Известия НАН Армении, Математика, том 57, н. 6, 2022, стр. 49 – 61. MEROMORPHIC FUNCTIONS SHARING THREE VALUES WITH THEIR DERIVATIVES IN AN ANGULAR DOMAINS

B. PAN, W. C. LIN

https://doi.org/10.54503/0002-3043-2022.57.6-49-61

Fujian Normal University, Fuzhou, P.R.China¹ E-mails: bhpan@fjnu.edu.cn; sxlwc936@fjnu.edu.cn

Abstract. In this paper, we investigate the uniqueness of transcendental meromorphic functions sharing three values with their derivatives in an arbitrary small angular domain including a Borel direction. The obtained results extend the corresponding results from Gundersenand and Mues-Steinmetz, Zheng and Li-Liu-Yi, Chen.

MSC2020 numbers: 30D35; 30D30.

Keywords: Meromorphic function; Shared value; Uniqueness theorems; Borel direction.

1. INTRODUCTION AND MAIN RESULT

Let $f: C \to \hat{C} = C \bigcup \{\infty\}$ be a meromorphic function, where C is the complex plane. It is assumed that the reader is familiar with the basic result and notations of the Nevanlinna's value distribution theory (see [6,14,15]), such as T(r; f), N(r, f)and m(r, f). Meanwhile, the lower order μ and the order λ of a meromorphic function f are in turn defined as follow

$$\mu := \mu(f) = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log r},$$
$$\lambda := \lambda(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}.$$

Let f and g be nonconstant meromorphic functions in the domain $D \subseteq C$. If f - cand g - c have the same zeros with the same multiplicities in D, then $c \in C \bigcup \{\infty\}$ is called an CM shared value in a domain $D \subseteq C$ of two meromorphic functions fand g. If f - c and g - c only have the same zeros in D, then $c \in C \bigcup \{\infty\}$ is called an IM shared value in a domain $D \subseteq C$ of two meromorphic functions f and g. The zeros of f - c imply the poles of f when $c = +\infty$.

In 1979, Gundersen [5] and Mues-Steinmetz [10] have considered the uniqueness of a meromorphic function f and its derivative f' and obtained the following result. **Theorem A:** Let f be a nonconstant meromorphic function in C, and let $a_j(j = 1, 2, 3)$ be three distinct finite complex numbers. If f and f' share $a_j(j = 1, 2, 3)$ IM. Then $f \equiv f'$.

¹The work was supported by the Natural Science Foundation of Fujian Province(Grant No.2019J01672). The first author is the corresponding author.

B. PAN, W. C. LIN

Later on, Frank and Schwick [3] generalized the above results and proved the following result.

Theorem B: Let f be a non-constant meromorphic function, and let k be a positive integer. If there exist three distinct finite complex numbers a, b and c such that f and $f^{(k)}$ share a, b, c IM, then $f \equiv f^{(k)}$.

In 2004, Zheng [16] first considered the uniqueness question of meromorphic functions with shared values in an angular domain, and proved the following result (see [16, Theorem 3]):

Theorem C: Let f be a transcendental meromorphic function of finite lower order and such that $\delta = \delta(a, f^{(p)}) > 0$ for some $a \in C \bigcup \{\infty\}$ and an integer $p \ge 0$. Let the pairs of real numbers $\{\alpha_j, \beta_j\}(j = 1, ..., q)$ be such that

$$-\pi \le \alpha_1 < \beta_1 \le \alpha_2 < \beta_2 \le \dots \le \alpha_q < \beta_q \le \pi,$$

with $\omega = \max\{\frac{\pi}{\beta_j - \alpha_j} : 1 \le j \le q\}$, and

$$\sum_{j=1}^{q} (\alpha_{j+1} - \beta_j) < \frac{4}{\delta} \arcsin \sqrt{\delta(a, f^{(p)})/2},$$

where $\delta = \max\{\omega, \mu\}$. For a positive integer k, assume that f and $f^{(k)}$ share three distinct finite complex numbers $a_j (j = 1, 2, 3)$ IM in $X = \bigcup_{l=1}^q \{z : \alpha_j \leq \arg z \leq \beta_j\}$. If $\omega < \lambda(f)$, then $f \equiv f^{(k)}$.

In 2015, Li, Liu, and Yi [9] observed that Theorem C is invalid for $q \ge 2$, and proved the following more general result, which extends Theorem C (see [9, p. 443]). **Theorem D:** (see [9]). Let f be a transcendental meromorphic function of finite lower order $\mu(f)$ in C and such that $\delta(a, f) > 0$ for some $a \in C$. Assume that $q \ge 2$ pairs of real numbers $\{\alpha_j, \beta_j\}$ satisfy the conditions

$$-\pi \le \alpha_1 < \beta_1 \le \alpha_2 < \beta_2 \le \dots \le \alpha_q < \beta_q \le \pi$$

with $\omega = \max\{\frac{\pi}{(\beta_i - \alpha_i)} : 1 \le j \le q\}$, and

$$\sum_{j=1}^{q} (\alpha_{j+1} - \beta_j) < \frac{4}{\delta} \arcsin \sqrt{\delta(a, f)/2},$$

where $\delta = \max\{\omega, \mu\}$. For a k - th order linear differential polynomial L[f] in f with constant coefficients given by

(1.1)
$$L[f] = b_k f^{(k)} + b_{k-1} f^{(k-1)} + \dots + b_1 f',$$

where k is a positive integer, b_k , b_{k-1} , \cdots , b_1 are constants and $b_k \neq 0$, assume that f and L[f] share $a_j(j = 1, 2, 3)$ IM in

$$X = \bigcup_{l=1}^{q} \{ z : \alpha_j \le \arg z \le \beta_j \}.$$

where $a_j (j = 1, 2, 3)$ are three distinct finite complex numbers such that $a \neq a_j (j = 1, 2, 3)$. If $\lambda(f) \neq \omega$, then f = L[f].

