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Abstract. Let R be a commutative Noetherian ring, I an ideal of R and M an R-module. The
ambiguous structure of I-transform functor DI(−) makes the study of its properties attractive.
In this paper we gather conditions under which, DI(R) and DI(M) appear in certain roles. It is
shown, under these conditions that DI(R) is a Cohen-Macaulay ring, regular ring, · · · and DI(M)

can be regarded as a Noetherian, flat, · · ·R-module. We also present a primary decomposition of
zero submodule of DI(M) and secondary representation of DI(M).
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1. Introduction

Throughout this paper, R will always denote a non-trivial commutative Noetherian

ring with identity. For an R-module M , the local cohomology modules Hi
I(M),

i = 0, 1, . . . of an R-module M with respect to I were introduced by Grothendieck

[6]. They arise as the derived functors of the left exact functor ΓI(−), where for an

R-module M , ΓI(M) is the submodule of M consisting of all elements annihilated

by some power of I, i.e., ∪∞
n=1(0 :M In). There is a natural isomorphism

Hi
I(M) ∼= lim−→

n≥1

ExtiR(R/In,M).

Recall that for an R-module M , the cohomological dimension of M with respect to

I is defined as

cd(I,M) := sup
{
i ∈ Z : Hi

I(M) ̸= 0
}
.

The cohomological dimension has been studied by several authors, see for example

[6] and [7]. Also, for any proper ideal I of R, the arithmetic rank of I denoted by

ara(I), is the least number of elements of R required to generate an ideal which

has the same radical as I. For any ideal I of an arbitrary Noetherian ring R, the

I-transform functor denoted by DI(−), is defined as:

DI(−) = lim−→
n≥1

HomR(I
n,−).
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If M is an R-module, then DI(M) = lim−→
n≥1

HomR(I
n,M) is the ideal transform of

M with respect to I, or the I-transform of M for short. Recall from [3, Exercise

2.2.3(ii)] that DI(R) is a commutative ring with identity and also from [3, Exercise

2.2.10] that η : R → DI(R) is a ring homomorphism. It is well known that the ring

DI(R) has a finitely generated R-algebra structure, whenever the functor DI(−) is

exact. We refer the reader to [3] for more details about ideal transform functor.

For every non-zero R-module M , we denote the set of all zero-divisors of M in R

by ZR(M). Also, for any ideal I of R, we denote {p ∈ SpecR : p ⊇ I} by V (I) and

{x ∈ R : xn ∈ I for somen ∈ N} by
√
I. We recall that grade(I,R) is the common

length of maximal regular R-sequences in ideal I. For any unexplained notation

and terminology we refer the reader to [3] and [8].

This paper is devided into 3 sections. In the next section we gather some

conditions to find affirmative answers to the questions: When is DI(M) a finitely

generated R-module? When is it a flat R-module? See 2.1 and 2.2. Moreover in

Theorem 2.3, we show that DI(R) is a projective R-module in case that I is a

non-zero proper ideal of an arbitrary Noetherian domain with AnnR(H
1
I (R)) ̸= 0

and DI(−) is an exact functor. Theorem 2.4 is a nice result that shows DI(R)

is a Cohen-Macaulay ring under certain conditions. Next, in Theorem 2.5, it is

seen that DI(R) is a regular ring whenever R is regular, AnnR(I) is nilpotent and

η : R → DI(R) is a surjective ring homomorphism. In section 3 we present a

minimal primary decomposition of zero submodule of DI(M) in case that M is a

finitely generated R-module and ara(I) = 1, see 3.1. An R-module M is said to

be representable when it has a secondary representation, see [3, Definition 7.2.2].

In 3.2 we show that DI(M) is representable and AttR(DI(M)) ⊆ AttR(M)\V (I)

whenever M is a finitely generated representable R-module and cd(I,R) = 1.

2. Some results

In this section we begin our investigations with the following Theorem.

