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1. Introduction

To study the asymptotic behavior of the analytic continuation of certain power series,

Édouard Le Roy considered the following example [18, Section 6]

(1.1)
∞∑
k=0

zk

(k!)γ
, γ > 0,

when z → ∞ along the real axis. Recently, S. Gerhold [6] and, independently, R.

Garra and F. Polito [5] introduced a generalization of (1.1) by

(1.2) F
(γ)
α,β(z) =

∞∑
n=0

zn

[Γ(αn+ β)]γ
(z ∈ C, α, β, γ ∈ C,ℜ(α) > 0),

which turns out to be an entire function of the complex variable z for all values of

the parameters such that ℜ(α) > 0, β ∈ R and γ > 0.

Obvious specifications of parameters lead to a set of well-known special functions

like the Mittag-Leffler Eα = F
(1)
α,1, two parameter Mittag-Leffler Eα,β = F

(1)
α,β , multi-

parameter Mittag-Leffler function (Eγ
α,β = F

(γ)
α,β , γ ∈ N) and their subsequent special

cases.
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Various geometric properties has been studied for different classes of special functions

such as Mittag-Leffler function, Wright function, hypergeometric functions, Bessel

functions, Fox-Wright function and some other related functions are an ongoing part

of research in geometric function theory. We refer to some geometric properties of

these functions [1, 17, 16, 27, 28, 13, 14, 3, 7, 8, 2, 11, 12] and references therein.

Let H denote the class of all analytic functions inside the unit disk D = {z :

|z| < 1}. Suppose that A is the class of all functions f ∈ H which are normalized by

f(0) = f ′(0)− 1 = 0 such that f(z) = z +
∑∞

k=2 akz
k, for all z ∈ D.

A function f ∈ A is said to be a starlike function (with respect to the origin 0)

in D, if f is univalent in D and f(D) is a starlike domain with respect to 0 in C.

This class of starlike functions is denoted by S∗. The analytic characterization of S∗

is given [3] below:

ℜ
(
zf ′(z)

f(z)

)
> 0 ∀z ∈ D ⇐⇒ f ∈ S∗.

If f(z) is a univalent function in D and f(D) is a convex domain in C, then f ∈ A
is said to be a convex function in D. We denote this class of convex functions by K.

This class can be analytically characterized as follows:

ℜ
(
1 +

zf ′′(z)

f ′(z)

)
> 0, ∀z ∈ D ⇐⇒ f ∈ K.

It is well-known that zf ′ is starlike if and only if f ∈ A is convex.

A function f(z) ∈ A is said to be close-to-convex in D if ∃ a starlike function g(z)

in D such that

ℜ
(
zf ′(z)

g(z)

)
> 0,

for all z ∈ D. The class of all close-to-convex functions is denoted by C.

A function f ∈ A is said to be uniformly convex (starlike) if for every circular arc

γ contained in D with center ζ ∈ D the image arc f(γ) is convex (starlike w.r.t. the

image f(ζ)). The class of all uniformly convex (starlike) functions is denoted by UCV

(UST ) [20]. In [10, 9], A. W. Goodman introduced these classes. Later, F. Rönning

[20] introduced a new class of starlike functions Sp defined by

Sp(D) := {f : f(z) = zF ′(z), F ∈ UCV }.

The main focus of this paper is to study certain geometric properties including

univalency, starlikeness, convexity and close-to-convexity in the open unit disk of
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the normalized Le Roy-type Mittag-Leffler function defined by

F(γ)
α,β(z) = z[Γ(β)]γ F

(γ)
α,β(z)

=

∞∑
k=1

[
Γ(β)

Γ(α(k − 1) + β)

]γ
zk =: z +

∞∑
k=2

Ak(α, β, γ)z
k.

(1.3)

Geometric properties of normalized form of Mittag-Leffler function F(1)
α,β(z) := Fα,β(z)

were discussed by Bansal and Prajapat in [1]. Recently, in [17, 16] geometric properties

of normalized form of Fα,β(z) were studied, which improve some results of [1]. The

above results inspire us to study the geometric properties of Le Roy-type Mittag-

Leffler function and improve the results available in the literature.

Each of the following definition will be used in our investigation.

Definition 1.1. (Mitrinović and Vasić [15]) A sequence of real numbers {an}, n =

0, 1, 2... satisfying the condition

(1.4) 2an+1 ≤ an + an+2, n = 0, 1, 2...

is called convex sequence. Putting ∆an = an − an+1 and ∆2an = ∆an − ∆an+1.

