УДК 524.35

РАДИОЭЛЕКТРОНИКА

Р.М. МАРТИРОСЯН, А.Г. ГУЛЯН, Г.А. ПИРУМЯН, С.А. САРКИСЯН Г.С. АВЕТИСЯН

ИЗМЕРЕНИЕ ПАРАМЕТРОВ РАДИОТЕЛЕСКОПА РТ-13 ИПА РАН

Приведены результаты фокусировки и измерения параметров радиотелескопа РТ-13 ИПА РАН в пункте назначения в диапазонах S, X, Ка по эталонному космическому радиоисточнику "Кассиопея-А", согласно разработанной в ИРФЭ НАН РА программе/методике, для высокоточного и оперативного обеспечения Глобальной навигационной спутниковой системы (ГЛОНАСС) данными о координатах полюса, Всемирном времени и для связи с международной сетью РСДБ (Радиоинтерферометрия со сверхдлинными базами) и другими международными службами.

Ключевые слова: радиотелескоп, юстировка, шумовая температура.

Введение. Глобальная навигационная спутниковая система разработана по заказу Министерства обороны СССР/РФ в рамках федеральной целевой программы "Поддержание, развитие и использование системы ГЛОНАСС на 2012-2020 годы" и является одной из двух функционирующих на сегодня систем глобальной спутниковой навигации. ГЛОНАСС предназначена для оперативного навигационно-временного обеспечения неограниченного числа пользователей наземного, морского, воздушного и космического базирования. Доступ к гражданским сигналам ГЛОНАСС в любой точке земного шара предоставляется российским и иностранным потребителям на безвозмездной основе и без ограничений.

Основой системы должны являться 24 спутника, движущихся над поверхностью Земли в трёх орбитальных плоскостях с наклоном орбитальных плоскостей 64.8° и высотой $19100 \ \kappa m$. Принцип измерения аналогичен американской системе навигации NAVSTAR GPS. Основное отличие от системы GPS в том, что спутники ГЛОНАСС в своём орбитальном движении не имеют резонанса (синхронности) с вращением Земли, что обеспечивает им большую стабильность. Таким образом, группировка КА ГЛОНАСС не требует дополнительных корректировок в течение всего срока активного существования.

Целью выполнения работы является разработка программы/методики для фокусировки и исследования характеристик радиотелескопа РТ-13 ИПА РАН (Институт прикладной астрономии Российской академии наук), а также проведение измерений на пунктах назначения.

Объектом исследования является построенный по двухзеркальной схеме с кольцевым первичным фокусом трехдиапазонный радиотелескоп РТ-13 ИПА РАН, на котором установлена радиоастрономическая приемная система (РПС) с криостатируемым трехдиапазонным облучателем и малошумящими усилителями

(МШУ). Рабочие диапазоны частот радиотелескопа: S - (2,2...2,6) $\Gamma \Gamma u$, X - (7,0...9,5) $\Gamma \Gamma u$ и Ka - (28...34) $\Gamma \Gamma u$.

1. Программа и методика определения оптимального положения контррефлектора (фокусировка). Оптимальное положение контррефлектора радиотелескопа (фокусировка) и величины смещения фазовых центров облучателя в S-, X- и Kа-диапазонах волн относительно оптимального положения контррефлектора ($\Delta x = \Delta y = \Delta z = 0$) определялись с помощью программы слежения космического радиоисточника путем выбора положения контррефлектора, обеспечивающего соответствие формы диаграммы направленности (ДН) расчетной (достижением максимального приращения выходного сигнала). Фокусировка проводилась при угле места 45°. Исследование характеристик радиотелескопа проводилось после его фокусировки. В табл.1 приведены поправки от отсчетного ($\Delta x = \Delta y = \Delta z = 0$) положения контррефлектора.

