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ON APPLICATION OF L, ADAPTIVE CONTROL TO MULTIVARIABLE
CONTROL SYSTEMS

Part 2. Uniform Systems

Some issues concerning the stability of uniform adaptive control systems for rejection of
external disturbances are discussed. Based on the properties of positive real transfer matrices, it
is shown that such systems are stable for arbitrary large values of the adaptation gain, even in
the case of the systems with right half plane zeros. Some specific features of uniform adaptive
systems are revealed and explained.
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The paper examines the application of L; adaptive control to multivariable
control systems [1,2]. L, adaptive control was developed to address some of the
deficiencies apparent in Model Reference Adaptive Control (MRAC), as a loss of
robustness in the presence of fast adaptation [3,4].The first part of the paper was devoted
to the application of L, adaptive control to general-type square, i.e. having the same
number of inputs and outputs, Multiple-Input Multiple-Output (MIMO) control systems
[5,6] subjected to external disturbances. In Part 2, a special class of uniform MIMO
systems is discussed.

Uniform Systems. In various technical applications, such as aerospace engineering,
chemical industry and many others, the so-called uniform MIMO systems occur very
often [6]. The separate channels of uniform MIMO systems have identical transfer
functions w(s), and the cross-connections are rigid, i.e. are characterized by a real-

valued numerical matrix R={r;}. To get a better insight in the structural features of

uniform systems and their difference from the general-type MIMO control systems, two
matrices, as well as extended (for N =2 ) block diagrams of both classes of
multivariable control systems are shown in Fig. 1.

The transfer matrix W (s) ={r;;w(s)} of the uniform system can be written as:

W(s) = w(s)R. (1)
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In what follows, we will assume that the transfer function w(s) is completely
controllable and observable, strictly stable, and, maybe, with Right Half Plane (RHP)
Zeros.

As a basic model of linear N -dimensional uniform systems with constant
parameters, let us consider the system that can be expressed in the following standard
state-space form:

X(t) = Ax(t) + Bu(t),
y(t) =Cx(t),

where x(t) is an n, -dimensional state vector; u(t) and y(t) are N -dimensional
vectors of inputs and outputs; A, B, C are constant matrices of appropriate sizes.

(2)

u(s) y(s) u(s) v(s)
— W) => — R Hws) =>
a) b)
W (s)
yi(s)
w(s) >
¥, (s)
w(s) +—»

Fig. 1. Block diagrams of the MIMO system: (a), (c) Matrix and extended block diagrams of
general-type systems; (b),(d) Matrix and extended block diagrams of uniform systems

Generally, the transfer matrix W (s) (1) of uniform systems, which constitute a

particular class of general-type MIMO systems, is connected with the matrices A, B, C
in (2) by the common formula [5]:

W(s)=C(sl - A)!B, 3

where | is an identity matrix.

Disturbance Rejection by Means of Adaptive Control. In this section, we will
follow the results presented in [1]. Letan N -dimensional strictly stable uniform system
be described in state-space by the following equations:
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X(t) = Ax(t) + B(u(t) + o(t)), x(0)=x,,
y(t) =Cx(t),

where o(t) is an N -dimensional time-dependent vector of unknown external bounded
(Jo(t)| < Ag) disturbances that should be rejected by adaptive control, and all other

matrices and vectors have the dimensions as in (2).
The state predictor has the same structure as the systems in (4):

(4)

X(t) = AR(1) + BU(t) + 5 (1)), R(0) =X,
y(t) =Cx(t),
and the only difference is that the unknown disturbance vector o (t) is replaced by its

estimate & (t) .
The disturbance rejection process is governed by the following adaptation law [1]

®)

&(t)=TB" P&(t), (6)
where
£(t) = x(t) — X(t) )

is the prediction error, P (P =PT >0) is the solution of the Lyapunov equation
ATP+PA=-Q (8)

for an arbitrary symmetric positive definite matrix Q (Q=Q" >0), and the positive

scalar T" >0 is called the adaptation gain [1,2].
The control signal u(t) of the system is given in operator form as:

u(s) =Q(s)(kgr(s) - (s)). 9)

where r(s) is an N -dimensional reference signal, ky is an N x N static matrix, and
Q(s) is the transfer matrix of a low-pass filter having the form

Q(s)=q(s)!, (10)

where q(s) is a strictly proper transfer function [usually, satisfying the condition
g(0) =1]. Its state-space realization assumes zero initialization.