Theorem 2.1. Let R be a Noetherian ring and M be a non-zero finitely generated

R-module. Let I be an ideal of R such that 0 ̸= AnnR(H
1
I (M)) ⊈ ZR(M). Then

both H1
I (M) and DI(M) are Noetherian R-modules.

Proof. By the assumption, there exists a non-zero element x ∈ AnnR(H
1
I (M))\

ZR(M). So the exact sequence

0 → M
.x→ M → M

xM
→ 0,

induces the long exact sequence
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0 → ΓI(M)
.x→ ΓI(M) → ΓI(

M

xM
)

β→ H1
I (M)

.x→ H1
I (M) → · · · .

Since x.H1
I (M) = 0, it follows that H1

I (M) is a finitely generated R-module. Now,

the exact sequence

0 → M

ΓI(M)
→ DI(M) → H1

I (M) → 0,

leads that DI(M) is a Noetherian R-module. □

Corollary 2.1. Let R be a Noetherian domain and I an ideal of R with AnnR(H
1
I (R)) ̸=

0. Then DI(R) is a Noetherian R-module. In particular, it is a Noetherian integral

extension of ring R.

Proof. DI(R) is a Noetherian R-module by Theorem 2.1 and therefore it is a

finitely generated R-module. Since R is a domain it follows that η : R −→ DI(R) is

an injective ring homomorphism. Thus, by outlined Remark after [1, Corollary 5.3],

DI(R) is an integral extension of R. Moreover it is a finitely generated R-algebra

and so is a Noetherian ring. □

In the following we denote by AttR(H
1
m(M)) the set of all attached prime ideals

of H1
m(M) .

Corollary 2.2. Let (R,m) be a Noetherian local ring and M a non-zero finitely

generated R-module with 0 ̸= AnnR(H
1
m(M)) ⊈ ZR(M). Then AttR(H

1
m(M)) ⊆

{m}.

Proof. The assertion follows from Theorem 2.1, [3, Theorem 7.1.3] and [3,

Corollary 7.2.12].

Lemma 2.1. Let I be a non-nilpotent proper ideal of the Noetherian ring R and

DI(−) an exact functor. Then DI(R) is a flat R-module.

Proof. See [2, Theorem 3.11].

Theorem 2.2. Let R be a Noetherian domain and I an ideal with cd(I,R) = 1. If

M is an R-module of finite projective dimension d and AssR M = {0}, then DI(M)

is a flat R-module.

Proof. We proceed by induction on d. If d = 0, then M is projective and so, it

is a direct summand of a free module. Thus the assertion follows from Lemma 2.1

and [3, Exercise 3.4.5]. Now assume that d ≥ 1, and that

0 → Pd → Pd−1 → · · · → P1 → P0
ε→ M → 0,
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is a projective resolution of M . Applying the exact functor DI(−) to the exact

sequence

0 → ker ε → P0
ε→ M → 0,

we obtain the following exact sequence

0 → DI(ker ε) → DI(P0)
ε→ DI(M) → 0.

Since pdR(ker ε) = d − 1, by the inductive hypothesis, one can say DI(ker ε) is

a flat R-module. Moreover, DI(P0) is flat because P0 is a projective R-module.

Thus for every ideal J of R we have JDI(P0) ∼= J⊗RDI(P0) and JDI(ker ε) ∼=
J⊗RDI(ker ε). On the other hand, from hypothesis and [5, Proposition 2.10], we

find that ZR(DI(M)) = 0. This guarantees the exactness of the bottom row, in the

following commutative diagram.

J ⊗R DI(ker ε) −→ J ⊗R DI(P0) −→ J ⊗R DI(M) −→ 0
↓ ↓

JDI(ker ε) −→ JDI(P0) −→ JDI(M) −→ 0

Hence we have JDI(M) ∼= J⊗RDI(M). But JDI(M) ⊆ DI(M). This means

J⊗RDI(M) → R⊗RDI(M)

is an injective homomorphism and therefore DI(M) is a flat R-module. □

Lemma 2.2. Let R be a Noetherian local ring and I a proper non-zero ideal of R.

