое кубическое матричное уравнение (1) представим в виде эквивалентной матричной системы второго порядка

$$\begin{cases} A_0(t) \cdot X(t) \cdot Y(t) + A_1(t) \cdot Y(t) + A_2(t) \cdot X(t) + A_3(t) = [0] \\ X^2(t) - Y(t) = 0 \end{cases}, \tag{2}$$

и допустим, что функциональные матрицы, входящие в (2), комплексные, т.е.

$$A_0(t) = B_0(t) + j \cdot C_0(t) , \qquad (3)$$

$$A_1(t) = B_1(t) + j \cdot C_1(t)$$
 , (4)

$$A_2(t) = B_2(t) + j \cdot C_2(t)$$
 , (5)

$$A_3(t) = B_3(t) + j \cdot C_3(t)$$
 , (6)

$$X(t) = M(t) + j \cdot N(t) \quad , \tag{7}$$

$$Y(t) = P(t) + j \cdot Q(t) . (8)$$

Тогда из первого уравнения системы (2) получим следующую подсистему:

$$\begin{cases} B_{0}(t) \cdot M(t) \cdot P(t) - C_{0}(t) \cdot N(t) \cdot P(t) - B_{0}(t) \cdot N(t) \cdot Q(t) - C_{0}(t) \cdot M(t) \cdot Q(t) + \\ + B_{1}(t) \cdot P(t) - C_{1}(t) \cdot Q(t) + B_{2}(t) \cdot M(t) - C_{2}(t) \cdot N(t) + B_{3}(t) = 0, \\ B_{0}(t) \cdot M(t) \cdot Q(t) - C_{0}(t) \cdot N(t) \cdot Q(t) + B_{0}(t) \cdot N(t) \cdot P(t) - C_{0}(t) \cdot M(t) \cdot P(t) + \\ + C_{1}(t) \cdot P(t) + B_{1}(t) \cdot Q(t) + C_{2}(t) \cdot M(t) + B_{2}(t) \cdot N(t) + C_{3}(t) = 0, \end{cases}$$
(9)

а из второго уравнения - подсистему

$$\begin{cases}
M^{2}(t) - N^{2}(t) - P(t) = 0, \\
M(t) \cdot N(t) + N(t) \cdot M(t) - Q(t) = 0.
\end{cases}$$
(10)

Объединив подсистемы (9) и (10) в одно целое, получим гиперматрично-гипервекторно-блочную систему

$$\begin{bmatrix} B_{2}(t) - C_{2}(t) & U(t) - V(t) \\ C_{2}(t) & B_{2}(t) & V(t) & U(t) \\ M(t) & -N(t) & -E \end{bmatrix} \cdot \begin{bmatrix} M(t) \\ N(t) \\ P(t) \\ Q(t) \end{bmatrix} = -\begin{bmatrix} B_{3}(t) \\ C_{3}(t) \\ 0 \\ 0 \end{bmatrix},$$
(11)

где

$$\begin{cases}
U(t) = B_1(t) + B_0(t) \cdot M(t) - C_0(t) \cdot N(t) , \\
V(t) = C_1(t) + C_0(t) \cdot M(t) + B_0(t) \cdot N(t) ,
\end{cases}$$
(12)

а E — единичная матрица порядка 2m .

Гиперматрично-гипервекторно-блочная система (11) в комплексной записи имеет вид

$$\mathcal{A}(t) \cdot R(t) = -S(t),
4m \times 4m \quad 4m \times m \quad 4m \times m$$
(13)

где
$$R(t) = (M^T(t), N^T(t) \mid P^T(t), Q^T(t))^T, S(t) = (B_3^T(t), C_3^T(t) \mid 0^T, 0^T)^T.$$

Из последнего представления при выполнении условия гиперрегулярности (условия разрешимости)

$$rang \mathcal{I}(t) = 4m \tag{14}$$

получим итерационную вычислительную схему

$$R(t)_{(q+1)} = \mathcal{A}^{-1}(t)_{(q)} \cdot S(t) , \qquad (15)$$

или итерационную вычислительную схему ньютоновского типа

$$R(t)_{(q+1)} = \frac{1}{2} \cdot \left[R(t)_{(q)} - \mathcal{I}^{-1}(t)_{(q)} \cdot S(t) \right]. \tag{16}$$