The general block diagram of the adaptive control system (4) with the disturbance
rejection law (6) is depicted in Fig. 2 and represents a linear MIMO system with an
integral feedback [1].
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Fig. 2. Block diagram of the adaptive system with the state predictor and the adaptive
disturbance rejection law (6)

In [1], it is shown that the block diagram in Fig. 2 is described by the following
matrix equation:

Y(s) = WSSy (5) + WSR| 1 =91 Wo(s)] "W(s) [os) . (1)
where
Wy (s) = EWB (s); Wg(s)=BTP(sl —A)'B, (12)

and the formulas of the transfer matrices W(s) (1) and Q(s) (10) are used.

The matrix equation (11) implies that dynamics of the uniform adaptive system
can be represented by two independent block diagrams in Fig. 3 and 4, where the first
one describes the system behavior with respect to the reference signal r(t), and the
second, with respect to the disturbance vector o (t) .

Stability analysis of the uniform adaptive system. In essence, stability properties
of the uniform systems in Fig. 2, 3, and 4 are the same as for the general-type MIMO
systems discussed in [1]. Particularly, the block diagram in Fig. 3 represents an open-
loop and stable uniform system, since both transfer functions q(s) and w(s) are

assumed stable. Besides, that system does not depend on the adaptation gain T".

r(t) (1)
[ k q(s)1 w(s)R [—>

Fig. 3. Equivalent block diagram of the uniform adaptive system with respect to the input
reference signal r(t)
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0] Yy (1)
[ w(s)R

q(s)

Fig. 4. An equivalent block diagram of the uniform adaptive system with respect to the
disturbance o (t)

As for the block diagram in Fig. 4, it contains a negative feedback loop with the
open-loop transfer matrix W, (s) (12) and the following closed-loop transfer matrix:

-1
Fo(s)=[1+Wo(s)] "Wo(s), (13)

the roots of the characteristic equation
det[1 +Wy(s)]=0 (14)

of which depend on I'". Note also that the system with the N x N transfer matrix
Wg(s) in (12) is, due to its form, a Positive Real (PR) transfer matrix [1,3,4,7].

Any uniform system with the transfer matrix W (s) ={r;w(s)}=w(s)R can be
treated as a general-type MIMO system, which results in the state-space vector x(t) of
order n, =n2 - N? [1], where n is the order of the transfer function w(s) in (1).

Another choice is based on the following equations of the uniform system:

%; (£) = AgX; (t) + e (1),

15
p®=3" 00, %O=cIx0, (=12..N) (1)

where the triple (Ay,by,Cq) corresponds to the state-space representation of the transfer
function w(s) in (1). The vector x(t) in this case has the form
T

X0 =4 © 6O 6O [0 XN (16)

and its order n, =n-N is N times as small as that in the general case. It can be shown
that in this case, the transfer matrix W, (s) (12) is not diagonal (as in the case of general-
type systems [1]), but preserves the structure inherent in uniform systems:
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where the transfer function w,(s) is given by the following expression

Wo () =lg Py (sl — Ag) My, (18)

and the numerical matrix of cross-connections R, is a positive definite symmetric
matrix equal to

R,=R'R. (19)

In equation (18), the positive definite symmetric matrix P, solves the Lyapunov
equation:

AP+ Py Ay =—Qp. (20)

Note that the inspection of equations (15) and (18) shows that the transfer
function wy(s) belongs to PR functions, the properties of which are thoroughly

discussed in technical literature [1-4,7].
Based on the Characteristic Transfer Function (CTF) method [6], the transfer
matrix Wy (s) (12) can be represented in the canonical form:

Wo(e) = Ldiag{a’ O % a?(9) =4 Wo(®). (=12N) (21

where g’ (s) are called the CTFs of W, (s) (we will assume them distinct), the unitary
(i.e. Lt =1*) modal matrix L is composed of the orthonormal set of eigenvectors |, of the

symmetric matrix R, (19), and 4; are real-valued and positive eigenvalues of Rj.
Allowing for (21), the characteristic equation (14) takes the form

N

det[1 +W0(s)]:H[l+ﬂkgwo(s)}:O, (22)

i=1
and the stability of the uniform adaptive system in Figure 2 is defined by N
characteristic equations:

1+21-£w0(s)=0, (i=12,..,N). (23)
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Following the arguments presented in [1], we can claim that the CTFs g (s) in
(21) have a relative degree 1 or 2 and are minimum-phase, even if the transfer function

w(s) in (1) has RHP zeros. Besides, the phases of g’ (jw) are always less or equal to

+180° , which means that the Nyquist plots of g’ (jw) cannot encircle the critical point
(-1, jO), irrespectively of the value of the gain T". Finally, the root loci of the CTFs

g’ (s) will tend to infinity, as ' — oo, along the negative real semi-axis or along the

asymptotes that are parallel to the imaginary axis and lie in the left half plane.
Note that if the matrix of cross-connections of the uniform system is orthogonal,

ie. RT =R™, the matrix R, (19) becomes an identity matrix (i.e. R, =1), and the
stability of the adaptive system will not depend at all on the matrix R and the number
of channels N . Indeed, if R =R™, then, instead of (21), we have the expression