In 2019, J. F. Chen [2] proved the following result.

Theorem E: Let f be a nonconstant meromorphic function of lower order $\mu(f) > 1/2$ in C, $a_j(j = 1, 2, 3)$ be three distinct finite complex numbers, and let L[f] be given by Theorem D. Then there exists an angular domain $D = \{z : \alpha \leq \arg z \leq \beta\}$, where $0 \leq \beta - \alpha \leq 2\pi$, such that if f and L[f] share $a_j(j = 1, 2, 3)$ CM in D, then f = L[f].

In theory of meromorphic functions, a function is uniquely determined by its value on a set with a accumulation point. It is natural to ask if we can prove similar results with the conditions

$$\bar{E}_D(f, a_j) = \bar{E}_D(f', a_j), \quad j = 1, 2, 3$$

for some typical set in C in steads of general angular domain in C, where $\overline{E}_D(a, f) = \{z : z \in D, f(z) = a\}$ (as a set in C). In general, the answer of this question is negative. For $f(z) = e^{2z}$, it is clear that $f(z) \neq f'(z)$, but |f(z)| is bounded by 1 on D being the left half plane. Thus

$$\overline{E}_D(f,n) = \overline{E}_D(f',n) = \emptyset$$
 for any $n > 1$

This example show us that if such angular domain D exists, it must be a region whose image under f should be dense in C.

Based on the theory on singular direction for a meromorphic function (see [14]) and the research results of shared values of a meromorphic function (see [8,12]), combining with the result of Theorem D and E we may conjecture that angular domain of the singular direction may be the right. The main result of this paper shows that it is true when D is a angular domain with the Borel direction as the center line for f with order $\lambda > 0$, which extend Theorems D and E.

In order to prove our main results, we introduce some notations about Ahlfors-Shimizu character of meromorphic function in C.

(1.2)
$$T_0(r,f) = \int_0^r \frac{A(t)}{t} dt, \quad A(t) = \frac{1}{\pi} \int_0^{2\pi} \int_0^t (\frac{|f'(\rho e^{i\theta})|}{1 + |f(\rho e^{i\theta})|^2})^2 d\rho d\theta$$

We recall the Nevanlinna theory on an angular domain.

Let f be a meromorphic function in $D = \{z : \alpha \leq argz \leq \beta\}$, where $0 \leq \beta - \alpha \leq 2\pi$. Nevanlinna [11] defined the following symbols (also see [4]).

$$A_{\alpha,\beta}(r,f) = \frac{\omega}{\pi} \int_{1}^{r} \left(\frac{1}{t^{\omega}} - \frac{t^{\omega}}{r^{2\omega}}\right) \{\log^{+} |f(te^{i\alpha})| + \log^{+} |f(te^{i\beta})|\} \frac{dt}{t},$$
$$B_{\alpha,\beta}(r,f) = \frac{2\omega}{\pi r^{\omega}} \int_{\alpha}^{\beta} \log^{+} |f(re^{i\theta})| \sin \omega(\theta - \alpha) d\theta$$

B. PAN, W. C. LIN

$$C_{\alpha,\beta}(r,f) = 2 \sum_{1 < |b_m| < r} \left(\frac{1}{|b_m|^{\omega}} - \frac{|b_m|^{\omega}}{r^{2\omega}}\right) \sin \omega(\theta_m - \alpha),$$
$$S_{\alpha,\beta}(r,f) = A_{\alpha,\beta}(r,f) + B_{\alpha,\beta}(r,f) + C_{\alpha,\beta}(r,f)$$

where $\omega = \frac{\pi}{(\beta - \alpha)}$, and $b_m = |b_m| e^{i\theta_m}$ are the poles of f in D counting multiplicities Throughout the paper, we denote by R(r, *) a quantity satisfying

$$R(r,*) = O\{\log(rT(r,*))\}, r \in E$$

where E denotes a set of positive real numbers with finite linear measure, which will not necessarily be the same in each occurrence. To state our result, we need the following theorem F and definitions .

Theorem F: (see [7]) Let f be a meromorphic function of infinite order in C. Then there exists a function $\rho(r)$ such that:

(i) $\rho(r)$ is continuous and non decreasing for $r \ge r_0$, and $\rho(r) \to \infty$ as $r \to +\infty$; (ii) $U(r) = r^{\rho(r)}(r \ge r_0)$ satisfies the condition $\lim_{r \to +\infty} \frac{\log U(R)}{\log U(r)} = 1, R = r + \frac{r}{\log U(r)}$; (iii) $\limsup_{r \to +\infty} \frac{\log T(r,f)}{\rho(r) \log r} = 1$.

The function $\rho(r)$ is also called the precise order of f.

