ISSN 0002-306Х. Изв. НАН РА и НПУА. Сер. ТН. 2017. Т. LXX, N1.

УДК 621.539.3

МАШИНОСТРОЕНИЕ

К.С. САРКИСЯН, Дж.С. СУКИАСЯН

КОНТАКТНАЯ ЗАДАЧА УПРУГОЙ БЕСКОНЕЧНОЙ ПЛАСТИНЫ, УСИЛЕННОЙ ЧЕТЫРЬМЯ ПАРАЛЛЕЛЬНЫМИ ПОЛУБЕСКОНЕЧНЫМИ И ОДНИМ БЕСКОНЕЧНЫМ СТРИНГЕРАМИ

Рассматривается контактная задача о передаче нагрузки от одного упругого бесконечного и четырех упругих полубесконечных стрингеров к изотропной однородной сплошной упругой бесконечной пластине. Контактирующая пара (пластинастрингер) деформируется под воздействием сонаправленных осевых сосредоточенных сил, приложенных к упругим полубесконечным стрингерам. Задача определения неизвестных контактных напряжений на полубесконечных симметричных интервалах сводится к решению одного сингулярного интегрального уравнения первого рода для деформации конечного промежуточного интервала между полубесконечными стрингерами. Контактные напряжения выражаются через найденные деформации в замкнутом виде.

Ключевые слова: пластина, контакт, стрингер, сингулярное интегральное уравнение, функциональное уравнение, преобразование Фурье.

Исследование проблем взаимодействия между телами, содержащими концентраторы напряжения, такие как стрингеры, тонкостенные включения и трещины с однородной или кусочно-однородной бесконечными пластинами, является одним из актуальных направлений контактных задач теории упругости [1,2]. Такие проблемы часто возникают в авиастроении, судостроении, механике соединений и в других областях прикладной механики, поэтому их исследование имеет как теоретическую, так и прикладную значимость.

Пусть упругий сплошной изотропный лист в виде тонкой однородной бесконечной пластины малой постоянной толщины H на линиях y=-b и y=b (b>0) своей верхней поверхности усилен четырьмя параллельными полубесконечными стрингерами с одинаковыми достаточно малыми прямоугольными поперечными сечениями F и модулями упругости E_1 , а на линии y=0 – одним бесконечным упругим стрингером с модулем упругости E_0 . Задача заключается в определении закона распределения контактных напряжений вдоль линии соединения стрингеров с бесконечной упругой пластиной и осевых (нормальных) напряжений, возникающих в стрингерах, когда на концах полубесконечных стрингеров действуют сосредоточенные силы P (рис.1).

Рис. 1. Упругая однородная бесконечная пластина, усиленная четырьмя полубесконечными и одним бесконечным стрингерами

В исследуемой задаче относительно стрингеров принимается модель контакта по линии, т.е. предполагается, что тангенциальные усилия сосредоточены вдоль средней линии контактного участка, а для упругой однородной пластины справедлива модель обобщённого плоского напряженного состояния [3].

Тогда трансформанты Фурье касательных напряжений на линии у=0 и горизонтальных перемещений на линии у=b выразятся трансформантом Фурье тангенциальных касательных напряжений на линии y=b [4,5]:

$$\overline{\tau}(\sigma;0) = \overline{\tau}(\sigma;b) \frac{2(kb\sigma^2 - |\sigma|)e^{-|\sigma|b}}{T + |\sigma|} \quad (-\infty < \sigma < \infty), \tag{1}$$

$$\overline{u}(\sigma;b) = \frac{\overline{\tau}(\sigma;b)}{TE_0F} \left[\frac{T - 2bkT|\sigma| - k^2b^2|\sigma|^3}{|\sigma|(T+|\sigma|)} e^{-2|\sigma|b} + \frac{1}{|\sigma|} \right] (-\infty < \sigma < \infty), \quad (2)$$

где приняты следующие обозначения:

$$T = \frac{4\mu(\lambda^* + 2\mu)}{\lambda^* + 3\mu} \frac{H}{E_0 F}; \ k = \frac{\lambda^* + \mu}{\lambda^* + 3\mu}.$$
 (3)