W (s) {wo(s)l , (24)

and the stability of the uniform adaptive system will be determined by the stability of a
single closed-loop one-dimensional system with the characteristic equation

1+£W0(s)=0. (25)

Example. Consider a three-dimensional uniform system with the following
transfer function of separate channels:

~ 20
~ (s+0.5) (s+2) (s+10) '

w(s) (26)

the numerical matrix of cross-connections

09 003 -001
R=|-0.05 0866 05 |, (27)
002 -05 0.866

and the transfer matrix of low-pass filter Q(s) =[1/(0.01s+1)]I .
Based on the structure of the uniform system, we can write:

% (1) = Apx; (1) + by (1)

N
a®=3 10, %O-cxO (-123), (28)
=
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where

05 10 0 0 5
Ay=| 0 —20 10 |;by=|0|;c,=|0]. (29)
0 0 -100 4 0

The solution P, to the Lyapunov equation (20) for Q, =1 is

1.0 0.4 0.0381
P=| 04 045  0.0407 |, (30)
0.0381 0.0407  0.0541

and the symmetric positive definite matrix of cross-connections R, (19) in the transfer
matrix W, (s) (17)is

08110 -0.0240  —0.0057
R,=[-0.0240 1.0025  —0.0010|. (31)
~0.0057 —0.0010 1.0004

The eigenvalues 4 of the matrix R, are
4, =0.8079, A,=1.0006, A,=1.0055 (32)
and the transfer function w,(s) calculated by the formula (18) is equal to

0.86508 (s +2.377) (s + 0.8754)
(s+0.5) (s+2) (s+10) '

Wy (S) = (33)

The Nyquist plot of the transfer function w,(s) (33) for positive frequencies
>0 is shown in Fig. 5 and verifies that w,(s) is positive real.

0.06
0.04
L 0.02-
5 =00 =
2 . w w=0
g
£ 002
gl
£ 0.04
-0.06- w,(jw)
-0.08"
g 0.05 0.1 0.15 0.2

Real Axis

Fig. 5. Nyquist plot of the transfer function w,(s) (33) for @ >0
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The CTFs g (s) of the transfer matrix W, (s) (21) correspond to three common

single-input single-output systems with real-valued parameters, where the eigenvalues
4 (32) can be regarded as usual gains:

0.86508 (s + 2.377) (s + 0.8754)
s(s+0.5) (s+2) (s+10) ’ (34)
i=1,2,3.

a(s)=A4T

Note that all 4, (32)in g’(s) (34) are real-valued and quite close to 1. Therefore,
the root loci of the CTFs g’ (s) (34) completely coincide (only the roots of the closed-
loop CTFs slightly differ) and the difference of the Nyquist plots of g’ (s) is actually

imperceptible. The Nyquist plot and root loci of the CTF g3 (s) (the CTF with the largest
eigenvalue 1, =1.0055) for I"=20 are shown in Fig. 6.

0 -1,j0 w=0
2 Z
5.1 £o
5 5
g £
-2 5
4;(jo)
3 2 -1 0 1 2 >0 8 6 4 2 o0 2
Real Axis Real Axis
a) b)

Fig. 6. Nyquist (a) and root loci (b) plots of the CTF qgg(s) for ' =20

The results of simulation of the three-dimensional uniform adaptive system with
the help of Simulink for T =5000, two types of reference input signals (sinusoidal signals
with unit amplitudes, zero phase shifts, and period T =6.28 s, as well as unit step signals

applied simultaneously at t=1.0s ), and sinusoidal disturbances with amplitudes
Aq =100 and period T4 =1.57 s are shown in Figures 7 and 8. Note that the amplitudes

of disturbances are 100 times as large as the amplitudes (or unit step values) of reference
signals r(t) .
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a) Control signal u(t) b) Output signal y(t)
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Fig. 7. Simulation results. Sinusoidal reference inputs r; (t) = sin (t) :(a),(b) sinusoidal
disturbances oj (t) =100sin(4t) ; (c),(d) zero disturbances oj(t) =0
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Fig. 8. Simulation results. Unit step reference inputs, sinusoidal disturbances
o; (t) =100sin(4t) (i =1 2,3) : (a) Control signal u(t) ; (b) Output signal y(t)

In Fig. 7(c), (d), to get a better understanding of behavior of the adaptive system,
the results of simulation with the same sinusoidal reference signals but without
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disturbances (i.e. o(t)=0) are shown. In fact, as the principle of superposition is valid

for the discussed adaptive system, the output signals of the system with sinusoidal
disturbances are the sum of the output signals of the system with o(t) =0 and the same

system with disturbances but zero reference signals r(t) =0. The same is true for unit
step reference signals (Fig. 8). The results of simulation for r(t)=0 and sinusoidal
disturbances o; (t) =100sin(4t) are presented in Fig. 9. The control signal u(t) in this

case is actually the same as in Fig. 7(a) and 8(a) due to the large ratio of amplitudes of
disturbances and reference signals.