Таблииа 1

\mathcal{N}_{2}	Название характеристик	Ед. изм.	Величина
	Смещение от отсчетного ($\Delta x = \Delta y = \Delta z = 0$)		
1	положения контррефлектора	мм	
2	$\Delta { m x}_{ m s}$	мм	3
3	$\Delta y_{ m s}$	$\mathcal{M}\mathcal{M}$	-2
4	$\Delta z_{ m s}$	$\mathcal{M}\mathcal{M}$	2
5	$\Delta { m x}_{ m x}$	$\mathcal{M}\mathcal{M}$	-1
6	Δy_{x}	$\mathcal{M}\mathcal{M}$	3
7	$\Delta z_{\scriptscriptstyle X}$	$\mathcal{M}\mathcal{M}$	2
8	$\Delta \mathrm{x}_{\mathrm{k}}$	$\mathcal{M}\mathcal{M}$	0
9	Δy_k	$\mathcal{M}\mathcal{M}$	2
10	Δz_k	$\mathcal{M}\mathcal{M}$	1
11	$\Delta \overline{x}$	мм	0,7
12	$\Delta \overline{y}$	мм	1
13	Δ_z^-	мм	1,7

2. Программа исследования характеристик радиотелескопа РТ-13 ИПА РАН. Измерения проводились в обсерватории ИПА РАН "Бадары" при слабой облачности и средней температуре $-20^{0}C$ в период с 26.11.2014 по 06.12.2014 гг. по эталонному радиоисточнику "Кассиопея-А" со следующими характеристиками:

- прямое восхождение $\alpha_{1950,0} = 23^h 21^m 10^s_{,} 2$;
- склонение $\delta_{1950.0} = 58^{\circ} 32' 40'' 5.$ (1)

Значения экваториальных координат для данной эпохи M вычисляются по формулам [1]

$$\alpha_{2014} = \alpha_{1950,0} + (2014 - 1950) \times 2^{s}_{,} 70;$$

$$\delta_{2014} = \delta_{1950,0} + (2014 - 1950) \times 19^{"}_{,} 761;$$

$$190$$
(2)

а значения плотности потока для данной эпохи - по формулам [2]

$$\log F_{1980,0} = 5,745 - 0,770 \log f,$$

$$F_{2014} = F_{1980,0} [1 - (0,0097 - 0,0003 \log f)]^{2014 - 1980},$$
(3)

где f - частота в гигагерцах. В табл. 2 представлены значения плотностей потоков на рабочих частотных диапазонах.

Таблица 2

Диапазон	S	\mathbf{X}_1	X_2	X_3	Ka_1	Ka_2	Ka_3
ГГц	2,4	7,0	8,25	9,5	28,0	31,0	34,0
$F_{2014}10^{-26}$, Bm/M^2	950	430	380	340	150	141	128

- 3. Определение шумовой температуры антенны по всему угловому разрезу с шагом $\Delta h=10^{\circ}$.
 - 3.1. Записываем выходной уровень при отключенном приемнике (РПС).
 - 3.2. Включаем РПС и записываем выходной уровень Т ша.
- 3.3. Включаем внутренний генератор шума (ГШ) и записываем выходной уровень $T_{IIIA} + T_{\Gamma III}$.
 - 3.4. По показанием 3.1, 3.2 и 3.3 определяем T_{IIIA} .
 - 3.5. Пункты 3.1-3.4 выполняем в S-, X-, Ка- диапазонах (табл. 3).

Таблица 3 Диапазон S 60° 50° 40° 10° $70^{\rm o}$ 30° Н (град) $T_{IIIA}(K)$ 67 79 92 | 107 | 122 | 137 147 Диапазон X 60° 50° Н (град) $80^{\rm o}$ $70^{\rm o}$ 40° 20° 10^{o} $\mathrm{T_{IIIA}}(K)$ 63 78 98 123 143 163 173 183 Диапазон Ка 60° Н (град) $80^{\rm o}$ $70^{\rm o}$ 50° $40^{\rm o}$ 30° $20^{\,\mathrm{o}}$ $10^{\rm o}$ $T_{IIIA}(K)$ 196 204 216 218 231 241 256 273

На рис. 1, 2 приведены угловые зависимости шумовой температуры антенны в диапазонах X и Ka.

Рис. 1. Разрез атмосферы в диапазоне Х

Рис. 2. Разрез атмосферы в диапазоне Ка

4. Измерение смещений электрической оси антенны от геометрической по всему угловому разрезу с шагом Δh =10°.

- 4.1. Устанавливаем антенну на программу слежения источника "Кассиопея А" с нулевыми поправками по углу и азимуту.
- 4.2. Изменением программных величин азимута и угла места добиваемся максимального приращения выходного сигнала источника.
 - 4.3. Пункты 4.1-4.2 выполняем в S-, X-, Ka диапазонах (табл. 4).

