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Abstract. Let R be a commutative Noetherian ring, I an ideal of R and M an R-module. The
ambiguous structure of I-transform functor Dj(—) makes the study of its properties attractive.
In this paper we gather conditions under which, D;(R) and Dj(M) appear in certain roles. It is
shown, under these conditions that Dj(R) is a Cohen-Macaulay ring, regular ring, - -+ and D;(M)
can be regarded as a Noetherian, flat, - - - R-module. We also present a primary decomposition of

zero submodule of Dj(M) and secondary representation of Dj(M).
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1. INTRODUCTION

Throughout this paper, R will always denote a non-trivial commutative Noetherian
ring with identity. For an R-module M, the local cohomology modules H(M),
1=0,1,... of an R-module M with respect to I were introduced by Grothendieck
[6]. They arise as the derived functors of the left exact functor I';(—), where for an

R-module M, I';(M) is the submodule of M consisting of all elements annihilated

oo

> 1(0:pr I™). There is a natural isomorphism

by some power of I, i.e., U
Hi(M) = lim Exth(R/I™, M).
Recall that for an R-module M, the cohomological dimension of M with respect to
I is defined as
cd(I,M) :=sup{i € Z : Hj(M) # 0}.
The cohomological dimension has been studied by several authors, see for example
[6] and [7]. Also, for any proper ideal I of R, the arithmetic rank of I denoted by
ara(]), is the least number of elements of R required to generate an ideal which
has the same radical as I. For any ideal I of an arbitrary Noetherian ring R, the
I-transform functor denoted by D;(—), is defined as:
D[(—) =1l HomR(I",—).
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If M is an R-module, then D;(M) = lim Homp(I™, M) is the ideal transform of
n>1
M with respect to I, or the I-transform of M for short. Recall from [3, Exercise

2.2.3(ii)] that D;(R) is a commutative ring with identity and also from [3], Exercise
2.2.10] that  : R — D;(R) is a ring homomorphism. It is well known that the ring
D;(R) has a finitely generated R-algebra structure, whenever the functor Dy(—) is
exact. We refer the reader to [3] for more details about ideal transform functor.

For every non-zero R-module M, we denote the set of all zero-divisors of M in R
by Zr(M). Also, for any ideal I of R, we denote {p € SpecR : p D I} by V(I) and
{x € R : 2" € I for somen € N} by v/T. We recall that grade(I, R) is the common
length of maximal regular R-sequences in ideal I. For any unexplained notation
and terminology we refer the reader to [3] and [§].

This paper is devided into 3 sections. In the next section we gather some
conditions to find affirmative answers to the questions: When is D;(M) a finitely
generated R-module? When is it a flat R-module? See and [2.2] Moreover in
Theorem we show that Dj(R) is a projective R-module in case that I is a
non-zero proper ideal of an arbitrary Noetherian domain with Anng(H}(R)) # 0
and Dy(—) is an exact functor. Theorem is a nice result that shows Dj(R)
is a Cohen-Macaulay ring under certain conditions. Next, in Theorem [2.5] it is
seen that Dj(R) is a regular ring whenever R is regular, Anng([) is nilpotent and
n : R — Dr(R) is a surjective ring homomorphism. In section 3 we present a
minimal primary decomposition of zero submodule of D;(M) in case that M is a
finitely generated R-module and ara(l) = 1, see An R-module M is said to
be representable when it has a secondary representation, see [3, Definition 7.2.2].
In we show that Dj(M) is representable and Attr(D;(M)) C Attgr(M)\V(I)
whenever M is a finitely generated representable R-module and cd(/, R) = 1.

2. SOME RESULTS

In this section we begin our investigations with the following Theorem.

Theorem 2.1. Let R be a Noetherian ring and M be a non-zero finitely generated
R-module. Let I be an ideal of R such that 0 # Anng(H}(M)) ¢ Zr(M). Then
both H (M) and D;(M) are Noetherian R-modules.

Proof. By the assumption, there exists a non-zero element x € Anng(H; (M))\
Zr(M). So the exact sequence
M
0—M3M-— — —0,
M

induces the long exact sequence
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0 — Tp(M) 3 T;(M) — Ty ]\]\44) S N M) S HY M) — -

.y
Since z.H} (M) = 0, it follows that H}(M) is a finitely generated R-module. Now,

the exact sequence

0—

00 — D;(M) — H} (M) — 0,

leads that Dy(M) is a Noetherian R-module. O

Corollary 2.1. Let R be a Noetherian domain and I an ideal of R with Anng(H](R)) #
0. Then D;(R) is a Noetherian R-module. In particular, it is a Noetherian integral

extension of ring R.