Then the I-transform functor DI(−) is exact if and only if cd(I,R) ≤ 1.

Proof. It follows from [2, Lemma 3.2].

Theorem 2.3. Let R be a Noetherian domain and I a non-zero proper ideal of

R such that the I-transform functor DI(−) is exact. If AnnR(H
1
I (R)) ̸= 0, then

DI(R) is a projective R-module.

Proof. In case that (R,m) is a Noetherian local ring, the assertion is clear by

Corollary 2.1 and Lemma 2.1. Suppose that R is not local and assume the contrary

that there exists an R-module M such that Ext1R(DI(R),M) ̸= 0. Hence there exists

a prime ideal p ∈ Spec(R) such that (Ext1R(DI(R),M))p ̸= 0. By Corollary 2.1,

DI(R) is a finitely generated R-module. Thus by [8, Exercise 7.7] and [3, Exercise

4.3.5, iii], Ext1Rp
(DIRp

(Rp),Mp) ̸= 0 and so DIRp
(Rp) ̸= 0. In case that I ⊈ p, we

have DIRp
(Rp) = Rp because IRp = Rp. This means that DIRp

(Rp) is a projective

Rp-module.

Now consider the case that I ⊆ p. Since DI(−) is an exact functor, it follows that

cd(I,R) ≤ 1 by Lemma 2.2. Moreover, it is clear that cd(IRp, Rp) ≤ cd(I,R).
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Hence by using again Lemma 2.2, the IRp-transform functor DIRp
(−) is exact.

Since R is domain, it follows that the Noetherian ring Rp is domain and so IRp is a

non-nilpotent proper ideal of Rp. Hence by Lemma 2.1, the Rp-module DIRp
(Rp)

is flat. Therefore DIRp
(Rp) is a non-zero projective Rp-module because (Rp, pRp)

is a Noetherian local ring and DIRp
(Rp) is a finitely generated Rp-module.

As it is seen, in both cases above DIRp
(Rp) is a projective Rp-module which

contradict the fact that Ext1Rp
(DIRp

(Rp),Mp) ̸= 0. Thus for every R-module M

we must have Ext1R(DI(R),M) = 0, i.e., DI(R) is a projective R-module. □

Theorem 2.4. Let R be a Noetherian domain of dimension d and I be an ideal of

R such that I ⊆ J(R). Let AnnR(H
1
I (R)) ̸= 0 and Hi

I(R) = 0 for each 1 < i < d.

Then DI(R) is a Noetherian Cohen-Macaulay ring.

Proof. It follows from Corollary 2.1 that DI(R) is a Noetherian ring and it

is integral over R. Consequently, we have dimDI(R) = dimR. By [3, Corollary

2.2.10, iv] and [3, Theorem 4.2.1], one has ΓIDI(R)(DI(R)) = H1
IDI(R)(DI(R)) = 0.

Moreover, one can find by [3, Corollary 2.2.10, v] and [3, Theorem 4.2.1] that

Hi
IDI(R)(DI(R)) = 0 for every 1 < i < d. Hence by view of [3, Theorem 6.2.7]

we have d ≤ grade(IDI(R), DI(R)). On the other hand grade(IDI(R), DI(R)) ≤
dimDI(R). These yield grade(IDI(R), DI(R)) = d. Now let n ∈ Max(DI(R)). It

follows from [1, Corollary 5.8] that m := nc is a maximal ideal of R. Since I ⊆ m,

we have IDI(R) ⊆ n because of IDI(R) ⊆ mDI(R) = nce ⊆ n. Therefore

grade(IDI(R), DI(R)) ≤ grade(n, DI(R)) ≤ grade(n(DI(R))n, (DI(R))n)

= depth(DI(R))n ≤ dim(DI(R))n ≤ dimDI(R) = d.

Thus for every n ∈ Max(DI(R)) we have depth(DI(R))n = dim(DI(R))n = d. □

Let I be an ideal of R such that AnnR(I) is nilpotent. Then IRp ̸= 0 for every

prime ideal p of R, because AnnR(I) ⊆ p. In the following, we show that under

certain assumptions, DI(R) is a regular ring. Recall that a Noetherian ring R is

regular, if Rp is a regular local ring for every prime ideal p of R. For more details

about regular local rings see [4, Section 2.2].