2. Декомпозиционные численно-аналитические методы решения. Теперь рассмотрим применение дифференциальных преобразований для решения гиперматрично-гипервекторно-блочной системы (11). При этом допустим, что для всех матричных элементов этой системы имеют место следующие дифференциальные преобразования [9]:

$$B_0(K) = \frac{H^K}{K!} \cdot \frac{d^K B_0(t)}{dt^K}\Big|_{t=t_v} = B_0(t) = \mathfrak{X}_0(t, t_v, H, B_0(K)) , \qquad (17)$$

$$B_{1}(K) = \frac{H^{K}}{K!} \cdot \frac{d^{K} B_{1}(t)}{dt^{K}}\Big|_{t=t_{v}} \stackrel{\cdot}{=} B_{1}(t) = \mathfrak{X}_{1}(t, t_{v}, H, B_{1}(K)) , \qquad (18)$$

$$B_{2}(K) = \frac{H^{K}}{K!} \cdot \frac{d^{K}B_{2}(t)}{dt^{K}}\Big|_{t=t} = \mathcal{B}_{2}(t) = \mathcal{B}_{2}(t, t_{v}, H, B_{2}(K)) , \qquad (19)$$

$$B_{3}(K) = \frac{H^{K}}{K!} \cdot \frac{d^{K}B_{3}(t)}{dt^{K}}\Big|_{t=t_{v}} = B_{3}(t) = \mathcal{X}_{3}(t,t_{v},H,B_{3}(K)) , \qquad (20)$$

$$C_0(K) = \frac{H^K}{K!} \cdot \frac{d^K C_0(t)}{dt^K}\Big|_{t=t_v} = C_0(t) = \mathbf{a}_4(t, t_v, H, C_0(K)) , \qquad (21)$$

$$C_{1}(K) = \frac{H^{K}}{K!} \cdot \frac{d^{K}C_{1}(t)}{dt^{K}}\Big|_{t=t} = C_{1}(t) = \mathcal{X}_{5}(t, t_{\nu}, H, C_{1}(K)) , \qquad (22)$$

$$C_{2}(K) = \frac{H^{K}}{K!} \cdot \frac{d^{K}C_{2}(t)}{dt^{K}}\Big|_{t=t_{v}} = C_{2}(t) = \mathcal{X}_{6}(t, t_{v}, H, C_{2}(K)) , \qquad (23)$$

$$C_{3}(K) = \frac{H^{K}}{K!} \cdot \frac{d^{K}C_{3}(t)}{dt^{K}}\Big|_{t=t_{v}} = C_{3}(t) = \mathcal{X}_{7}(t, t_{v}, H, C_{3}(K)) , \qquad (24)$$

$$M(K) = \frac{H^K}{K!} \cdot \frac{d^K M(t)}{dt^K}\Big|_{t=t_v} \stackrel{\cdot}{=} M(t) = \mathfrak{X}_{8}(t,t_v,H,M(K)) , \qquad (25)$$

$$N(K) = \frac{H^{K}}{K!} \cdot \frac{d^{K} N(t)}{dt^{K}}\Big|_{t=t_{v}} = N(t) = \Re_{9}(t, t_{v}, H, N(K)) , \qquad (26)$$

$$P(K) = \frac{H^{K}}{K!} \cdot \frac{d^{K} P(t)}{dt^{K}}\Big|_{t=t_{v}} = P(t) = \mathfrak{X}_{10}(t, t_{v}, H, P(K)) , \qquad (27)$$

$$Q(K) = \frac{H^{K}}{K!} \cdot \frac{d^{K}Q(t)}{dt^{K}}\Big|_{t=t} = Q(t) = \mathbf{a}_{11}(t, t_{v}, H, Q(K)) , \qquad (28)$$

где $B_0(K)$, $B_1(K)$, $B_2(K)$, $B_3(K)$, $C_0(K)$, $C_1(K)$, $C_2(K)$, $C_3(K)$, M(K), N(K), P(K), Q(K) - матричные дискреты однопараметрических матриц $B_0(t)$, $B_1(t)$, $B_2(t)$, $B_3(t)$, $C_0(t)$, $C_1(t)$, $C_2(t)$, $C_3(t)$, M(t), N(t), P(t), Q(t) соответственно; H — масштабный коэффициент; $K = \overline{0,\infty}$ - целочисленный аргумент; t_v - центр аппроксимации; $\mathbf{\mathfrak{X}}_0(\bullet)$ - $\mathbf{\mathfrak{X}}_{11}(\bullet)$ - аппроксимирующие функции, восстанавливающие матрицы-оригиналы $B_0(t)$, $B_1(t)$, $B_2(t)$, $B_3(t)$, $C_0(t)$, $C_1(t)$, $C_2(t)$, $C_3(t)$, M(t), N(t), P(t), Q(t) соответственно.