Condition (1.4) may be written as ∆2an ≥ 0, n = 0, 1, 2... It is well known that If

f(x) is convex function (of real variable) for x ≥ 0, then the sequence an = f(n), n =

0, 1, 2... is convex.

Definition 1.2. An infinite sequence {bn}∞1 of complex numbers will be called a

subordinating factor sequence if whenever

(1.5) f(z) =

∞∑
n=1

anz
n

is analytic, univalent and convex in D, then

(1.6)

{ ∞∑
n=1

anbnz
n : z ∈ D

}
⊆ f(D), (a1 = 1).

For more information on the various geometric properties involving subordination

between analytic functions, we refer the reader to the earlier works [3, 23] and also

to the references cited therei

2. Useful lemmas

In order to prove our results the following preliminary results will be helpful.
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Lemma 2.1. Let min(α, γ) ≥ 1, β > 0 such that α + β ≥ 2. Then the following

inequality

(2.1) F(γ)
α,β(z) ≤ z + zθ

(γ)
α,β(e

z − 1),

holds true for all z > 0, where

(2.2) θ
(γ)
α,β =

[
Γ(β)

Γ(α+ β)

]γ
.

Proof. First, we prove that the sequence

(2.3) xk :=

{
Γ(k + 1)

[Γ(αk + β)]γ

}
k≥1

,

is decreasing. Let min(α, γ) ≥ 1 and β > 0, then we have

xk+1

xk
=

(k + 1)[Γ(αk + β)]γ

[Γ(αk + α+ β)]γ

≤ (k + 1)[Γ(αk + β)]γ

[Γ(αk + β + 1)]γ
=

k + 1

(αk + β)γ
≤ k + 1

αk + β
.

(2.4)

It is easy to proved that the function χ(ξ) defined by

χ(ξ) = (α− 1)ξ + β − 1,

is non-negative for all α ≥ 1 such that α+ β ≥ 2.

This in turn implies that the sequence (xk)k≥1 monotonically decreases. Therefore,

for z > 0 we get

F(γ)
α,β(z)

z
= 1 +

∞∑
k=1

[Γ(β)]γΓ(k + 1)

[Γ(αk + β)]γ
zk

k!

≤ 1 + θ
(γ)
α,β

∞∑
k=1

zk

k!
= 1 + θ

(γ)
α,β(e

z − 1).

This proves (2.1). □

Lemma 2.2. ( Ozaki [19]) Let f(z) = z +
∑∞

k=2Akz
k. If 1 ≤ 2A2 ≤ ... ≤ nAn ≤

(n + 1)An+1 ≤ ... ≤ 2, or 1 ≥ 2A2 ≥ ... ≥ nAn ≥ (n + 1)An+1 ≥ ... ≥ 0, then f is

close-to-convex with respect to − log(1− z).

Lemma 2.3. [11] Let f ∈ A and |(f(z)/z) − 1| < 1 for each z ∈ D, then f is

univalent and starlike in D1/2 = {z : |z| < 1/2}.

Lemma 2.4. [12] Let f ∈ A and |f ′(z)− 1| < 1 for each z ∈ D, then f is convex in

D1/2 = {z : |z| < 1/2}.
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Lemma 2.5. [24] If f ∈ A and satisfy∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < M, z ∈ D,

where M is a solution of the equation cosM =M , then ℜ(f ′(z)) > 0.

Lemma 2.6. [25] Assume that f ∈ A.

(1) If
∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ < 1

2
, then f ∈ UCV (D).

(2) If
∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣ < 1

2
, then f ∈ Sp(D).

Lemma 2.7. (Féjer [4]). If An ≥ 0, {nAn} and {nAn − (n + 1)An+1} both are

nonincreasing, then the function f(z) = z +
∞∑

n=2
Anz

n is in S∗.

Lemma 2.8. (Féjer [4]). Let {an} be a sequence of nonnegative real numbers such

that a1 = 1, and that for n ≥ 2 the sequence {an} is a convex decreasing, i.e.

a1 − a2 ≥ · · · ≥ ak − ak+1 ≥ · · · ≥ 0.

Then

(2.5) ℜ

( ∞∑
n=1

anz
n−1

)
> 1/2, z ∈ D.

Lemma 2.9. (Wilf [29]). The sequence {bn}∞1 is a subordinating factor sequence if

and only if

(2.6) ℜ

{
1 + 2

∞∑
k=1

bkz
k

}
> 0, z ∈ D.