Theorem 2.5. Let R be a Noetherian regular ring and I an ideal of R such that

AnnR(I) is nilpotent. Then DI(R) is a regular ring, provided η : R → DI(R) is a

surjective ring homohorphism.

Proof. The assertion follows immediately in case that ΓI(R) = 0 or I is a

nilpotent ideal of R. Thus we may assume that ΓI(R) ̸= 0 and I is not nilpotent.

Also, it should be mentioned that DI(R) is a Noetherian ring because R is a
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Noetherian ring and η : R → DI(R) is a surjective ring homohorphism. Now let

q ∈ Spec(DI(R)) and p := qc. Then the canonical map η̄ : Rp → (DI(R))q by

η̄(
r

s
) =

η(r)

η(s)
for every

r

s
∈ Rp, is a surjective ring homomorphism. Let

r

s
∈ ker η̄.

There exists v ∈ R \ p such that η(r)η(v) = 0. Thus rv ∈ ker η = ΓI(R). Hence
rv

s
∈ ΓIRp

(Rp). But grade(IRp, Rp) ≥ 1 because Rp is a domain and IRp ̸= 0 due

to AnnR(I) ⊆ p. Therefore in view of [3, Exercise 1.3.9, (iii)], ΓIRp
(Rp) = 0 and

we get
r

s
= 0. This leads to Rp

∼= (DI(R))q. □

3. Primary decomposition and secondary representation

Let R be a Noetherian ring and M a finitely generated R-module. It is well-known

that every proper submodule of M has a primary decomposition. In the following

Theorem, for an ideal I with ara(I) = 1 we find a minimal primary decomposition

of the zero submodule of DI(M).

Theorem 3.1. Let R be a Noetherian ring and I an ideal of R with ara(I) = 1.

Let M be a finitely generated R-module and 0 =
t⋂

i=1

Ni be a minimal primary

decomposition of 0 in M . Then the zero submodule of DI(M) has a minimal primary

decomposition in the form 0 =
s⋂

i=1

DI(Ni), s ≤ t .

Proof. Since ara(I) = 1 there exists x ∈ R such that
√
Rx =

√
I. By [3,

Proposition 2.2.23] and [3, Theorem 2.2.19] we have

0 = DI(0) ∼= DRx(

t⋂
i=1

Ni) ∼= (

t⋂
i=1

Ni)x ∼=
t⋂

i=1

(Ni)x(3.1)

∼=
t⋂

i=1

DRx(Ni) =

t⋂
i=1

DI(Ni).

From the above intersection let us remove all DI(Nj), 1 ≤ j ≤ t, such that

(3.2)
t⋂

i=1
i ̸=j

DI(Ni) ⊆ DI(Nj).

Then we will get a minimal primary decomposition in the form 0 =
s⋂

i=1

DI(Ni), s ≤

t, provided that we show every DI(Ni), 1 ≤ i ≤ s, is a primary submodule of

DI(M).

In order to avoid inaccuracies, it is harmless to assume that the minimal primary

decomposition 0 =
t⋂

i=1

Ni is sorted in the following sense:

For every 1 ≤ j ≤ s, DI(Nj) doesn’t satisfy condition (3.2) and DI(Nj) satisfies

condition (3.2) for every j ≥ s+ 1.
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Since cd(I,R) ≤ ara(I) = 1, it follows from [3, Lemma 6.3.1] that DI(−) is an

exact functore and so

DI

(
M

Ni

)
∼=

DI(M)

DI(Ni)
.

Hence in order to show that DI(Ni) is a primary submodule of DI(M) it is

enough to show that the map DI(
M

Ni
)

.r→ DI(
M

Ni
) is either injective or nilpotent

homomorphism for every r ∈ R. This is clear the fact because DI(−) is an R-linear

functore. □

Before we discuss about representability of DI(M), we need the following preparative

Lemma.