Definition 1.1. (see [13]). Let f be a meromorphic function of finite order $\lambda(f) > 0$ in C. A direction $\arg z = \theta_0$ ($0 \le \theta_0 < 2\pi$) is called a Borel direction of f(z) of order $\lambda(f)$ if for arbitrary small positive ε the following relation holds:

$$\lim_{r \to \infty} \frac{\log n(r, \theta_0, \varepsilon, f = a)}{\log r} = \lambda(f)$$

for all $a \in \hat{C} = C \bigcup +\infty$ except at most two exceptional values, where $n(r, \theta_0, \varepsilon, f = a)$ denotes the number of the zeros of f - a counting multiplicities in the sector $|argz - \theta_0| < \varepsilon, |z| \le r$.

Definition 1.2. (see [7]). Let f be a meromorphic function of infinite order in C and let $\rho(r)$ be the precise order of f. A direction $\arg z = \theta_0$ ($0 \le \theta_0 < 2\pi$) is called a Borel direction of f(z) of with precise $\rho(r)$ if for arbitrary small positive ε the following relation holds:

$$\lim_{r \to \infty} \frac{\log n(r, \theta_0, \varepsilon, f = a)}{\rho(r) \log r} = 1$$

for all $a \in \hat{C}$ except at most two exceptional values, where $n(r, \theta_0, \varepsilon, f = a)$ is as in definition 1.1.

In this paper we will prove the following theorem.

Theorem 1.1. Let f be a meromorphic function of finite order $\lambda(f) > 0$ in C and ε be an arbitrary small positive number, and a direction $\arg z = \theta_0$ ($0 \le \theta_0 < 2\pi$) be a Borel direction of f(z). Assume that f and f' share three distinct finite complex numbers $a_j(j = 1, 2, 3)$ IM in $A(\theta_0, \varepsilon)$, where $A(\theta_0, \varepsilon) = \{z : |\arg z - \theta_0| < \varepsilon\}$. Then $f \equiv f'$.

Theorem 1.2. Let f be a meromorphic function of infinite order in C and a direction $\arg z = \theta_0$ ($0 \le \theta_0 < 2\pi$) be a Borel direction of f(z) with precise order $\rho(r)$. Then for arbitrary positive number ε , f and f' share two finite values IM at most in the angular region $\{z : |\arg z - \theta_0| < \varepsilon\}$.

Theorem 1.3. Let f be a meromorphic function of infinite order in C and L[f] defined by (1.1), and $\arg z = \theta_0$ ($0 \le \theta_0 < 2\pi$) be a Borel direction of f(z) with precise order $\rho(r)$. Then for arbitrary positive ε , f and L[f] share two finite values CM at most in the angular region $\{z : |\arg z - \theta_0| < \varepsilon\}$.

2. Preliminary

In this section, we will introduce and prove some lemmas that will be used in the proof of the main result.

Lemma 2.1. ([1,12]) Let \mathcal{F} be a family of meromorphic functions such that for every function $f \in \mathcal{F}$ its zeros of multiplicity are at least k. If \mathcal{F} is not a normal family at the origin 0, then for $0 \le \alpha \le k$, there exist (a) a real number r (0 < r < 1);

(b) a sequence of complex numbers $z_n \to 0, |z_n| < r$; (c) a sequence of functions $f_n \in \mathcal{F}$;

(d) a sequence of positive numbers $\rho_n \to 0$;

such that

$$g_n(z) = \rho_n^{-\alpha} f_n(z_n + \rho_n z)$$

converges locally uniformly with respect to spherical metric to a non-constant meromorphic function g(z) on \mathbf{C} and Moreover, g is of order at most two.

For convenience, we will use the following notation

$$LD(r, f: c_1, c_2) = c_1[m(r, \frac{f'}{f}) + \sum_{i=1}^3 m(r, \frac{f'}{f - a_i})] + c_2[m(r, \frac{f''}{f'}) + \sum_{i=1}^3 m(r, \frac{f''}{f' - ta_i})].$$

Lemma 2.2. ([12]) Let f be a meromorphic function in a domain $D = \{z : |z| < R\}$ and $a_j (j = 1, 2, 3)$ be three distinct finite complex numbers, and let t be a positive

real number and $a \in C$. If

$$\bar{E}_D(a_j, f) = \bar{E}_D(ta_j, f') \text{ for } j = 1, 2, 3;$$

and $a \neq a_j$ and $f(0) \neq a_j, \infty(j = 1, 2, 3,), f'(0) \neq 0, at$ and $f''(0) \neq 0, f'(0) \neq tf(0)$, then for 0 < r < R, we have

$$\begin{split} T(r,f) &\leq LD(r,f:2,3) + \log \frac{\prod_{i=1}^{3} |f(0) - a_i|^2 |f'(0) - ta_i|^3}{|tf(0) - f'(0)|^5 |f'(0)|^2} \\ &+ 3\log \frac{1}{|f''(0)|} + (\log^+ t + m(r,\frac{f''}{f' - ta}) + 1)O(1). \end{split}$$

where $\overline{E}_D(a, f) = \{z : z \in D, f(z) = a\}$ (as a set in **C**). and O(1) is a complex number depending only on a and $a_i (i = 1, 2, 3)$.