3. Main results

Theorem 3.1. Let min(α, γ) ≥ 1 and β > 0 such that α+β ≥ 2. Then the following

assertions hold true:

(a). If (e− 1)[Γ(β)]γ < [Γ(α+ β)]γ , then the function F(γ)
α,β(z) is starlike in D1/2.

(b). If 2(e− 1)[Γ(β)]γ < [Γ(α+ β)]γ and β ≥ 2, then the function F(γ)
α,β(z) is convex

in D1/2.

Proof. (a) In view of (2.1) and straightforward calculation would yield∣∣∣∣F(γ)
α,β(z)

z
− 1

∣∣∣∣ ≤ ∞∑
k=1

Ak+1|z|k

≤ F(γ)
α,β(1)− 1

≤ θ
(γ)
α,β(e− 1),

(3.1)
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for all z ∈ D. Hence, under the given hypotheses we obtain∣∣∣∣∣F
(γ)
α,β(z)

z
− 1

∣∣∣∣∣ < 1, z ∈ D,

and consequently the function F(γ)
α,β(z) is starlike in D1/2 by the means of Lemma 2.3.

(b) A simple computation becomes(
F(γ)
α,β(z)

)′
− 1 =

∞∑
k=1

(k + 1)Ak+1z
k

=

∞∑
k=1

ykz
k

k!
,

(3.2)

where (yk)k is defined by

(3.3) yk =
[Γ(β)]γΓ(k + 2)

[Γ(αk + β)]γ
, k ≥ 1.

We define the function f̃ (γ)α,β(ξ) by

f̃
(γ)
α,β(ξ) =

Γ(ξ + 2)

[Γ(αξ + β)]γ
, ξ > 0.

Therefore

(3.4) (f̃
(γ)
α,β(ξ))

′ = f̃
(γ)
α,β(ξ)[ψ(ξ + 2)− αγψ(αξ + β)].

Under the given conditions, we deduce that ψ(αξ + β) ≥ ψ(ξ + 2) and consequently

the function f̃
(γ)
α,β(ξ) is decreasing on [1,∞). This implies that the sequence (yk)k≥1

monotonically decreases for all α ≥ 1, β ≥ 2 and γ ≥ 1. Therefore∣∣∣∣(F(γ)
α,β(z)

)′
− 1

∣∣∣∣ < ∞∑
k=1

y1
k!

= y1(e− 1).(3.5)

This implies that ∣∣∣∣(F(γ)
α,β(z)

)′
− 1

∣∣∣∣ < 1, z ∈ D.

Hence, the function F(γ)
α,β(z) is convex in D1/2 by Lemma 2.4. This completes the

proof of Theorem 3.1. □

On setting α = 1 and γ = 2 in Theorem 3.1, we get the following results as follows:

Corollary 3.1. The following assertions hold true:

(a). If β >
√
e− 1, then the function F(2)

1,β(z) is starlike in D1/2.

(b). If β ≥ 2, then the function F(2)
1,β(z) is convex in D1/2.

Remark 3.1. Theorem 3.1, indicates that the function F1,β(z) is convex in D1/2 if

β ≥ 2. It concludes that our result improve the result proved in [1, Theorem 2.4 (b)].
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Theorem 3.2. Suppose that α, β, γ > 0 such that [Γ(α + β)]γ ≥ 2[Γ(β)]γ , then the

function F(γ)
α,β(z) is close-to-convex with respect to starlike function − log(1− z) in D,

and consequently it is univalent in D.

Proof. To prove that F(γ)
α,β(z) is close-to-convex with respect to starlike function

− log(1 − z) in D, it is sufficient to prove, in view of Lemma 2.2, that the sequence

{kAk}k≥1 is decreasing. A simple computation gives

kAk − (k + 1)Ak+1 = k

[
Γ(β)

Γ(α(k − 1) + β)

]γ
− (k + 1)

[
Γ(β)

Γ(αk + β)

]γ
=

k[Γ(β)]γ

[Γ(αk + β)]γ

[(
Γ(αk + β)

Γ(α(k − 1) + β)

)γ

− k + 1

k

]
.