Proof. D;(R) is a Noetherian R-module by Theorem and therefore it is a
finitely generated R-module. Since R is a domain it follows that  : R — Dy(R) is
an injective ring homomorphism. Thus, by outlined Remark after [I, Corollary 5.3],
D;(R) is an integral extension of R. Moreover it is a finitely generated R-algebra
and so is a Noetherian ring. O

In the following we denote by Attg(HX(M)) the set of all attached prime ideals
of HL (M) .

Corollary 2.2. Let (R,m) be a Noetherian local ring and M a non-zero finitely
generated R-module with 0 # Anng(HL(M)) € Zr(M). Then Attgr(Hx(M)) C
{m}.

Proof. The assertion follows from Theorem [3, Theorem 7.1.3] and [3|
Corollary 7.2.12].

Lemma 2.1. Let I be a non-nilpotent proper ideal of the Noetherian ring R and
Di(—) an exact functor. Then Dr(R) is a flat R-module.

Proof. See [2, Theorem 3.11].

Theorem 2.2. Let R be a Noetherian domain and I an ideal with cd(I,R) = 1. If
M is an R-module of finite projective dimension d and Assgp M = {0}, then D (M)
is a flat R-module.

Proof. We proceed by induction on d. If d = 0, then M is projective and so, it
is a direct summand of a free module. Thus the assertion follows from Lemma 2.1
and [3, Exercise 3.4.5]. Now assume that d > 1, and that

0—Py— Py —-—P—Py>M=0,
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is a projective resolution of M. Applying the exact functor D;(—) to the exact
sequence

0— kere » Py > M — 0,

we obtain the following exact sequence
0 — Dy(kere) — Dj(Py) = Dy(M) — 0.

Since pdp(kere) = d — 1, by the inductive hypothesis, one can say Dj(kere) is
a flat R-module. Moreover, D;(P,) is flat because P, is a projective R-module.
Thus for every ideal J of R we have JD;(Py) = J®rDi(Py) and JDj(kere) =
J®rDr(kere). On the other hand, from hypothesis and [, Proposition 2.10], we
find that Zr(D;(M)) = 0. This guarantees the exactness of the bottom row, in the

following commutative diagram.

J®g Di(kere) — J®rDi(Py) — JQrDi(M) — 0

4 \
JD](keI‘E) — JD[(P()) — JD[(M) — 0

Hence we have JD;(M) = JogrD;(M). But JD;(M) C D;(M). This means
JRrD(M) - RrDr(M)

is an injective homomorphism and therefore D;(M) is a flat R-module. |

Lemma 2.2. Let R be a Noetherian local ring and I a proper non-zero ideal of R.
Then the I-transform functor Dy(—) is exact if and only if cd(I, R) < 1.

Proof. It follows from [2, Lemma 3.2].

Theorem 2.3. Let R be a Noetherian domain and I a non-zero proper ideal of
R such that the I-transform functor Di(—) is exzact. If Anng(H}(R)) # 0, then
Dr(R) is a projective R-module.

Proof. In case that (R, m) is a Noetherian local ring, the assertion is clear by
Corollary 2.1 and Lemma[2.I] Suppose that R is not local and assume the contrary
that there exists an R-module M such that Ext(D;(R), M) # 0. Hence there exists
a prime ideal p € Spec(R) such that (Exty(Dr(R), M)), # 0. By Corollary
D;(R) is a finitely generated R-module. Thus by [8, Exercise 7.7] and [3, Exercise
4.3.5, iii], Exty_(Dig,(Rp), My) # 0 and so Dyp, (Ry) # 0. In case that I  p, we
have D;g, (Ryp) = Ry, because IR, = R,. This means that D;r, (R)) is a projective
Rp-module.

Now consider the case that I C p. Since Dy(—) is an exact functor, it follows that
cd(I,R) < 1 by Lemma Moreover, it is clear that cd(IRp, Ry) < cd(I, R).
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Hence by using again Lemma the IRp-transform functor Djg,(—) is exact.
Since R is domain, it follows that the Noetherian ring R, is domain and so IR, is a
non-nilpotent proper ideal of R,. Hence by Lemma the Ry-module Dyg, (Ry)
is flat. Therefore D;r,(Ry) is a non-zero projective Ry-module because (Ry, pR,)
is a Noetherian local ring and Drr, (R,) is a finitely generated R,-module.