Lemma 2.3. ([14)). Let f(z) be a meromorphic function with finite order $\lambda > 0$ and $\arg z = \theta_0$ is a Borel direction of f. Then there exist a series of circles

$$\Gamma_j = \{z : |z - z_j| < \epsilon_j |z_j|\},\$$

where $z_j = |z_j|e^{i\theta_0}$, and $\lim_{j\to\infty} |z_j| = +\infty$, $\lim_{j\to\infty} \epsilon_j = 0$ $(j = 1, 2, \cdots)$, such that f take any complex number at least $|z_j|^{\lambda-\delta_j}$ times in every circle Γ_j with at most some exceptional values contained in two circles with spherical radius 2^{-j} , where $\lim_{j\to\infty} |\delta_j| = 0$.

Lemma 2.4. ([14]). Let \mathcal{F} be a family of meromorphic function on domain D, then \mathcal{F} is normal on D, if and only if for every bounded closed domain $K \subseteq D$, there exists a positive number M such that every $f \in \mathcal{F}$

$$\frac{|f'(z)|}{1+|f(z)|^2} \le M.$$

Lemma 2.5. ([6], [17]). Let m be the normalized area measure on the Riemann sphere S. Then we have

$$A(r,f) = \int_{\hat{C}} n(r,f=a) dm(a),$$

where $\hat{C} = C \bigcup \{\infty\}.$

Lemma 2.6. ([6], [17]) Let f(z) be a meromorphic function in a domain $D = \{z : |z| < R\}$. If $f(0) \neq \infty$, then for 0 < r < R we have

$$|T(t,f) - T_0(t,f) - \log^+ |f(0)|| \le \frac{1}{2} \log 2.$$

where $\log^+ |f(0)|$ will be replace by $\log |c(0)|$ when $f(0) = \infty$, and c(0) is the coefficient of the Laurent series of f(z) at 0, and $T_0(t, f)$ is defined as (1.2).

Lemma 2.7. ([8]) Let f(z) be a nonconstant meromorphic function in the complex plane, and a_1, a_2, a_3 are three distinct finite complex numbers. Assume that f and f'share the $a_i(i = 1, 2, 3)$ IM in $\Omega(\alpha, \beta) = \{z : \alpha < \arg z < \beta\}$ with $0 \le \alpha < \beta < 2\pi$. Then one of the following two cases holds: (i) $f \equiv f'$, or (ii) $S_{\alpha,\beta}(r, f) = Q(r, f)$, where Q(r, f) is such a quantity that if f(z) is of finite order, then Q(r, f) = O(1)as $r \to \infty$. and if f(z) is of infinite order, then $Q(r, f) = O(\log(rT(r, f)))$ for $r \notin E$ and $r \to \infty$ and E denotes a set of positive real numbers with finite linear measure.

Lemma 2.8. ([4,9]) Let f be a meromorphic function on $\overline{\Omega}(\alpha,\beta)$. If $S_{\alpha,\beta}(r,f) = O(1)$, then

$$\log |f(re^{i\phi})| = r^{\omega}c\sin(\omega(\phi - \alpha)) + o(r^{\omega})$$

uniformly for $\alpha \leq \phi \leq \beta$ as $r \notin F$ and $r \to \infty$, where c is a positive constant, $\omega = \frac{\pi}{\beta - \alpha}$, and F is a set of finite logarithmic measure, and $\overline{\Omega}(\alpha, \beta) = \{z : \alpha \leq \arg z \leq \beta\}$.

Lemma 2.9. ([13]) Let f be a meromorphic function of infinite order in C, and let $\rho(r)$ be a precise order of f. Then a direction $\arg z = \theta_0$ is a Borel direction of precise order $\rho(r)$ of f, if and only if for arbitrarily small $\varepsilon > 0$ we have

$$\limsup_{r \to +\infty} \frac{\log S_{\theta_0 - \varepsilon, \theta_0 + \varepsilon}(r, f)}{\rho(r) \log r} = 1.$$

Lemma 2.10. ([2]) Let f be a meromorphic function of infinite order in C, $a_j(j = 1, 2, 3)$ be three distinct finite complex numbers and let L[f] be given by(1.1). Suppose that f and L[f] share $a_j(j = 1, 2, 3)$ CM in $D = \{z : \alpha \leq \arg z \leq \beta\}$, where $0 < \beta - \alpha \leq 2\pi$. If $f \neq L[f]$, then $S_{\alpha,\beta}(r, f) = R(r, f)$.

Lemma 2.11. ([14]) Let f(z) be a meromorphic function in disc D(0, R) centered at 0 with radius R. If $f(0) \neq 0, \infty$, then we have for $0 < r < \rho < R$

$$m(r, \frac{f^{(k)}}{f}) < c_k \{1 + \log^+ \log^+ |\frac{1}{f(0)}| + \log^+ \frac{1}{r} + \log^+ \frac{1}{\rho - r} + \log^+ \rho + \log^+ T(\rho, f)\},$$
where k is a positive integer, c, is a constant depending only on k

where k is a positive integer, c_k is a constant depending only on k.