By using the fact that the function z 7→ Γ(z+a)
Γ(z) , a > 0 is increasing we deduce that

the sequence {(
Γ(αk + β)

Γ(α(k − 1) + β)

)γ}
k≥1

,

is increasing provided that α > 0 and γ > 0, on the other hand the sequence {k+1
k }k≥1

is decreasing sequence. This implies that the sequence

{vk}k≥1 :=

{(
Γ(αk + β)

Γ(α(k − 1) + β)

)γ

− k + 1

k

}
k≥1

is increasing and consequently

vk ≥ v1 =
[Γ(α+ β)]λ − 2[Γ(β)]λ

[Γ(β)]λ
,

which is non-negative under the given hypotheses. Hence

kAk − (k + 1)Ak+1 ≥ 0

for all k ≥ 1. This completes the proof of the Theorem 3.2. □

Corollary 3.2. For α ≥ 1, γ > 0 and β ≥ 21/γ , then the function F(γ)
α,β(z), close-to-

convex with respect to starlike function − log(1− z) in D.

Theorem 3.3. Let α > 0, β > 0, γ > 0. Assume that any one of the following

conditions (H1), (H
1
1 ) or (H2

1 ) hold true:

(H1) :


(i). min(α, β, γ) ≥ 1, αγ ≥ 2,
(ii). [Γ(β)]γ(e− 1) < [Γ(α+ β)]γ

(iii). e[Γ(β)]γ

[Γ(α+β)]γ + 4(e−2)[Γ(β)]γ

[Γ(2α+β)]γ < 1,
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(H1
1 ) :


(i). min(α, γ) ≥ 1, α+ β ≥ max(4

1
γ , 2),

(ii). The function Lγ
α,β : z 7→ (z + 1)2 − z(αz + β)γ is decreasing on [1,∞),

(iii). θ
(γ)
α,β <

1
e ,

(H2
1 ) : [Γ(α+ β)]γ ≥ 4[Γ(β)]γ ,

Then the function F(γ)
α,β(z) is starlike in D.

Proof. First we assume that the hypothesis (H1) holds. By using the triangle

inequality and using the fact that the sequence (xn) is decreasing (see the proof of

Lemma 2.1), then for all z ∈ D we get∣∣∣∣∣F
(γ)
α,β(z)

z

∣∣∣∣∣ ≥ 1−
∞∑
k=1

Ak+1|z|k ≥ 1− [Γ(β)]γ
∞∑
k=1

xk
k!

> 1− [Γ(β)]γ
∞∑
k=1

x1
k!

= 1− θ
(γ)
α,β(e− 1) > 0,

(3.6)

where θ(γ)α,β and (xk)k are defined in (2.2) and (2.3) respectively. On the other hand,

we have

(F(γ)
α,β(z))

′ −
F(γ)
α,β(z)

z
=

∞∑
k=1

Bkz
k

k!
, z ∈ D,(3.7)

where (Bk)k is defined by

Bk =
kΓ(k + 1)[Γ(β)]γ

[Γ(αk + β)]γ
, k ≥ 1.

The sequence (Bk)k≥2 is monotonically decreases for all α ≥ 1, β ≥ 2 and γ ≥ 1 such

that αγ ≥ 2. Indeed, for this we consider the function gγα,β(z) defined by

f
(γ)
α,β(ξ) =

ξΓ(ξ + 1)

[Γ(αξ + β)]γ
, ξ > 0.

Then

(3.8) (f
(γ)
α,β(ξ))

′ = f
(γ)
α,β(ξ)

[
1

ξ
+ ψ(ξ + 1)− αγψ(αξ + β)

]
.

Since the digamma function ψ(ξ) is increasing on (0,∞), then for α ≥ 1, β ≥ 2 and

γ ≥ 1 we have

ψ(αξ + β) ≥ ψ(ξ + 2), ξ ≥ 1.

With the aid the functional relation

ψ(ξ + 1) = ψ(ξ) +
1

ξ
, ξ > 0
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combining with the above inequality and (3.8) we thus get

(3.9) (f
(γ)
α,β(ξ))

′ ≤ f
(γ)
α,β(ξ)

[
(1− αγ)ψ(ξ) +

2− αγ

ξ
− αγ

ξ + 1

]
≤ 0,

for all ξ ≥ 2. Consequently, the sequence (Bk)k≥2 is decreasing. It follows that∣∣∣∣∣(F(γ)
α,β(z))

′ −
F(γ)
α,β(z)

z

∣∣∣∣∣ ≤
∞∑
k=1

Bk

k!

≤ B1 +B2

∞∑
k=2

1

k!
= B1 +B2(e− 2).