As it is seen, in both cases above Djg, (R,) is a projective R,-module which
contradict the fact that Ext}%p (Drr, (Rp), My) # 0. Thus for every R-module M
we must have Extp(D(R), M) = 0, i.e., D;(R) is a projective R-module. O

Theorem 2.4. Let R be a Noetherian domain of dimension d and I be an ideal of
R such that I C J(R). Let Anng(H}(R)) # 0 and HY(R) = 0 for each 1 < i < d.
Then Dy(R) is a Noetherian Cohen-Macaulay ring.

Proof. It follows from Corollary that Dj(R) is a Noetherian ring and it
is integral over R. Consequently, we have dim D;(R) = dim R. By [3, Corollary
2.2.10, iv] and [3, Theorem 4.2.1], one has I';p, (r)(Dr(R)) = H}DI(R)(DI(R)) =0.
Moreover, one can find by [3, Corollary 2.2.10, v] and [3, Theorem 4.2.1] that
H}DI(R)(DI(R)) = 0 for every 1 < i < d. Hence by view of [3, Theorem 6.2.7]
we have d < grade(IDy(R), D;(R)). On the other hand grade(ID;(R), D;(R)) <
dim Dy (R). These yield grade(ID;(R), D;(R)) = d. Now let n € Max(D;(R)). It
follows from [I, Corollary 5.8] that m := n® is a maximal ideal of R. Since I C m,
we have ID;(R) C n because of ID;(R) C mD;(R) = n°® C n. Therefore

grade(IDy(R), D;(R)) < grade(n, D;(R)) < grade(n(Dr(R))n, (Dr(R))n)
= depth(D;(R))n < dim(D(R))n < dim D;(R) = d.
Thus for every n € Max(D;(R)) we have depth(Dr(R))n = dim(Dj(R))n =d. O
Let I be an ideal of R such that Anng(I) is nilpotent. Then IR, # 0 for every
prime ideal p of R, because Anng (/) C p. In the following, we show that under
certain assumptions, D;(R) is a regular ring. Recall that a Noetherian ring R is

regular, if R, is a regular local ring for every prime ideal p of R. For more details

about regular local rings see [4, Section 2.2].

Theorem 2.5. Let R be a Noetherian regular ring and I an ideal of R such that
Anng(I) is nilpotent. Then Dy(R) is a regular ring, provided n : R — Dy(R) is a

surjective ring homohorphism.

Proof. The assertion follows immediately in case that T';/(R) = 0 or [ is a
nilpotent ideal of R. Thus we may assume that T';(R) # 0 and I is not nilpotent.

Also, it should be mentioned that Dj(R) is a Noetherian ring because R is a
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Noetherian ring and 1 : R — D;(R) is a surjective ring homohorphism. Now let
q € Spec(Dr(R)) and p := q°. Then the canonical map 7 : R, — (D;(R))q by
ﬁ(g) = 77&3 for every g € Ry, is a surjective ring homomorphism. Let g € ker.
There e:zists v € R\ p such that n(r)n(v) = 0. Thus rv € kern = I'7(R). Hence
% € 'y, (Rp). But grade(IRy, Ry) > 1 because R, is a domain and IR, # 0 due
to Anng(I) C p. Therefore in view of [3, Exercise 1.3.9, (iii)], I'rr, (Ry) = 0 and

we get " — 0. This leads to Ry, = (Dr(R))q. O
s

3. PRIMARY DECOMPOSITION AND SECONDARY REPRESENTATION

Let R be a Noetherian ring and M a finitely generated R-module. It is well-known
that every proper submodule of M has a primary decomposition. In the following
Theorem, for an ideal I with ara(l) = 1 we find a minimal primary decomposition
of the zero submodule of D;(M).

Theorem 3.1. Let R be a Noetherian ring and I an ideal of R with ara(I) = 1.
¢

Let M be a finitely generated R-module and 0 = (| N; be a minimal primary
i=1
decomposition of 0 in M. Then the zero submodule of D;(M) has a minimal primary

S
decomposition in the form 0 = () Dr(N;), s <t .
i=1

1=

Proof. Since ara(I) = 1 there exists + € R such that vRz = 1. By |3,

Proposition 2.2.23] and [3, Theorem 2.2.19] we have
t

(3.1) 0= Ds(0) = Dro(() Ni) = ([ NoJa =[] (Nia

i=1 i=1

> () Drs(N;) = () D1(Ny).
=1

i=1
From the above intersection let us remove all D;(N;),1 < j <, such that
t
(3:2) () Di(N:) € Di(N;).
i=1

i#]

S

Then we will get a minimal primary decomposition in the form 0 = (| D;(N;),s <
i=1

t, provided that we show every D;(N;),1 < i < s, is a primary submodule of

Di(M).