Для определения неизвестной функции $\tau(\sigma; b)$ будем использовать условия равновесия стрингеров:

$$\frac{d^2 u_s(x;0)}{dx^2} = \frac{\tau(\sigma;0)}{E_0 F} \left(-\infty < x < \infty \right), \tag{4}$$

$$\frac{d^2 u_s(x;b)}{dx^2} = \frac{\tau(\sigma;b)}{E_1 F} \left(|x| > a \right)$$
(5)

с граничными условиями

$$\frac{du_s(x;b)}{dx}\bigg|_{x=a} = -\frac{P}{E_1 F},$$
(6)

$$\frac{du_s(x;b)}{dx}\bigg|_{x=-a} = \frac{P}{E_1 F}.$$
(7)

К вышеприведенным условиям следует добавить также условие контакта:

$$\frac{du(x;b)}{dx} = \frac{du_s(x;b)}{dx} \quad (|x| \ge a).$$
(8)

Применив обратное преобразование Фурье к (2) и учитывая условие контакта, будем иметь

$$U_1(x) + U_2(x) = -\frac{i}{2\pi} \int_{-\infty}^{\infty} \sigma \overline{u}(\sigma; b) e^{-i\sigma x} d\sigma, \qquad (9)$$

где

$$U_1(x) + U_2(x) = -\frac{du(x;b)}{dx},$$
 (10)

причем

$$U_{1}(x) = \begin{cases} \frac{du(x;b)}{dx}, & |x| \le a, \\ 0, & |x| > 0; \end{cases}$$
(11)

$$U_{2}(x) = \begin{cases} \frac{du(x;b)}{dx}, & |x| > a, \\ 0, & |x| \le a; \end{cases}$$
(12)

$$\frac{1}{E_{1}F}\overline{\tau}(\sigma;b) = \frac{2P}{E_{1}F}\cos\sigma a - i\sigma\overline{U}_{2}(\sigma).$$
(13)

С другой стороны,

$$u(x;b) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{u}(\sigma;b) e^{-i\sigma x} d\sigma, \qquad (14)$$

откуда

$$\frac{du(x;b)}{dx} = \frac{1}{2\pi} \int_{-\infty}^{\infty} (-i\sigma) \overline{u}(\sigma;b) e^{-i\sigma x} d\sigma.$$
(15)

Применив далее к (15) преобразование Фурье, получим

$$\overline{U}_{1}(\sigma) + \overline{U}_{2}(\sigma) = -i\sigma\overline{K}_{1}(\sigma)\overline{\tau}(\sigma;b), \qquad (16)$$

где введено обозначение

$$\overline{K}_{1}(\sigma) = \frac{1}{TE_{1}F} \left[\frac{T - 2bkT|\sigma| - k^{2}b^{2}|\sigma|^{3}}{|\sigma|(T + |\sigma|)} e^{-2|\sigma|b} + \frac{1}{|\sigma|} \right] \left(-\infty < \sigma < \infty \right).$$
(17)

Подставляя выражение функции $\overline{U}_2(\sigma)$ из (13) в (16), окончательно для $\overline{\tau}(\sigma;b)$ получим

$$\overline{\tau}(\sigma;b) = \frac{2P}{\sigma E_1 F} \cos(\sigma a) \overline{K}(\sigma) + 2\overline{K}(\sigma) \overline{U}_1(\sigma), \qquad (18)$$

где

$$\bar{K}(\sigma) = \frac{\sigma}{\frac{1}{E_0 F} + \sigma^2 \bar{K}_1(\sigma)}.$$
(19)

Применив к (18) обратное преобразование Фурье, получим

$$\tau(x;b) = \frac{P}{\pi E_1 F} \int_{-\infty}^{\infty} \frac{\overline{K}(\sigma) \cos(\sigma a)}{\sigma} e^{-i\sigma x} d\sigma + \frac{1}{\pi} \int_{-a}^{a} K(x-s) U_1(s) ds$$
⁽²⁰⁾

при условии

$$\frac{P}{E_1 F} \int_{-a}^{a} \frac{\overline{K}(\sigma) \cos(\sigma a)}{\sigma} e^{-i\sigma x} d\sigma + \int_{-a}^{a} K(x-s) U_1(s) ds = 0.$$
(21)

Учитывая, что $\overline{K}(\sigma)$ является нечетной функцией, (20) примет вид

$$\tau(x;b) = \frac{2P}{\pi E_1 F} \int_0^\infty \frac{\bar{K}(\sigma) \cos \sigma x}{\sigma \cos \sigma a} d\sigma + \frac{1}{\pi} \int_{-a}^a K(x-s) U_1(s) ds , \qquad (22)$$

$$\frac{P}{E_1F}\int_0^a \frac{\bar{K}(\sigma)\cos(\sigma a)}{\sigma}\cos(\sigma x)d\sigma + \int_{-a}^a K(x-s)U_1(s)ds = 0.$$
(23)

Программная реализация численного алгоритма решения исследуемой контактной задачи проведена в среде Wolfram Mathematica 11.0.