(3.10)

Keeping (3.6) and (3.10) in mind, we get

(3.11)

∣∣∣∣∣z(F
(γ)
α,β(z))

′

F(γ)
α,β(z)

− 1

∣∣∣∣∣ ≤ θ
(γ)
α,β +B2(e− 2)

1− θ
(γ)
α,β(e− 1)

< 1,

for all z ∈ D, under the given hypothesis. This implies that

ℜ

(
z(F(γ)

α,β(z))
′

F(γ)
α,β(z)

)
> 0,

for all z ∈ D which implies that the function F(γ)
α,β(z) is starlike in D under the

conditions (H1). Now, we assume that (H1
1 ) is valid. Since α ≥ 1 such that α+β ≥ x∗

we obtain

(3.12) [Γ(αk + α+ β)]γ ≥ [Γ(αk + 1 + β)]γ .

Thus, we get
Bk+1

Bk
≤ (k + 1)2

k(αk + β)γ
.

Moreover, since the function z 7→ Lγ
α,β(z) is decreasing on [1,∞) such that Lγ

α,β(1) ≤
0 we conclude that the sequence (Bk)k≥1 is decreasing. Therefore, we have

(3.13)

∣∣∣∣∣z(F
(γ)
α,β(z))

′

F(γ)
α,β(z)

− 1

∣∣∣∣∣ ≤ B1

1− θ
(γ)
α,β(e− 1)

< 1,

for all z ∈ D. Finally, we suppose that the hypothesis (H2
1 ) is valid. In view of Lemma

2.7, we have to show that both {kAk} and {kAk − (k + 1)Ak+1} are nonincreasing

sequences for all n ≥ 1. In Theorem 3.2 we have already proved that {kAk} is

nonincreasing sequence for all α, γ > 0 and [Γ(α + β)]γ ≥ 2[Γ(β)]γ . Now it remains

to show that {kAk − (k + 1)Ak+1} is nonincreasing or {kAk} is convex sequence

(see Definition 1.1). That is kAk − 2(k + 1)Ak+1 + (k + 2)Ak+2 ≥ 0 (for all k ≥ 1).
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Neglecting the third term and taking difference of first two term, i.e.

kAk − 2(k + 1)Ak+1 =
k[Γ(β)]γ

[Γ(αk + β)]γ

[(
Γ(αk + β)

Γ(α(k − 1) + β)

)γ

− 2(k + 1)

k

]
.

As the function z 7→ Γ(z+a)
Γ(z) , a > 0 is increasing and hence the sequence

(3.14)
{(

Γ(αk + β)

Γ(α(k − 1) + β)

)γ}
k≥1

is increasing provided that α > 0 and γ > 0, on the other hand the sequence{
2(k+1)

k

}
k≥1

is decreasing sequence. This implies that the sequence

(3.15) {uk}k≥1 :=

{(
Γ(αk + β)

Γ(α(k − 1) + β)

)γ

− 2(k + 1)

k

}
k≥1

is increasing and consequently

uk ≥ u1 =
[Γ(α+ β)]λ − 4[Γ(β)]λ

[Γ(β)]λ

which is non-negative under the given hypotheses. Hence

kAk − 2(k + 1)Ak+1 + (k + 2)Ak+2 ≥ 0

for all k ≥ 1. This completes the proof of Theorem 3.3. □

Corollary 3.3. If β >
√
e ≈ 1.6487212707, then the function F(2)

1,β(z) is starlike

on D.

Proof. Upon setting α = 1 and γ = 2 in the hypotheses (H1
1 ) of Theorem 3.3.

Then, the condition ”(H1
1 ) : (i)” and ”(H1) : (ii)” hold true for all β > 1. In addition,

the condition ”(H
)
1 : (iii)” holds true if and only if β2 > e. □

Corollary 3.4. If β > 1.29, then the function F2,β(z) is starlike on D.

Proof. Specifying α = 2 and γ = 1 in the conditions (H1) of Theorem 3.3. Then the

conditions ”(H1) : (i)” and ”(H1) : (ii)” are valid for all β ≥ 1. Using mathematical

software, we can verify that the condition ”(H1) : (iii)” holds true for all β > 1.29. □

Remark 3.2. In [1, Example 2.1], the authors proved that the function F2,β(z) is

starlike in D if β ≥ (−1 +
√
17)/2 ≈ 1.5615... Further, according to [1, Theorem

2.2], F2,β(z) is starlike in D if β ≥ (3 +
√
17)/2 ≈ 3.56155. Moreover, [17, Theorem