In order to avoid inaccuracies, it is harmless to assume that the minimal primary
t

decomposition 0 = () NV; is sorted in the following sense:
i=1
For every 1 < j <5, D;(N;) doesn’t satisfy condition (3.2) and D;(N;) satisfies
condition (3.2) for every j > s+ 1.
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Since cd(I, R) < ara(I) = 1, it follows from [3| Lemma 6.3.1] that D;(—) is an

exact functore and so
MY  Di(M)
Dl — | = .
N; Dr(N;)
Hence in order to show that Dj;(N;) is a primary submodule of D;(M) it is

enough to show that the map Dj( 5 Dl(ﬁ) is either injective or nilpotent

A
7 K3
homomorphism for every r € R. This is clear the fact because Dy(—) is an R-linear

functore. ([l
Before we discuss about representability of Dy (M), we need the following preparative

Lemma.

Lemma 3.1. Let R be a Noetherian ring and I an ideal of R with ¢cd(I,R) = 1.
Suppose that My, Ms are submodules of a finitely generated R-module M such that
M = My + M. Then

Dr(M) = Dy(M;) + Dy (Ms).

Proof. First note that because c¢d(I, R) = 1, by |3, Lemma 6.3.1] we find that
Dj(—) is an exact functor. Moreover, it is clear that I is not nilpotent. Therefore
Dr(R) is a flat R-module by Lemma So by applying the functor D;(R) ®p —

to the exact sequence
0— MiNMy — My ® My — My + My — 0,
we obtain the following exact sequence
0 — Dr(R)®r(M1NMs3) — D1 (R)@r(M1®Ms3) — Di(R)®pr(M1+M3) — 0.
On the other hand, the following sequence is also exact

00— (D](R) XRRr Ml) N (D](R) RRr Mg) — (D[(R) Xr Ml) D (D](R) QR Mg)

— (D1(R) ®r M1) + (D1(R) ®r M2) — 0.
Hence by view of [8, Theorem 7.4] and [I, Proposition 2.14], we have
Di(R) ®p (M1 + M2) = (Dr(R) ®r M1) + (D1 (R) @ M>).
This fact together with [3, Exercise 6.1.9] concludes
D;(M) = D;(My + M) = D;(M;) + D;(Ms).
This completes the proof. O
Theorem 3.2. Let R be a Noetherian ring and I an ideal of R with cd(I, R) = 1.

Suppose that the finitely generated R-module M is representable. Then, so is Dy(M)
and moreover Attr(Dr(M)) C Attg(M) \ V(I).

Proof. We may assume Dj(M) # 0. Let
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M =DM + M+ -+ M, with M; p; —secondary (1 < j <t),
be a minimal secondary representation of M. Then it follows from that
Di(M) = Dy(My)+ D;(Ms) + -- -+ Dy(M,).
Note that, it may D;(M;) = 0 for some 1 < j < t. Putting T := X' D (M;),n < t,
where each D;(M;), 1 <i < n is not zero, we have D;(M) = T. So it is enough to
show that T is representable; i.e., X, D;(M;) is a secondary representation of 7T

This is clearly the case because Dy(—) is an R-linear functor. Therefore

Attr(Dr(M)) = Attr(T) C {d1,92, - dn},
where q; = /Anng(D;(M;)) € Spec R.

Now, let 1 < i < n and r € gq; be arbitrary. Then there exists [ € N such that
r'Dy(M;) = 0. Since M; is secondary, either M; = rM; or r € \/m = p.
It is not false to assume that the index of p is 7. In other words one can assume
p € Attg(M) is exactly p, itself. (This is possible by rearranging the elements
of set Attr(M)). If r & p;, then we have M; = r'M;. Consequently D;(M;) =
r!Dr(M;) = 0 which contradicts the fact that D7(M;) # 0. Hence q; C p;. On the
other hand, it is obvious that p; C q;. These yield that q; = p; forall 1 <7 <n and
therefore Attr(Dr(M)) C Attr(M). Finally we claim that I ¢ q; for every 1 <
i < n. Otherwise, by [3, Corollary 2.2.10] we find I'y, (D;(M;)) C 'y (Dr(M;)) = 0.
But D;(M;) is an Anng(Dr(M;))-torsion module. Hence D;(M;) = 0 which is a

contradiction. O
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