Итак, с учетом (17)-(28) гиперматрично-гипервекторно-блочную систему (11) из области оригиналов переведем в область дифференциальных изображений, имея в виду, что гиперматрично-блочные дискреты равны

$$\mathcal{A}(l) = \begin{bmatrix}
B_2(l) - C_2(l) & U(l) - V(l) \\
C_2(l) & B_2(l) & V(l) & U(l) \\
\overline{M(l)} - \overline{N(l)} & -\overline{E} \cdot \delta(l)
\end{bmatrix}, \quad l = \overline{0, K}, \tag{29}$$

причем $\delta(l)$ - тейлоровская единица [9], блоки-матрицы

$$\begin{cases} U(l) = B_1(l) + \sum_{l=0}^{K} B_0(l) \cdot M(K-l) - \sum_{l=0}^{K} C_0(l) \cdot N(K-l) &, \\ V(l) = C_1(l) + \sum_{l=0}^{K} C_0(l) \cdot M(K-l) + \sum_{l=0}^{K} B_0(l) \cdot N(K-l) &, \end{cases}$$
(30)

а гипервекторно-блочные дискреты:

$$R(l) = \begin{bmatrix} M(l) \\ N(l) \\ \overline{P(l)} \\ Q(l) \end{bmatrix}, \quad l = \overline{0, K}; \quad S(l) = \begin{bmatrix} B_3(l) \\ C_3(l) \\ \overline{0} \\ 0 \end{bmatrix}, \quad l = \overline{0, K}.$$
 (31)

а) Последовательные рекуррентные итерационные вычислительные схемы Итак, с учетом (17) имеем: при K=0:

$$\mathcal{J}(0) \cdot R(0) = -S(0),$$

$$\mathcal{J}(0) \cdot R(0) = -S(0),$$
(32)

откуда

$$R(0)_{(q+1)} = -\mathcal{I}^{-1}(0)_{(q)} \cdot S(0)$$
(33)

или

$$R(0)_{(q+1)} = \frac{1}{2} \cdot \left[R(0)_{(q)} - \mathcal{A}^{-1}(0)_{(q)} \cdot S(0) \right], \tag{34}$$

если, конечно, имеют место условия полноранговости матриц $\mathcal{J}(0)_{(q)}$ или условия гиперрегулярности (условия разрешимости)

$$rang \mathcal{I}(0)_{(q)} = 4m, \quad \forall q;$$
 (35)

при *K*≥*l*:

$$\mathcal{J}(0) \cdot R(K) + \mathcal{J}(1) \cdot R(K-1) + \dots + \mathcal{J}(K-1) \cdot R(1) + \mathcal{J}(K) \cdot R(0) = -S(K),$$
 (36)

откуда

$$R(K)_{(q+1)} = -\mathcal{A}^{-1}(0) \cdot \left[\mathcal{A}_1(K)_{(q)} \cdot R(0) + \sum_{l=1}^{K-1} \mathcal{A}(l) \cdot R(K-l) + S(K) \right]$$
(37)

или

$$R(K)_{(q+1)} = \frac{1}{2} \cdot \left\{ R(K)_q - \mathcal{I}^{-1}(0) \cdot \left[\mathcal{I}_1(K)_{(q)} \cdot R(0) + \sum_{l=1}^{K-1} \mathcal{I}_l(l) \cdot R(K-l) + S(K) \right] \right\}. (38)$$