6] indicates that F2,β(z) is starlike in D if β ≥ 3.214319744. Hence, Corollary 3.4

provides results for F2,β(z) , better than the results available in [1, Theorem 2.1,

Theorem 2.2] and [17, Theorem 6].
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Theorem 3.4. Let α, β > 0 and γ be positive real numbers, and also let the following

conditions (H3) or (H1
3 ) be satisfied:

(H2) :


(i) α ≥ 1, β ≥ 3, αγ ≥ 2,
(ii) 2(e− 1)[Γ(β)]γ < [Γ(α+ β)]γ ,

(iii) 2e[Γ(β)]γ

[Γ(α+β)]γ + 12(e−2)[Γ(β)]γ

[Γ(2α+β)]γ < 1.

(H1
2 ) : [Γ(α+ β)]γ ≥ 8[Γ(β)]γ ,

then the function F(γ)
α,β(z) is convex function in D.

Proof. It is well known that f(z) is convex if and only if zf ′(z) is starlike. So in

order to prove F(γ)
α,β(z) is convex it is sufficient to prove that the function

G(γ)
α,β(z) := z(F(γ)

α,β(z))
′

is starlike. We have

(3.16) (G(γ)
α,β(z))

′ −G(γ)
α,β(z)/z =

∞∑
k=1

Ckz
k

k!
,

where (Ck)k≥1 is defined by

Ck =
[Γ(β)]γkΓ(k + 2)

[Γ(αk + β)]γ
, k ≥ 1.

Next, we define the function g(γ)α,β by

g
(γ)
α,β(ξ) =

ξΓ(ξ + 2)

[Γ(αξ + β)]γ
, ξ ≥ 1.

Thus we get

(g
(γ)
α,β(ξ))

′ = g
(γ)
α,β(ξ)

[
1

ξ
+ ψ(ξ + 2)− αγψ(αξ + β)

]
.

Again, by using the fact that the digamma function is increasing on (0,∞) we have

ψ(αξ + β) ≥ ψ(ξ + 3)

for all ξ ≥ 1, α ≥ 1 and β ≥ 3. Keeping in mind the above relations we obtain

(g
(γ)
α,β(ξ))

′ ≤ g
(γ)
α,β(ξ)

[
2− αγ

ξ
+

1− αγ

ξ + 1
− αγ

ξ + 2
+ (1− αγ)ψ(ξ)

]
≤ 0,

for all ξ ≥ 2 and αγ ≥ 2. This implies that the sequences (Ck)k≥2 is decreasing.

Then, by (3.16) we get

(3.17)
∣∣∣(G(γ)

α,β(z))
′ −G(γ)

α,β(z)/z
∣∣∣ ≤ C1 +

∞∑
k=2

C2

k!
= C1 + C2(e− 2).
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We see that the sequence (yk)k≥1 defined in (3.3) is also decreasing under the conditions

(H2). Therefore, by (3.2) we get

|G(γ)
α,β(z)/z| = |(F(γ)

α,β(z))
′| ≥ 1−

∞∑
k=1

ykz
k

k!

≥ 1− y1(e− 1).

(3.18)

Having (3.18) and (3.17) in mind we obtain∣∣∣∣∣z(G
(γ)
α,β(z))

′

(G(γ)
α,β(z)

− 1

∣∣∣∣∣ ≤ C1 + C2(e− 2)

1− y1(e− 1)
.(3.19)

The above inequality needs to be less than 1, this gives the conditions (H3) : (iii).

Thus we get

ℜ

(
z(G(γ)

α,β(z))
′

(G(γ)
α,β(z)

)
> 0

for all z ∈ D. This implies that the function G(γ)
α,β(z) is starlike on D and consequently

the function F(γ)
α,β(z) is convex on D under the conditions (H2). Now, assume that the

condition (H1
2 ) is valid.

(3.20) Gγ
α,β(z) = z +

∞∑
k=2

k

[
Γ(β)

Γ(α(k − 1) + β)

]γ
zk =: z +

∞∑
k=2

B̃kz
k.