Lemma 2.12. ([14]) Let T(r) be a continuous, non-decreasing, non-negative function and a(r) be a non-increasing, non-negative function on $[r_0, R](0 < r_0 < R < \infty)$. If there exist constant b, c such that

$$T(r) < a(r) + b \log^{+} \frac{1}{\rho - r} + c \log^{+} T(\rho),$$

for $r_0 < r < \rho < R$, then

$$T(r) < 2a(r) + B\log^{+}\frac{2}{R-r} + C,$$

where B, C are two constants depending only on b, c.

Lemma 2.13. Let f(z) be a meromorphic function with finite order $\lambda > 0$ and arg $z = \theta_0$ be a Borel direction of f, and $\Gamma_j = \{z : |z - z_j| < \epsilon_j |z_j|\}$ be a series of circles, where $z_j = |z_j|e^{i\theta_0}$, and $\lim_{j\to\infty} |z_j| = +\infty$, $\lim_{j\to\infty} \epsilon_j = 0$ ($j = 1, 2, \cdots$). Suppose that f and f' share three distinct finite complex numbers a_j (j = 1, 2, 3) IM in $A(\theta_0, \varepsilon)$, where $A(\theta_0, \varepsilon) = \{z : |\arg z - \theta_0| < \varepsilon\}$. If $f \neq f'$, then for every sufficiently large $n(n \ge n_0)$,

(2.1)
$$A(\varepsilon_n, z_n, f) \le O(1)(1 + \log^+ |z_n|).$$

where $\varepsilon_n = |z_n|\epsilon_n$.

Proof. Set $f_n(z) = f(z_n + \varepsilon_n z)$. We distinguish two cases:

Case 1. Assume that $f_n(z)$ be normal at $|z| \leq 1$, by Lemma 2.4, implying that

$$\frac{|f'_n(z)|}{1+|f_n(z)|^2} = \frac{\varepsilon_n |f'(z_n + \varepsilon_n z)|}{1+|f(z_n + \varepsilon_n z)|^2} \le M \ (n = 1, 2, \ldots)$$

in $|z| \leq 1$, where M is a positive numbers. Then we have

$$A(\varepsilon_n, z_n, f) = \frac{1}{\pi} \int_0^{2\pi} \int_0^{\varepsilon_n} (\frac{|f'(z_n + \rho e^{i\theta})|}{1 + |f(z_n + \rho e^{i\theta})|^2})^2 \rho d\rho d\theta \le 2M^2.$$

So (2.1) holds.

Case 2. Assume that $f_n(z)$ be not normal at $|z| \leq 1$.

According to Lemma 2.1, there exist

1) a sequence of point $\{z'_n\} \subset \{|z| < 1\};$

2) a subsequence of $\{f_n(z)\}_1^\infty$, without loss of generality, we still denote it by $\{f_n(z)\}$;

3) positive numbers ρ_n with $\rho_n \to 0 (n \to \infty)$; such that

(2.2)
$$h_n(z) = f_n(z'_n + \rho_n z) \to g(z)$$

in spherical metric uniformly on a compact subset of \mathbf{C} as $n \to \infty$, where g(z) is a non-constant meromorphic function. Thus for any positive integer k, we have

$$h_n^{(k)}(\xi) = \rho_n{}^k f_n^{(k)}(z'_n + \rho_n \xi) \to g^{(k)}(\xi).$$

We claim $g''(\xi) \neq 0$. Otherwise, g(z) = cz + d, $(c, d \in \mathbb{C} \text{ and } c \neq 0)$. We can choose ξ_0 , with $g(\xi_0) = a_1$. By Hurwitz's Theorem, there exists a sequence $\xi_n \to \xi_0$ such that

$$h_n(\xi_n) = f_n(z'_n + \rho_n \xi_n) = g(\xi_0) = a_1.$$

Notice that f and f' share a_1 IM in $\{z : |argz - \theta_0| < \varepsilon\}$, we have

$$c = g'(\xi_0) = \lim_{n \to \infty} h'_n(\xi_n) = \lim_{n \to \infty} \rho_n \varepsilon_n f'(z_n + \varepsilon_n(z'_n + \rho_n \xi_n))$$
$$= \lim_{n \to \infty} \rho_n \varepsilon_n f(z_n + \varepsilon_n(z'_n + \rho_n \xi_n)) = \lim_{n \to \infty} \rho_n \varepsilon_n a_1.$$

thus we have

$$\lim_{n \to \infty} \rho_n \varepsilon_n = \frac{c}{a_1}.$$

For finite complex number a_2 , we can choose η_0 with $g(\eta_0) = a_2$. By Hurwitz's Theorem, there exists a sequence $\eta_n \to \eta_0$ such that

$$h_n(\eta_n) = f_n(z'_n + \rho_n \eta_n) = g(\eta_0) = a_2.$$

Likewise ,we get

$$\lim_{n \to \infty} \rho_n \varepsilon_n = \frac{c}{a_2},$$

this gives a contradiction.

For a sequence of positive numbers $\rho_n \varepsilon_n$, it is easy to know that there exist a subsequence, we still denoted by $\rho_n \varepsilon_n$, such that $\lim_{n \to \infty} \rho_n \varepsilon_n = a_0$, where $a_0 \in [0, +\infty) \bigcup \{+\infty\}$. Now we consider two cases: $a_0 = 0$ or $+\infty$ and $0 < a_0 < +\infty$. **Case 2.1** Assume that $\lim_{n \to \infty} \rho_n \varepsilon_n = 0$ or ∞ .