		Таблица 4
Диапазон S	Диапазон Х	Диапазон Ка
$\Delta h_S = 30'$	$\Delta h_X = 26'$	$\Delta h_{Ka} = 20'$
$\Delta A_s = -14'$	$\Delta A_{\rm X} = -10'$	$\Delta A_{Ka} = -15'$

- 5. Измерение ширины диаграмм направленности антенны, их зависимость от угла места ($\Delta h=10^{\circ}$) в S-, X-, Kа - диапазонах.
- 5.1. Радиотелескоп устанавливаем на программу слежения траектории источника "Кассиопея А" и с учетом поправок ДА, Д и рефракции достигаем максимального уровня выходного сигнала.
- 5.2. Останавливаем движение антенны по азимуту, определяем временной отрезок между значениями выходных сигналов Тист.макс и 0,5 Тист.макс в единицах времени ($\Delta t_{0.5}$) и находим половину ширины кривой прохождения по формуле

$$\varphi_{0,5 \text{ изм}} = 15 * \Delta t_{0,5} * \cos \delta_m.$$

Ширину ДН азимутальной плоскости вычисляем по формуле

$$\varphi_{0,5} = 2\sqrt{\varphi_{0,5 \text{ изм}}^2 - 2(\ln 2)R^2},$$

где $\delta_m = \delta_{1950,0} + (M - 1950) \times 19_{,}^{"}761 = 58^{\circ}53'40''$.

5.3. С учетом п.4.1 останавливаем движение антенны по угломестной координате, определяем временной отрезок между значениями выходных сигналов $T_{\text{ист.макс}}$ и $0.5T_{\text{ист.макс}}$ в единицах времени ($\Delta t_{0.5}$) и находим половину ширины кривой прохождения по формуле

$$\theta_{0,5 \text{ \tiny M3M}} = \Delta t_{0,5} 15 \cos \delta_m.$$

Ширину ДН направленности в угломестной плоскости вычисляем по формуле

$$\theta_{0,5} = 2\sqrt{\theta_{0,5 \text{ изм}}^2 - 2(\ln 2)R^2}$$

 $\theta_{0,5} \,= 2 \sqrt{\theta_{0,5\;\text{изм}}^2 \,- 2(\ln 2) R^2} \,,$ где $\delta_m = \delta_{1950,0} + \,$ (M - 1950) \times 19 $_.^{\prime\prime}$ 761 = 58 0 53 $^\prime$ 40 $^{\prime\prime}$; $R=2^\prime$ 15 $^{\prime\prime}$ - радиус диска радиоисточника "Кассиопея - А".

5.4. Пункты 5.1-5.3 выполняем в S-, X-, Ka- диапазонах (табл. 5).

Диапазон S									
h	80°	70°	60°	50°	40°	30°	20°	10°	
$\theta_{0,5}$	31'50"	32'00"	32'05"	32'15"	32'20"	32'25"	32'25"	32'30"	
Φ0,5	31'20"	31'25"	31'32"	31'36"	31'40"	31'50"	31'55"	32'00"	

Диапазон Ка

h	80°	70°	60°	50°	40°	30°	20°	10°
$\theta_{0,5}$	2'17"	2' 19"	2'20"	2'23"	2'25"	2'28"	2'30"	2'30"
	2'03"	2'05"	2' 08"	2' 11"	2' 14"	2' 17"	2'03"	2' 20"
	1'52"	1'53"	1'55"	1'58"	2'00"	2'03"	2'05"	2'08"
φ _{0,5}	2'16"	2'18"	2'19"	2'22"	2'24"	2'25"	2'27"	2'28"
	2'03"	2'05"	2'08"	2'11"	2'14"	2'16"	2'17"	2'18"
	1'45"	1'46"	1'47"	1'50"	1'52"	1'54"	1'56"	1'58"

Диапазон Х

h	80°	70°	60°	50°	40°	30°	20°	10°
$\theta_{0,5}$	9'04"	9'08"	9'10"	9'12"	9'15"	9'25"	9'26"	9'28"
	7'42"	7'44"	7'50"	7' 54"	7'58"	8'00"	8'0 4"	8' 10"
	6'41"	6'47"	6'52"	6'55"	7'00"	7'05"	7' 10"	7' 15"
φ _{0,5}	9'03"	9'08"	9'12"	9' 15"	9'20"	9'24"	9'28"	9'30"
	7'35"	7'39"	7'43"	7'48"	7'51"	7'55"	7'58"	8'00"
	6'37"	6'40"	6'43"	6'47"	6'50"	6'55"	6'58"	7'00"

6. Измерение эффективной площади антенны.