In view of Lemma 2.7, we have to show that the sequence {kB̃k} is both decreasing

and convex for all k ≥ 1.

kB̃k − (k + 1)B̃k+1 =
k2[Γ(β)]γ

[Γ(αk + β)]γ

[(
Γ(αk + β)

Γ(α(k − 1) + β)

)γ

− (k + 1)2

k2

]
.(3.21)

Now using the same argument as in the proof of Theorem 3.3 under the conditions

(H1
1 ), we have kB̃k − (k+1)B̃k+1 ≥ 0 for all k ≥ 1 under the condition [Γ(α+β)]γ ≥

4[Γ(β)]γ , which is true under the hypothesis of Theorem 3.4. Now it remains to show

that {kB̃k} is convex sequence. That is kB̃k − 2(k + 1)B̃k+1 + (k + 2)B̃k+2 ≥ 0, for

all k ≥ 1. Neglecting the third term and taking difference of first two term i.e.

kB̃k − 2(k + 1)B̃k+1 =
k2[Γ(β)]γ

[Γ(αk + β)]γ

[(
Γ(αk + β)

Γ(α(k − 1) + β)

)γ

− 2(k + 1)2

k2

]
.

which is non-negative under the hypothesis that [Γ(α+ β)]γ ≥ 8Γ(β)]γ . □

If we set (α = 1, γ = 2) and (α = 2, γ = 1) respectively in the second hypotheses

of Theorem 3.4, we get the following results as follows:

Corollary 3.5. The following assertions hold true:

(a). If β ≥ 2
√
2, then the function F(2)

1,β(z) is convex in D.
(b). If β ≥ −1+

√
33

2 ≈ 2.3722..., then F2,β(z) is convex in D.
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Remark 3.3. Recently, the authors [17, Theorem 7] proved that Fα,β(z) is convex

in D if α ≥ 1 and β ≥ 3.56155281. Therefore, the second assertions of Corollary 3.5

improve the results in [17] for α = 2.

Theorem 3.5. Let α ≥ 1, β ≥ 1, γ ≥ 1 such that αγ ≥ 2. Also, suppose that the

following conditions

[Γ(β)]γ(e− 1) < [Γ(α+ β)]γ; and
(1 +M(e− 1))[Γ(β)]γ

[Γ(α+ β)]γ
+

4(e− 2)[Γ(β)]γ

[Γ(2α+ β)]γ
< M,

are valid, where M is a solution of the equation cos(M) =M. Then

ℜ
([

F(γ)
α,β(z)

]′)
> 0.

Proof. The proof of this result go along the lines introduced in the proof of

Theorem 3.3, when we used Lemma 2.5 such that the function

θ
(γ)
α,β +B2(e− 2)

1− θ
(γ)
α,β(e− 1)

< M,

where M is a solution of the equation cos(M) =M, we omit the details. □

Theorem 3.6. Let α ≥ 1, β ≥ 1, γ ≥ 1 such that αγ ≥ 2. Also, suppose that the

following conditions

[Γ(β)]γ(e− 1) < [Γ(α+ β)]γ; and
(e+ 1))[Γ(β)]γ

[Γ(α+ β)]γ
+

8(e− 2)[Γ(β)]γ

[Γ(2α+ β)]γ
< 1,

are valid. Then

F(γ)
α,β(z) ∈ Sp(D).

Proof. The proof of this result is very similar to the proof of Theorem 3.3 when

we used the part (2) of Lemma 2.6, such that

θ
(γ)
α,β +B2(e− 2)

1− θ
(γ)
α,β(e− 1)

< 1/2,

thus, we omit the details in this case also. □

Theorem 3.7. Let α ≥ 1, β ≥ 1 and γ ≥ 1 such that α+β ≥ 3. In addition, assume

that the following conditions hold true:

(6e− 2)[Γ(β)]γ < [Γ(α+ β)]γ .

Then the function F(γ)
α,β(z) is uniformly convex in D.
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Proof. Simple computation gives

(3.22) (F(γ)
α,β(z))

′′ =

∞∑
k=0

Dkz
k

k!
,

where the sequence (Dk)k≥0 is defined by

Dk =
[Γ(β)]γΓ(k + 3)

[Γ(αk + β + α)]γ
, k ≥ 0.

We define the function h(γ)α,β defined by

h
(γ)
α,β(ξ) =

Γ(ξ + 3)

[Γ(αξ + β + α)]γ
, ξ > 0.

Therefore

(h
(γ)
α,β(ξ))

′ = h
(γ)
α,β(ξ) [ψ(ξ + 3)− αγψ(αξ + β + α)] , ξ ≥ 0.

Again, by using the fact that the digamma function is increasing, we deduce that the

function h
(γ)
α,β(ξ) is decreasing on [0,∞) for all α ≥ 1, β ≥ 1 and γ ≥ 1 such that

α+ β ≥ 3. This implies that the sequence (Dk)k≥0 is decreasing. Then

(3.23)
∣∣∣(F(γ)

α,β(z))
′′
∣∣∣ ≤ 2e[Γ(β)]γ

[Γ(α+ β)]γ
, z ∈ D.