We choose $\xi_0 \in C$, such that

$$g(\xi_0) \neq 0, a_1, a_2, a_3, \infty, g'(\xi_0) \neq 0, \infty, g''(\xi_0) \neq 0, \infty.$$

Let $p_n(z) = f_n(z'_n + \rho_n \xi_0 + z)$ for arbitrary small $\varepsilon > 0$, in view of

$$\overline{E}_{A(\theta_0,\varepsilon)}(a_j,f) = \overline{E}_{A(\theta_0,\varepsilon)}(a_j,f'), \quad j = 1, 2, 3,$$

and $\lim_{n\to\infty} \epsilon_n = 0$. and for sufficiently large n,

$$\Gamma_n = \{ z | z - z_n | < \epsilon_n | z_n |, z_n = |z_n| e^{i\theta_0} \} \subseteq A(\theta_0, \varepsilon/2).$$

Therefor for every sufficiently large $n(n \ge n_0)$, we have

$$\bar{E}_D(a_i, p_n(z)) = \bar{E}_D(\varepsilon_n a_i, p'_n(z))(i = 1, 2, 3),$$

where $D = \{z : |z| < 4\}$. Note that

$$p_n(0) = f_n(z'_n + \rho_n \xi_0) = h_n(\xi_0) \to g(\xi_0) \neq a_1, a_2, a_3, \infty,$$

$$p'_n(0) = f'_n(z'_n + \rho_n \xi_0) = \frac{h'_n(\xi_0)}{\rho_n}, \quad h'_n(\xi_0) \to g'(\xi_0),$$

$$p''_n(0) = f''_n(z'_n + \rho_n \xi_0) = \frac{h''_n(\xi_0)}{\rho_n^2}, \quad h''_n(\xi_0) \to g''(\xi_0),$$

$$\varepsilon_n p_n(0) - p'_n(0) = \frac{\varepsilon_n \rho_n h_n(\xi_0) - h'_n(\xi_0)}{\rho_n}.$$

Thus we have

$$(2.3) \qquad \log \frac{\prod_{i=1}^{3} |p_{n}(0) - a_{i}|^{2} |p_{n}'(0) - \varepsilon_{n} a_{i}|^{3}}{|\varepsilon_{n} p_{n}(0) - p_{n}'(0)|^{5} |p_{n}'(0)|^{2}} + 3\log \frac{1}{|p_{n}''(0)|} \\ = \qquad \log \frac{\prod_{i=1}^{3} |p_{n}(0) - a_{i}|^{2} |p_{n}'(0) - \varepsilon_{n} a_{i}|^{3}}{|\varepsilon_{n} p_{n}(0) - p_{n}'(0)|^{5} |p_{n}'(0)|^{2} |p_{n}''(0)|^{3}} \\ = \qquad 4\log \rho_{n} + \log \frac{\prod_{i=1}^{3} |h_{n}(\xi_{0}) - a_{i}|^{2} |h_{n}'(\xi_{0}) - \rho_{n} \varepsilon_{n} a_{i}|^{3}}{|\rho_{n} \varepsilon_{n} h_{n}(\xi_{0}) - h_{n}'(\xi_{0})|^{5} |h_{n}'(\xi_{0})|^{2} |h_{n}''(\xi_{0})|^{3}} \\ 57 \end{cases}$$

Since $\lim_{n\to\infty} \rho_n \varepsilon_n = 0$ or ∞ . By simple calculation we can deduce for sufficiently large $n(n \ge n_0)$

(2.4)
$$\log \frac{\prod_{i=1}^{3} |h_n(\xi_0) - a_i|^2 |h_n^{(k)}(\xi_0) - \rho_n^k \varepsilon_n a_i|^3}{|\rho_n^k \varepsilon_n h_n(\xi_0) - h_n^{(k)}(\xi_0)|^5 |h_n^{(k)}(\xi_0)|^2 |h_n^{(k+1)}(\xi_0)|^3} \le O(1) \log^+ |z_n|.$$

Applying Lemma 2.2 to $p_n(z)$ with properties (2.3), (2.4), we have

$$T(r, p_n) \le LD(r, p_n; 2, 3) + O(1)(\log^+ |z_n| + m(r, \frac{p_n''}{p_n' - \varepsilon_n a}) + 1)$$

for $0 < r \leq 3$ and sufficiently large n, where $a \neq a_j (j = 1, 2, 3)$ and $a \in C$.

By Lemma 2.11 and Lemma 2.12, we have

$$T(r, p_n) \le O(1)(1 + \log^+ |z_n|).$$

In view of Lemma 2.6, we obtain

$$T_0(r, p_n) \le O(1)(1 + \log^+ |z_n|).$$

Thus we get

$$T_0(3\varepsilon_n, z_n + \varepsilon_n(z'_n + \rho_n\xi_0), f) \le O(1)(1 + \log^+ |z_n|)$$

It follows that

$$A(2\varepsilon_n, z_n + \varepsilon_n(z'_n + \rho_n\xi_0), f) \le O(1)(1 + \log^+ |z_n|).$$

Note that $z'_n + \rho_n \xi_0 \to 0$, we get

$$\{z: |z-z_n| < \varepsilon_n\} \subseteq \{z: |z-z_n - \varepsilon_n(z'_n - \rho_n\xi_0)| < 2\varepsilon_n\}.$$

Therefor we have

$$A(\varepsilon_n, z_n, f) \le O(1)(1 + \log^+ |z_n|)$$

Case 2.2. Assume that $\lim_{n\to\infty} \rho_n \varepsilon_n = a_0, a_0 \neq 0, \infty$. Now, we distinguish two subcases $a_0g(z) \neq g'(z)$ and $a_0g(z) \equiv g'(z)$.