Полученные графики, изображенные на рис. 2, 3, показывают поведение касательных напряжений в контактной зоне между полубесконечным стрингером и бесконечной пластиной для различных соотношений геометрических и физических параметров. Вычислены также нормальные напряжения, возникающие в полубесконечных стрингерах, которые графически изображены на рис. 4. В качестве геометрического параметра рассматривается величина b/a, описывающая отношение расстояния между бесконечным и полубесконечным стрингерами и половины расстояния между полубесконечными стрингерами. В качестве физических параметров рассматриваются величины E_0/E и E_1/E , характеризующие отношение модулей упругости полубесконечных стрингеров и бесконечных стрингеров к модулю упругости пластины.

Puc. 2. Поведение тангенциальных контактных напряжений на линии у = b контакта между полубесконечным упругим стрингером и бесконечной однородной упругой пластиной при b/a = 0,05; 0,1; 0,5 и E₀/E = 3/2, E₁/E = 2

Из рис. 2 видно, что безразмерная функция $\varphi(x)$, описывающая тангенциальные контактные напряжения на линии y = b контакта между полубесконечным упругим стрингером и бесконечной упругой пластиной, довольно быстро стремится к нулю при b/a = 0,05; b/a = 0,1; b/a = 0,5 и b/a = 1. В частности, уже $x = 1,5 - \varphi(x) = 7 \cdot 10^{-5}$. Следует отметить также, что при b/a = 0,05 и b/a = 0,1, а также b/a = 0,5 и b/a = 1 функция $\varphi(x)$ проявляет идентичное поведение. При переходе от значения геометрической характеристики b/a = 0,1 к b/a = 0,5 поведение тангенциальных контактных напряжений существенно меняется вблизи точки приложения сосредоточенной силы Р.

Поведение безразмерной функции $\varphi(x)$ при различных значениях физических параметров E_0/E и E_1/E , характеризующих отношение модулей упругости полубесконечных стрингеров и бесконечного упругого стрингера к модулю упругости пластины, соответственно изображено на рис. 3. В результате вычислений было обнаружено, что поведение функции $\varphi(x)$ при изменении физических параметров E_0/E и E_1/E не зависит от геометрической характеристики b/a, в связи с чем во всех вычислениях принято b/a = 0,5.

Рис. 3. Поведение тангенциальных контактных напряжений на линии y = b контакта между полубесконечным упругим стрингером и бесконечной однородной упругой пластиной при E₀/E = 1; 2; 3; 4

Поведение функции $\Psi(x)$, описывающей интенсивность нормальных напряжений, возникающих в упругих полубесконечных стрингерах при разных геометрических параметрах, изображено на рис. 4. В качестве геометрического параметра рассматривается величина b/a, описывающая отношение расстояния между полубесконечным и бесконечным упругими стрингерами и половины длины расстояния между полубесконечными упругими стрингерами.

Рис. 4. Поведение нормальных напряжений, возникающих в упругих полубесконечных стрингерах при b/a = 0,05; b/a = 0,1; b/a = 0,5; b/a = 1 и $E_0/E = 3/2$, $E_1/E = 1$

Как следует из рис. 4, при малых значениях геометрической характеристики b/a поведение безразмерной функции $\Psi(x)$ почти одинаково. Зависимость поведения безразмерной функции $\Psi(x)$ от геометрического параметра b/a была исследована также при $E_0/E = 3/2$, $E_1/E = 2$ и $E_0/E = 3$, $E_1/E = 2$. Установлено, что $\Psi(x)$ убывает при возрастании как отношения E_0/E , так и отношения E_0/E (независимо друг от друга).