- 6.1. Включаем РПС, выбираем требуемый частотный диапазон и направляем на "холодное" небо близ возможно высокой угломестной координаты траектории радиоисточника.
 - 6.2. Включаем ГШК и измеряем величину выходного сигнала АС (Тгшк).
- 6.3. Выходим на программу радиоисточника с учетом поправок контррефлектора, ΔA , Δh и измеряем величину выходного сигнала AC ($T_{\text{ист}}$).
 - 6.5. Эффективную площадь вводим по следующей формуле [3]:

$$A_{9\varphi\varphi} = g \frac{2KT_{\text{ИСТ.}}}{F},$$

где $A_{3\varphi\varphi}$ - эффективная площадь антенны; $K=1,38.10^{-23}$ Дж/град – постоянная Больцмана; F - спектральная плотность потока излучения радиоисточника (Bm/m^2 Γu); g - безразмерная величина, которая учитывает соизмеримость угловых размеров источника и ширины антенны и вычисляется из выражения

$$g = \left\{ \left[1 - \frac{1}{2} \left(\frac{R}{0.6\theta_{0,5}} \right)^2 + \frac{1}{6} \left(\frac{R}{0.6\theta_{0,5}} \right)^4 \right] \left[1 - \frac{1}{2} \left(\frac{R}{0.6\varphi_{0,5}} \right)^2 + \frac{1}{6} \left(\frac{R}{0.6\varphi_{0,5}} \right)^4 \right] \right\}^{\frac{1}{2}},$$

R – угловой размер радиоисточника.

- 6.6. Выполняем пункты 6.1 6.5 для убывающей угломестной координаты с шагом Δh =10°.
 - 6.7. Производим операции по пп. 5.1-5.6 в диапазонах "Х" и "Ка".

По результатам измерений параметров, указанных в пп. 5.1-5.7, по формулам

КИП=
$$A_{\text{эфф}}/A_{\text{геом}}$$
, ЭПППС = 2К $T_{\text{сист}}/A_{\text{эфф}}$

определяем зависимость коэффициента использования поверхности (КИП) и эквивалентной плотности потока приемной системы (ЭПППС) от угла места (табл. 6).

Таблица 6

									,	
				Диат	1азон S					
h	80°	70°	60°	50°	40°	30°	20°	10) ⁰	
Аэфф.	90	89	87	87	86	85	84	84	ļ.	
КИП	0,68	0,67	0,65	0,65	0,65	0,64	0,63	0,	63	
SEFD	1983	2371	2844	3305	3767	4294	4680	49	1998	
Диапазон Х										
h	80°	70°	60°	50°	40°	30°	20°	10) ⁰	
$A_{9\varphi\varphi}$	86	85	85	84	83	82	81	80)	
КИП	0,70	0,69	0,69	0,67	0,67	0,66	0,66	0,0	65	
SEFD	1940	2262	2842	3673	4270	4941	5244	56	532	
				Диап	азон Ка					
h	80°	70°	60°	50°	40 °	30°	20°		10°	
$A_{9\varphi\varphi}$	68	67	66	66	65	63	61		60	
КИП	0,51	0,5	0,5	0,5	0,49	0,47	0,46		0,45	
SEFD	7686	8160	8640	8720	9429	10255	11130)	12044	

7. Измерения уровней ближних боковых лепестков

- 7.1. Радиотелескоп с учетом всех поправок устанавливаем на программу слежения траектории радиоисточника с временным опережением не менее шестикратной ширины главного лепестка, обеспечивающую прохождение источника через главный и ближайшие боковые лепестки ДН.
- 7.2. Останавливаем антенную систему (AC) по обеим координатам и измеряем величину выходного сигнала AC ($T_{\text{III,сист}}$).
- 7.3. Для калибровки AC включаем ГШК и измеряем величину выходного сигнала AC ($T_{\text{гкш}}$).