0.1

0.05

-0.05

20 25 30 74 17.5 18 18.5 19 19.5 20

5 10 15
Time (s) Time (s)

a) b)

Fig. 9. Simulation results. Zero reference inputs r(t) =0, sinusoidal disturbances
o; (t) =100sin(4t) ; (a) Output signal y(t); (b) Output signal y(t) (enlarged)

Finally, it should be noted that an increase in T" will bring to smaller deviations
of y(t) from the ideal outputs, i.e. to higher performance of the L, adaptive system.
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S.L. 20492ULLPUSUY, L.Z QUM UL3UL, G. [k vUSPUNY, O.L. QUUNULSUL,
L.Q. 209UYbUBUL

RUQUUUO YUNUYULUUL Z2UUYULREMNRU L ZUrUurdnn,
YUNUYULTUUL UbUNUUL Y6 ULBM3UL

Uwu 2. Uhunhy hudwljupgbp

“Yhunwplyyws Eu hwpgtp, npnup wnbsynid Bt wpunwpht ypgnddniuputipp skqnpugt-
ntt nipnyws dhwnhy hupdwpynn junwdupdwt hadwlupgbph juyniinipjuin: Zhdugbng
npului hpwlwh thnjuwigdwl dwnphgitph hunympmnibibph Jpu gnyg E npdws, np wyy-
whuh hwdwlwpgbpp fuynit b hwpdwpdwi gnpsulgh judwjuljut dks wpdtpubkph, tnyuhuly
wowlnnujut qpnutpny hwdwlwupgbph nhypnid: fuguhwyndws b Yepnisqus ki vhwnhy
hwpudwnpyny hwdwlupgtph npny wnwdbwhwnlnipniuttip:

Unwigpughll punkp. Junwjupdwb puquuywt hwdwlwpg, dhwnhy hwdwlwung,
hwpdwpynn juwowqupnud, Juynitnipniy, punipwugphs thnjuwbgdwb dniuljghw, npuljub
hpwlut hwdwlupg:

T.H. OTAHHUCSH, H.A. BAPJAHSH, E.P. XAPUCOB, O.H. TACITAPSH,
H.I'. OBAKUMSH

O IPUMEHEHMUHU L1 AJAIITUBHOI'O YIIPABJIEHUS B MHOT'OMEPHBIX
CUCTEMAX YIIPABJIEHUSA

Yacrtb 2. OQHOTHIIHBIE CHCTEMBI

PaccMoTpeHbl HEKOTOpBIE BONPOCHI, CBA3aHHBIE C YCTOMUYMBOCTHIO OJAHOTHIIHBIX ajarl-
TUBHBIX CUCTCM praBHeHI/IH, npez[Ha3Haqume JJIT KOMIICHCAIIMHW BHCIIHUX BOSMyLI_[eHPII)'I.
OCHOBBIBasICh Ha CBOMCTBAX IMOJIOXKUTEIbHBIX AEHCTBUTENbHBIX MEPENATOUHBIX MAaTPHL], IIOKa-
3aHO, YTO MOJOOHBIE CHCTEMBI YCTOWYHMBEI MPH MPOU3BOIBHO OONBIIMX 3HAYEHUSX KOA(hGhu-
OUCHTA agallTaluu, 1aXKE B cnyqae CHUCTEM C HpaBOCTOpOHHI/IMI/I HYJISIMU. BI)ISIBJ'ICHBI u 061)5{0-
HCHBI HeKOTOpBIe CHGHI/IQ)I/I‘ICCKI/IE CBOfICTBa OJHOTHUIIHBIX aJAlITUBHBIX CUCTCM.

Knrouegvie cnosa: MHOroMepHasi cucTeMa yIpaBJieHUs, OJHOTUIIHASA CUCTEMA, a/IallTUBHOE
VIIpaBJICHHE, YCTOHYMBOCTh, XapaKTepPUCTHUUCCKas NeperaTodHas (QYHKIWS, TOJIOXKHUTEIbHAS
JIeHCTBUTEIbHAS CUCTEMA.
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