Заключение. Задача определения неизвестных контактных напряжений на полубесконечных симметричных интервалах сведена к решению одного сингулярного интегрального уравнения первого рода (23) для деформации $U_1(x)$ конечного промежуточного интервала между полубесконечными стрингерами [6]. Контактные же напряжения $\tau(x; 0)$ выражаются через найденные деформации в замкнутом виде (21). Получены графики, описывающие интенсивность нормальных напряжений, возникающих в упругих полубесконечных стрингерах при разных геометрических параметрах, а также графики, показывающие поведение касательных напряжений в контактной зоне между полубесконечным стрингером и бесконечной пластиной для различных соотношений между геометрическими и физическими параметрами рассматриваемой контактной задачи.

СПИСОК ЛИТЕРАТУРЫ

- 1. Александров В.М., Мхитарян С.М. Контактные задачи для тел с тонкими покрытиями и прослойками. М.: Наука, 1983.- 487с.
- 2. Григолюк Э.И., Толкачев В.М. Контактные задачи теории пластин и оболочек. М.: Машиностроение, 1980.- 411с.

- Melan E. Ein Beitrag zur Theorie geschwiβter Verbindungen // Ingenieur-Archiv.-1932. - Bd3, heft 2. - S. 123-129.
- 4. Арутюнян Н.Х. Контактная задача для полуплоскости с упругим креплением // ПММ. 1968. Т.32, №4. С. 632-646.
- Саркисян К.С., Сукиасян Дж. С. Контактная задача упругой бесконечной пластины, усиленной двумя параллельными бесконечными и полубесконечными стрингерами // Вестник НПУА: Механика, машиноведение, машиностроение. – 2016. - № 2. - С.38-44.
- 6. Григорян Э.Х. Об одном эффективном методе решения одного класса смешанных задач теории упругости // Уч. записки ЕГУ. Естеств. науки. 1979. № 2. С. 62-71.

Институт механики НАН РА, Национальный политехнический университет Армении. Материал поступил в редакцию 31.02.2017.

Կ.Ս. ՍԱՐԳՍՅԱՆ, Ջ.Ս. ՍՈՒՔԻԱՍՅԱՆ

ԵՐԿՈԽ ԱՆՎԵՐՋ ԵՎ ՉՈՐԵ ԱՆԱՍՄԿԻ ՄՂՈՉ ԻՅ ՋՂՅԻՆԱ ՎՈՐԴՅ ՈՒԺԵՂԱՅՆՈՆԻ ԱԱՅԱՏԻԱՏՆՈՒ ՎԼԱՍ ՋՂՅԻՆԱ ՆԱԻԱՔՀԱԴԱ ԱՅԱՄԱԱՆ ԾԱԻՑԱՐՅՆԴ

Դիտարկված է երկու անվերջ և չորս կիսաանվերջ զուգահեռ առաձգական վերադիրներից իզոտրոպ համասեռ առաձգական անվերջ սալին բեռի փոխանցման կոնտակտային ինդիրը։ Մալ-վերադիր կոնտակտային զույգը դեֆորմացվում է առաձգական կիսաանվերջ վերադիրներին կիրառված համուղղված, կենտրոնացված ուժերի ազդեցության տակ։ Կիսաանվերջ սիմետրիկ միջակայքերում անհայտ կոնտակտային լարումների որոշման խնդիրը հանգում է դրանց միջև ընկած միջակայքում դեֆորմացումների նկատմամբ առաջին սեռի սինգուլյար ինտեգրալ հավասարման։ Որոնվող կոնտակտային լարումներն արտահայտվում են այդ դեֆորմացումներով։

Առանցքային բառեր. սալ, կոնտակտ, ստրինգեր, սինգուլյար ինտեգրալ հավասարում, ֆունկցիոնալ հավասարում, Ֆուրյեի ձևափոխություն։

K.S. SARGSYAN, J.S. SUKIASYAN

THE CONTACT PROBLEM OF ELASTIC INFINITE PLATE STRENGTHENED BY TWO PARALLEL INFINITE AND SEMI-INFINITE STRINGERS

A contact problem on the load transfer from two parallel elastic infinite and two semiinfinite elastic stringers to isotropic homogeneous continuous elastic infinite plate is considered. The plate-stringer contact pair is deformed under the impact of codirectional concentrated forces applied to the semi-infinite stringers. The problem of determining the unknown tangential contact stresses on semi-infinite symmetric intervals is reduced to the solution of one singular integral equation of the first kind with respect to strains, arising in the interval between the semi-infinite stringers. Tangential contact stresses are expressed in terms of those strains.

Keywords: plate, contact, stringer, singular integral equation, functional equation, Fourier transform.