Case 2.2.1. $a_0g(z) \neq g'(z)$. We can choose $\xi_0 \in C$, such that

$$g(\xi_0) \neq 0, a_1, a_2, a_3, \infty, g'(\xi_0) \neq 0, \infty, g''(\xi_0) \neq 0, \infty, a_0g(\xi_0) - g'(\xi_0) \neq 0, \infty$$

Let

$$p_n(z) = f_n(z'_n + \rho_n \xi_0 + z).$$

By the same arguments as in the case 2.1, we can get

$$A(\varepsilon_n, z_n, f) \le O(1)(1 + \log^+ |z_n|).$$

Case 2.2.2. $a_0g(z) \equiv g'(z)$ we can derive that $g(z) = e^{a_0 z + b_0}$, where $b_0 \in C$. From (2.2), we obtain

(2.5)
$$h_n(z) = f_n(z'_n + \rho_n z) = f(z_n + \varepsilon_n(z'_n + \rho_n z)) = f(z_n + \varepsilon_n z'_n + \varepsilon_n \rho_n z) \rightarrow g(z).$$

58

On the other hand, Noting that f and f' share $a_i, i = 1, 2, 3$ in $A(\theta_0, \varepsilon)$, by Lemma 2.7, we have $S_{\theta-\varepsilon,\theta+\varepsilon}(r,f) = O(1)$. Therefore, applying Lamma 2.8 to f in $A(\theta_0,\varepsilon)$, we obtain

$$\log |f(re^{i\phi})| = r^{\omega} c \sin(\omega(\phi - \alpha)) + o(r^{\omega})$$

uniformly for $\theta_0 - \varepsilon = \alpha \leq \phi \leq \beta = \theta_0 + \varepsilon$ as $r \notin F$ and $r \to \infty$, where c is a positive constant, $\omega = \frac{\pi}{\beta - \alpha} = \frac{\pi}{2\varepsilon}$, and F is a set of finite logarithmic measure.

Noting that F is a set of finite logarithmic measure. Therefor, there exist a real number $R, 0 < R < \infty$ and a sequence of complex numbers $u_n, 0 < |u_n| < R$ for every sufficiently large n, such that

(2.6)
$$\log |f(z_n + \varepsilon_n z'_n + \varepsilon_n \rho_n u_n)| = r_n^{\omega} c \sin(\omega(\phi - \alpha)) + o(r_n^{\omega})$$

where $r_n = |z_n + \varepsilon_n z'_n + \varepsilon_n \rho_n u_n| \notin F$, $\phi_n = \arg(z_n + \varepsilon_n z'_n + \varepsilon_n \rho_n u_n)$, $\theta_0 - \varepsilon/2 \le \phi_n \le \theta_0 + \varepsilon/2$, and $\alpha = \theta_0 - \varepsilon$.

From (2.5), we get $\lim_{n\to\infty} (f(z_n + \varepsilon_n z'_n + \varepsilon_n \rho_n u_n) - g(u_n)) = 0$. Noting that u_n is a bounded sequence, there exists convergent subsequence, we still denote it by u_n and set $u_n \to u_0(n \to \infty)$. We have that $\lim_{n\to\infty} g(u_n) = \lim_{n\to\infty} e^{a_0 u_n + b_0} = e^{a_0 u_0 + b_0}$, it follows that

$$\lim_{n \to \infty} \frac{\log |f(z_n + \varepsilon_n z'_n + \varepsilon_n \rho_n u_n)|}{r_n^{\omega}} = 0.$$

On the other hand, by the (2.6) we obtain that

$$\lim_{n \to \infty} \frac{\log |f(z_n + \varepsilon_n z'_n + \varepsilon_n \rho_n u_n)|}{r_n^{\omega}} = \lim_{n \to \infty} c \sin \omega (\phi - \alpha) \ge c \sin \frac{\pi}{4} > 0$$

we obtain a contradiction and so Case 2.2 is false . This completes the proof of Lemma 2.13.

3. Proof of theorems

Proof of Theorem 1.1. Suppose that $f \neq f'$, since $\arg z = \theta_0$ is a Borel direction of f, by the Lemma 2.3, there exist a series of circles

$$\Gamma_j = \{ z : |z - z_j| < \epsilon_j |z_j| \},\$$

where $z_j = |z_j|e^{i\theta_0}$, and $\lim_{j\to\infty} |z_j| = +\infty$, $\lim_{j\to\infty} \epsilon_j = 0$ $(j = 1, 2, \cdots)$, such that f take any complex number at least $|z_j|^{\lambda-\delta_j}$ times in every circle Γ_j with at most some exceptional values contained in two circles with spherical radius 2^{-j} , where $\lim_{j\to\infty} |\delta_j| = 0$. We denote the two circles by Δ_{j1} and Δ_{j2} .