Lemma 3.1. Let R be a Noetherian ring and I an ideal of R with cd(I,R) = 1.

Suppose that M1,M2 are submodules of a finitely generated R-module M such that

M = M1 +M2. Then

DI(M) ∼= DI(M1) +DI(M2).

Proof. First note that because cd(I,R) = 1, by [3, Lemma 6.3.1] we find that

DI(−) is an exact functor. Moreover, it is clear that I is not nilpotent. Therefore

DI(R) is a flat R-module by Lemma 2.1. So by applying the functor DI(R)⊗R −
to the exact sequence

0 −→ M1 ∩M2 −→ M1 ⊕M2 −→ M1 +M2 −→ 0,

we obtain the following exact sequence

0 −→ DI(R)⊗R(M1∩M2) −→ DI(R)⊗R(M1⊕M2) −→ DI(R)⊗R(M1+M2) −→ 0.

On the other hand, the following sequence is also exact

0 −→ (DI(R)⊗R M1) ∩ (DI(R)⊗R M2) −→ (DI(R)⊗R M1)⊕ (DI(R)⊗R M2)

−→ (DI(R)⊗R M1) + (DI(R)⊗R M2) −→ 0.

Hence by view of [8, Theorem 7.4] and [1, Proposition 2.14], we have

DI(R)⊗R (M1 +M2) ∼= (DI(R)⊗R M1) + (DI(R)⊗R M2).

This fact together with [3, Exercise 6.1.9] concludes

DI(M) = DI(M1 +M2) ∼= DI(M1) +DI(M2).

This completes the proof. □

Theorem 3.2. Let R be a Noetherian ring and I an ideal of R with cd(I,R) = 1.

Suppose that the finitely generated R-module M is representable. Then, so is DI(M)

and moreover AttR(DI(M)) ⊆ AttR(M) \ V (I).

Proof. We may assume DI(M) ̸= 0. Let
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M = M1 +M2 + · · ·+Mt with Mj pj − secondary (1 ≤ j ≤ t),

be a minimal secondary representation of M . Then it follows from 3.1 that

DI(M) ∼= DI(M1) +DI(M2) + · · ·+DI(Mt).

Note that, it may DI(Mj) = 0 for some 1 ≤ j ≤ t. Putting T := Σn
i=1DI(Mi), n ≤ t,

where each DI(Mi), 1 ≤ i ≤ n is not zero, we have DI(M) ∼= T . So it is enough to

show that T is representable; i.e., Σn
i=1DI(Mi) is a secondary representation of T .

This is clearly the case because DI(−) is an R-linear functor. Therefore

AttR(DI(M)) = AttR(T ) ⊆ {q1, q2, ..., qn},

where qi =
√
AnnR(DI(Mi)) ∈ SpecR.

Now, let 1 ≤ i ≤ n and r ∈ qi be arbitrary. Then there exists l ∈ N such that

rlDI(Mi) = 0. Since Mi is secondary, either Mi = rMi or r ∈
√
AnnR(Mi) := p.

It is not false to assume that the index of p is i. In other words one can assume

p ∈ AttR(M) is exactly pi itself. (This is possible by rearranging the elements

of set AttR(M)). If r ̸∈ pi, then we have Mi = rlMi. Consequently DI(Mi) =

rlDI(Mi) = 0 which contradicts the fact that DI(Mi) ̸= 0. Hence qi ⊆ pi. On the

other hand, it is obvious that pi ⊆ qi. These yield that qi = pi for all 1 ≤ i ≤ n and

therefore AttR(DI(M)) ⊆ AttR(M). Finally we claim that I ⊈ qi for every 1 ≤
i ≤ n. Otherwise, by [3, Corollary 2.2.10] we find Γqi

(DI(Mi)) ⊆ ΓI(DI(Mi)) = 0.

But DI(Mi) is an AnnR(DI(Mi))-torsion module. Hence DI(Mi) = 0 which is a

contradiction. □
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