б) Параллельные итерационные вычислительные схемы

Объединив (32) и соотношения, порождаемые из (36) при изменении целочисленного аргумента $K = \overline{1,\infty}$, получим следующее суперматрично-супервекторно-блочное представление:

$$\begin{bmatrix}
\underline{\mathcal{J}(0)} & 0 & \cdots & 0 \\
\underline{\mathcal{J}(1)} & \underline{\mathcal{J}(0)} & \cdots & 0 \\
\underline{\mathcal{J}(2)} & \underline{\mathcal{J}(1)} & \cdots & 0
\end{bmatrix} \cdot \begin{bmatrix}
\underline{R(0)} \\
\underline{R(1)} \\
\underline{R(2)} \\
\vdots \\
\underline{R(K)}\end{bmatrix} = \begin{bmatrix}
\underline{S(0)} \\
\underline{S(1)} \\
\underline{S(2)} \\
\vdots \\
\underline{S(K)}\end{bmatrix},$$

$$4(K+1) \cdot m \times 4 \cdot (K+1) \cdot m \qquad 4(K+1) \cdot m \times m \quad 4(K+1) \cdot m \times m$$
(39)

откуда с учетом условий суперрегулярности (условий разрешимости) будем иметь

$$\begin{bmatrix}
\frac{R(0)}{R(1)} \\
\overline{R(2)} \\
\vdots \\
\overline{R(K)}
\end{bmatrix}_{(q+1)} = - \begin{bmatrix}
\frac{\mathcal{J}(0)}{\mathcal{J}(1)} & 0 & \cdots & 0 \\
\overline{\mathcal{J}(1)} & \mathcal{J}(0) & \cdots & 0 \\
\overline{\mathcal{J}(2)} & \mathcal{J}(1) & \cdots & 0
\end{bmatrix}_{(q+1)} - \begin{bmatrix}
\frac{S(0)}{S(1)} \\
\overline{S(2)} \\
\overline{\mathcal{J}(K)} & \mathcal{J}(K-1) & \cdots & \mathcal{J}(0)
\end{bmatrix}_{(q)} - \begin{bmatrix}
\frac{S(0)}{S(1)} \\
\overline{S(2)} \\
\vdots \\
\overline{S(K)}
\end{bmatrix}$$
(40)

или в компактной записи:

$$\mathcal{A}(\bullet) \cdot R(\bullet) = -S(\bullet), \tag{41}$$

откуда

$$R(\bullet)_{(q+1)} = -\mathcal{A}^{-1}(\bullet)_{(q)} \cdot S(\bullet), \tag{42}$$

либо

$$R(\bullet)_{(q+1)} = \frac{1}{2} \cdot \left[R(\bullet)_{(q)} - \mathcal{A}^{-1}(\bullet)_{(q)} \cdot S(\bullet) \right]. \tag{43}$$

Естественно, из условий гиперрегулярности (35) из-за нижнетреугольной структуры суперматрицы $\mathcal{J}(\bullet)$ немедленно следуют и условия суперрегулярности (условия разрешимости):

$$rang \mathcal{I}(\bullet)_{(a)} = 4 \cdot (K+1) \cdot m, \quad \forall q . \tag{44}$$

Замечание 1. Несмотря на то, что гиперматрично-гипервекторно-блочная система (3) из работы [1] и гиперматрично-блочная система (11) настоящей работы структурно полностью идентичны, однако содержательно они достаточно различны, ибо:

- гиперматрица D(t) из работы [1] в общем случае комплексная, а гиперматрица $\mathcal{A}(t)$ настоящей работы действительная;
- блоки гиперматрицы $\mathcal{J}(t)$ (кроме единичной матрицы E), очевидно, являются блочно-кососимметрическими относительно соответствующих первых главных диагоналей и блочно-симметрическими относительно соответствующих вторых главных диагоналей, между тем гиперматрица D(t) такими свойствами не обладает.

Замечание 2. Свойства блочной кососимметричности и блочной симметричности, естественно, сохраняются и для всех гиперматрично-блочных дискретов $\mathcal{J}(l)$, $\forall l = \overline{0,K}$.

Заключение. Итак, организуя вычислительные процедуры (33), (37) или (34), (38) при последовательной рекуррентной итерационной вычислительной схеме, а также процедуры (42) или (43) при параллельной итерационной вычислительной схеме и определив гипервекторно-блочные дискреты R(l), $\forall l=\overline{0,K}$, далее в соответствии с (25)-(28) можно определить матрицы M(t), N(t), P(t) и Q(t), а затем в соответствии с (7) и (8) - и неизвестные матрицы X(t) и Y(t).

Очевидно также, что предложенные вычислительные схемы могут быть эффективно реализованы средствами современных информационных технологий [10].