- 7.4. При прохождении радиоисточника через боковые лепестки ДН, при необходимости, с учетом динамического диапазона АС выбираем необходимое усиление и измеряем величины выходных сигналов АС ($T_{\text{бок. макс.л.}}$, $T_{\text{бок. макс.л.}}$).
- 7.5. По выходным значениям $T_{\text{бок. макс.л}}$, $T_{\text{бок. макс.п}}$ и $T_{\text{ист. макс}}$ (рис. 3) определяем уровни боковых лепестков.
- 7.6. Производим операции по пп. 7.1- 7.6 для частотных диапазонов "X" и "Ka" (табл. 7).

Таблица 7

	Диапазон S										
h	80°	70°	60°	50°	40°	30°	20°	10°			
Бок.л.	25	24	23,5	23	22,5	22	22	21			
Бок.п.	19	18,8	18,5	18	17,4	17	16,5	16			
Диапазон Х											
h	80°	70°	60°	50°	40°	30°	20°	10°			
Бок.л.	24	23	22,5	22	21,5	21	20	19			
Бок.п.	17,5	17,3	17	16,5	16,1	15,7	15,2	15			
Диапазон Ка											
h	80°	70°	60°	50°	40°	30°	20°	10°			
Бок.л.	21	20,5	20	20	19	18,5	18	17			
Бок.п.	16	16,7	16,2	16	15,5	15	14,5	14			

Рис. 3. Сканирование источника "Кассиопея-А"

Выводы

- **1.** Значения измеренных характеристик РТ-13 в основном соответствуют ожидаемым.
- **2.** Параметры РТ-13 измерялись в дневное время суток и при температурах окружающей среды -20°C и ниже. С целью уменьшения воздействия солнечного излучения следует измерения повторить при умеренных температурах и в ночное время суток.

СПИСОК ЛИТЕРАТУРЫ

- 1. Астрономический ежегодник (постоянная часть).
- 2. **Baars J. W., Genzel R., Payting-Toth I. I. K., Witzel** // Astrophys A.- 1977.- V.61.- P. 99.
- 3. Цейтлин Х.М. Антенная техника в радиоастрономии.-М.: Сов. радио, 1976.

Институт Радиофизики и электроники НАН РА. Материал поступил в редакцию 12.03.2015.

Ռ.Մ. ՄԱՐՏԻՐՈՍՅԱՆ, Ա.Գ. ՂՈՒԼՅԱՆ, Հ.Ա. ՓԻՐՈՒՄՅԱՆ, Ս.Ա. ՄԱՐԳՍՅԱՆ, Գ.Ս. ԱՎԵՏԻՍՅԱՆ

РТ-13 ИПА РАН ՌԱԴԻՈԴԻՏԱԿԻ ԲՆՈՒԹԱԳՐԵՐԻ ՉԱՓՈՒՄԸ

Ներկայացված են բևեռի կոորդինատների և Համաշխարհային ժամանակի ձշգրիտ տվյալներով ԳԼՈՆԱՍՍ համակարգի ապահովմանը, ինչպես նաև միջազգային համանման ցանցերին միանալու հնարավորությանը միտված, ՀՀ ԳԱԱ ՌՖԷԻ-ում մշակված ծրագիր/մեթոդի հիման վրա «Կասիոպեա-Ա» կոսմիկական Էտալոնային ռադիոաղբյուրի միջոցով հաձախային Տ, X. և Ka տիրույթներում իրականացված ՌԱ-13 ԿԱԻ ՌԳԱ ռադիոդիտակի ձշտադրման և բնութագրերի չափման արդյունքները։

Առանցքային բառեր. ռադիոդիտակ, ձշտադրում,աղմկային ջերմաստիձան։

R.M. MARTIROSYAN, A.G. GULYAN, H.A. PIRUMYAN, S.A.SARGSYAN, G.S. AVETISYAN

MEASURING THE RADIOTELESCOPE PARAMETERS

The results of focusing and measurements of the parameters of IAA RAS (Institute of Applied Astronomy of Russian Academy of Sciences) radio telescope RT-13 in the ranges of S, X, Ka based on the space radiation source of "Kassiopeya-A" which is a program/technique developed in IRPhE NAS RA (Institute of Radiophysics and Electronics National Academy of Sciences of Republic of Armenia), as well as the results of high-precision data of pole coordinates and World time for providing GLONASS and making connections with the international VLBI (Very Long Baseline Interferometry) -network and other international services are introduced.

Keywords: radio telescope, adjustment, noise temperature.