We observe that the sequence (yk)k≥1 = (Dk/(k+2))k≥1 is also decreasing under the

conditions of this Theorem. Then implies that the inequality (3.18) holds true. Now,

bearing in mind the inequalities (3.18) and (3.23) we conclude∣∣∣∣∣z(F
(γ)
α,β(z))

′′

(F(γ)
α,β(z))

′

∣∣∣∣∣ ≤ 2eθ
(γ)
α,β

1− 2(e− 1)θ
(γ)
α,β

, z ∈ D,

where θ(γ)α,β is defined in (2.2). So, for the uniformly convex of the function F(γ)
α,β(z)

the above bound needs to be less than 1
2 , by the means of part (1) of Lemma 2.6.

This gives the condition

(6e− 2)θ
(γ)
α,β < 1,

or equivalently

(6e− 2)[Γ(β)]γ < [Γ(α+ β)]γ .

With this, the proof of Theorem 3.7 is complete. □

Specifying α = 2 and γ = 1 in Theorem 3.7, we conclude the following result as

follows:

Corollary 3.6. If β > −1+
√
24e−7
2 ≈ 3.3157163, then the function F2,β(z) is uniformly

convex in D.
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Remark 3.4. In [16, Theorem 2.6], Noreen et al. proved that the function F2,β(z) is

uniformly convex in D if β ≥ 9.11125. Hence, Corollary 3.6 improves Theorem 2.6 in

[16].

Theorem 3.8. For α, γ > 0 and [Γ(α+ β)]γ ≥ 2[Γ(β)]γ we have

(3.24) ℜ

(
F(γ)
α,β(z)

z

)
>

1

2
, z ∈ D.

Proof. In view of Lemma 2.8, it is sufficient to prove that the sequence {Ak}k≥1,

where Ak is defined by (1.3), is decreasing and convex.

(3.25) Ak −Ak+1 =

(
Γ(β)

Γ(αk + β)

)γ [(
Γ(αk + β)

Γ(α(k − 1) + β)

)γ

− 1

]
and

(3.26)

Ak−2Ak+1+An+2 =

(
Γ(β)

Γ(αk + β)

)γ [(
Γ(αk + β)

Γ(α(k − 1) + β)

)γ

− 2 +

(
Γ(αk + β)

Γ(α(k + 1) + β)

)γ]
.

Now using the same argument as in Theorem 3.2, Ak −Ak+1 ≥ 0 for all n ≥ 1 under

the condition [Γ(α + β)]γ ≥ [Γ(β)]γ , which is true under the hypothesis of Theorem

3.8. Similarly Ak − 2Ak+1 ≥ 0 for all k ≥ 1 (neglecting the third term) under the

hypothesis that [Γ(α+ β)]γ ≥ 2[Γ(β)]γ . □

Corollary 3.7. For α, γ > 0 and [Γ(α+ β)]γ ≥ 2[Γ(β)]γ , the sequence{(
Γ(β)

Γ(αn+ β)

)γ}∞

n=1

is a subordinating factor sequence for the class K.

Proof. The result can be easily proved using Theorem 3.8 and Lemma 2.9, so we

omit details here.

Theorem 3.9. For α, γ > 0 and [Γ(α+ β)]γ ≥ 2[Γ(β)]γ

(3.27) ℜ
{
(F(γ)

α,β(z))
′
}
>

1

2
, z ∈ D.

Proof. From (1.3), we get

(3.28) (F(γ)
α,β(z))

′ = 1 +

∞∑
k=2

B̃kz
k−1,

where (B̃k)k is defined in (3.20), and proceeding similarly as in Theorem 3.8, we

achieve the desired result by the means of Lemma 2.8. □
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Corollary 3.8. For α, γ > 0 and [Γ(α+ β)]γ ≥ 2[Γ(β)]γ , the sequence{
(n+ 1)(Γ(β))γ

(Γ(αn+ β))γ

}∞

n=1

is a subordinating factor sequence for the class K.

Proof. The claim follows by the means of Theorem 3.9 and Lemma 2.9, hence we

omit details here.

Remark 3.5. The following are graphs of the functions F(2)
1,2(z),F2, 72

(z) and F2, 52
(z)

over D. These figures depict the validity of our results.
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