СПИСОК ЛИТЕРАТУРЫ

- 1. **Симонян С.О., Адамян Г.В., Меликян А.В.** Методы решения однопараметрических кубических матричных уравнений (I) (Прямой подход) // Известия НАН РА и НПУА. Сер. ТН.- 2017.- Т. LXX, N^2 4. С 482 490.
- 2. **Гельфанд С.И.** О числе решений квадратного уравнения // Журнал "Глобус-1". 2000. С. 124-134.
- 3. **Козлов В.В.** Ограничения квадратичных форм на лагранжевы плоскости, квадратные матричные уравнения и гироскопическая стабилизация // Функциональный анализ и его приложения. 2005. Вып. 4, т. 39. С. 32-47.

- 4. **Палин В.В.** О разрешимости квадратных матричных уравнений // Вестник Московского государственного университета. Серия 1: Математика, механика. − 2008. №6. С. 36-41.
- 5. **Симонян С.О.** К решению однопараметрических квадратных матричных уравнений // Вестник ИАА. –2016. Т. 13, №4. С. 463-471.
- 6. **Симонян С.О.** Гиперматрично-блочный численно-аналитический метод решения однопараметрических квадратных матричных уравнений // Известия НАН РА и НПУА. Сер. ТН. -2016.- Т. LXIX, N^2 4. С. 422-430.
- 7. **Симонян С.О.** Метод решения однопараметрических обобщенных квадратных матричных уравнений // Вестник НПУА: Информационные технологии, электроника, радиотехника. 2016, №2. С. 12-23.
- 8. **Симонян С.О.** Декомпозиционные гиперматрично-блочные численно-аналитические методы решения однопараметрических квадратных матричных уравнений // Известия НАН РА и НПУА. Сер. ТН. 2017.- Т. LXX, №1. С. 95-108.
- 9. **Пухов Г.Е.** Дифференциальные преобразования функций и уравнений. Киев: Наукова думка, 1984.- 420 с
- 10. **Straustrup B.** The C⁺⁺ Programming Language. 4th Edition. Boston: Addison Wesleg professional, 2013. 1368 p.

Национальный политехнический университет Армении. Материал поступил в редакцию 06.09.2017.

Ս.Հ. ՄԻՄՈՆՑԱՆ, Գ.Վ. ԱԴԱՄՑԱՆ, Ա.Վ. ՄԵԼԻՔՑԱՆ

ՄԻԱՊԱՐԱՄԵՏՐԱԿԱՆ ԽՈՐԱՆԱՐԴ ՄԱՏՐԻՑԱՅԻՆ ՀԱՎԱՍԱՐՈՒՄՆԵՐԻ ԼՈՒԾՄԱՆ ՄԵԹՈԴՆԵՐ (I) (Դեկոմպոզիցիոն մոտեցում)

Դիտարկված են միապարամետրական խորանարդ մատրիցային հավասարումները, որոնց լուծման համար առաջարկված են դեկոմպոզիցիոն անալիտիկ, ինչպես նաև հաջորդական և զուգահեռ թվա-անալիտիկ եղանակներ։ Անալիտիկ եղանակը հիմք է ծառայում թվա-անալիտիկ եղանակների մշակման համար, որոնք հիմնված են դիֆե-

ծառայուս թվա-ասալիսդով եղասավսերի մշավսաս ռասար, որոսք որսսված են դրգերենցիալ ձևափոխությունների վրա։ Բոլոր եղանակների համար էլ ստացված են խնդրի լուծելիության համապատասխան պայմանները։

Առանցքային բառեր. միապարամետրական խորանարդ մատրիցային հավասարումներ, դեկոմպոզիցիոն անալիտիկ և թվա-անալիտիկ եղանակներ, խնդրի լուծելիության պայմաններ, տեղեկատվական տեխնոլոգիաների ժամանակակից միջոցներ։

S.H. SIMONYAN, G.V ADAMYAN, A.V. MELIKYAN

METHODS OF SOLVING ONE-PARAMETER CUBIC MATRIX EQUATIONS (Decomposition approach)

One-parameter cubic matrix equations are considered for whose solution decomposition analytical, as well as serial and parallel numerical- analytical methods are proposed. The analytical method serves as a basis for the development of numerical and analytical methods based on the differential transformations. Appropriate conditions for solvability of the problem are obtained for all the methods.

Keywords: one-parametric cubic matrix equations, decomposition analytical and numerical-analytical methods of solution, conditions for solvability of the problem, the modern means of information technology.