Therefore, by Lemma 2.5, we have

(3.1)
$$A(\epsilon_j|z_j|, z_j, f) = \int_{\hat{C}} n(\epsilon_j|z_j|, z_j, f = a) dm(a)$$
$$\geq \int_{\hat{C} - \Delta_{j1} - \Delta_{j2}} n(\epsilon_j|z_j|, z_j, f = a) dm(a) \ge \frac{1}{2} |z_j|^{\lambda - \delta_j}.$$

B. PAN, W. C. LIN

On the other hand, from Lemma 2.13 the following inequality hold.

(3.2)
$$A(\varepsilon_n, z_n, f) \le O(1)(1 + \log^+ |z_n|),$$

where $|z| \leq 1$ and $\varepsilon_n = |z_n|\epsilon_n$.

Combining with (3.1) and (3.2), we get

$$\frac{1}{2}|z_n|^{\lambda-\delta_n} \le A(\varepsilon_n, z_n, f) \le O(1)(1+\log^+|z_n|).$$

Noting that $\lambda > 0$ and $\lim_{n \to \infty} \delta_n = 0$. This contradicts with $\lim_{n \to \infty} |z_n| = +\infty$. The proof of the theorem 1.1 is complete.

Proof of Theorem 1.2. Suppose that f and f' share three distinct finite complex numbers $a_j(j = 1, 2, 3)$ IM in $A(\theta_0, \varepsilon)$, by Lemma 2.7, in view of f with infinite order and $f \neq f'$, we have $S_{\theta_0-\varepsilon,\theta_0+\varepsilon}(r, f) = R(r, f)$, implying that

$$S_{\theta_0 - \varepsilon, \theta_0 + \varepsilon}(r, f) = O(\log U(r)), U(r) = r^{\rho(r)}.$$

On the other hand , $\arg z = \theta_0$ is a Borel direction of f with precise order $\rho(r)$. By Lemma 2.9, for arbitrarily small $\varepsilon > 0$, we have

$$\limsup_{r \to +\infty} \frac{\log S_{\theta_0 - \varepsilon, \theta_0 + \varepsilon}(r, f)}{\rho(r) \log r} = 1.$$

Thus we arrive at a contradiction. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Suppose that f and L[f] share three distinct finite complex numbers $a_j(j = 1, 2, 3)$ CM in $A(\theta_0, \varepsilon)$. using Lemma 2.10 and 2.9 in $A(\theta_0, \varepsilon)$, similar to Proof of Theorem 1.2, we can conclude a contradiction. This completes the proof of Theorem 1.3.

Acknowledgements. The authors wish to express their thanks to the referee for valuable suggestions and comments.

Список литературы

- W. Chen, H. Tian, P.C. Hu, "Normal families of meromorphic functions with shared values", Acta Mathematica Scientia., 36B(1), 87 – 93 (2016).
- [2] J. F. Chen, "Meromorphic functions sharing three values with their linear differential polynomials in an angular domain", Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 54, 157 – 162 (2019).
- [3] G. Frank and W. Schwick, "Meromorphe Funktionen, die mit einer Ableitung dreiWerte teilen", Results. Math., 22, 679 – 684 (1992).
- [4] A. A. Goldberg, I. V. Ostrovskii, Distribution of Values of Meromorphic Functions, Nauka, Moscow (1970).
- [5] G. G. Gundersen, "Meromorphic functions that share finite values with their derivatives J. Math. Anal.Appl., 75, 441 – 446 (1980).
- [6] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford (1964).
- [7] K. L. Hiong, "Sur les fonctions entières et les fonctions méromorphes dòrdre infini", J. Math. Pures Appl., 14, 233 – 308 (1935).
- [8] W. C. Lin and S. Mori, "On one new singular direction of meromorphic functions", Compl. Var. Ellipt. Equat., 51, 295 – 302 (2006).
- [9] X. M. Li, C. Liu, H. X. Yi, "Meromorphic functions sharing three values with their linear differential polynomials in some angular domains", Results.Math., 68, 441 – 453 (2015).

MEROMORPHIC FUNCTIONS SHARING THREE VALUES ...

- [10] E. Mues and N. Steinmetz, "Meromorphe funktionen, die mit ihrer ableitung werte teilen", Manuscripta Math., 29, 195 – 206 (1979).
- [11] R. Nevanlinna, "Uber die Eigenschaften meromorpher Funktionen in einem Winkelraum", Acta Soc. Sci. Fenn., 50, 1 – 45 (1925).
- [12] B. Pan and W. C. Lin, "Angular value distribution concerning shared values", Rocky Mountain J. Math., 45, 1919 – 1935 (2015).
- [13] G. Valiron, "Recherches sur de théoria de M.Borel dans la théorie des fontions méromorphes", Acta Math., 52, 67 – 92 (1928).
- [14] L. Yang, Value Distribution Theory, Springer, Berlin (1993).
- [15] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Pure and Applied Math. Monographs, No. 32, Science Press, Beijing (1995).
- [16] J. H. Zheng, "On uniqueness of meromorphic functions with shared values in some angular domains", Canad. J. Math., 47, 152 – 160 (2004).
- [17] J. H. Zheng, Value Distribution of Meromorphic Functions, Tsinghua University Press, Beijing (2010.)

Поступила 14 октября 2021

После доработки 17 августа 2022

Принята к публикации 24 августа 2022