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ON APPLICATION OF L1 ADAPTIVE CONTROL TO MULTIVARIABLE 

CONTROL SYSTEMS  

Part 1. General-Type Multivariable Systems  

Some issues concerning the stability of multivariable square (i.e. having the same 

number of inputs and outputs) adaptive control systems for rejection of external 

disturbances are discussed. Based on the properties of positive real transfer matrices, it 

is shown that such systems are stable for arbitrary large values of the adaptation gain, 

even in the case of systems with right half plane zeros. 

 Keywords: multivariable control system, adaptive control, reference model, stability, 

positive real system.  

The paper examines application of 1L  adaptive control to multivariable control 

systems [1]. 1L  adaptive control was developed to address some of the deficiencies 

apparent in Model Reference Adaptive Control (MRAC), as loss of robustness in the 

presence of fast adaptation [2, 3].The first part of the paper is devoted to application of 

1L  adaptive control to general-type square, i.e. having the same number of inputs and 

outputs, Multiple-Input Multiple-Output (MIMO) control systems [4, 5], subjected to 

external disturbances. Some essential dynamic features of that class of adaptive 

systems are specified and discussed. A special class of the so-called uniform MIMO 

systems [5] will be discussed in Part 2. 

 General-Type MIMO Systems. As a basic model of linear N -dimensional, i.e. 

having N  inputs and N  outputs, MIMO systems with constant parameters let us 

consider the system that can be expressed in the following standard state-space form:  

 
( ) ( ) ( ),

( ) ( ),

x t Ax t Bu t

y t Cx t

 


  (1) 

where ( )x t  is an xn -dimensional state vector; ( )u t  and ( )y t  are N -dimensional 

vectors of inputs and outputs; , ,A B C  are constant matrices of appropriate sizes. In 

what follows, we will assume that system completely controllable and observable, 

strictly stable (i.e. the matrix A  is Hurwitz), and, maybe, with Right Half Plane 

(RHP) transmission zeros.  
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The MIMO system (1) can also be described in the operator form by the N N  

transfer function matrix ( ) { ( )}ijW s w s , where ( )ijw s  ( , 1,2,..., )i j N  are scalar 

strictly proper rational functions in complex variable s. The elements ( )iiw s  on the 

principal diagonal of ( )W s  are the transfer functions of separate (or direct) channels, 

and the non-diagonal elements ( )ijw s  ( i j ) are the transfer functions of cross-

connections from the j th channel to the i th.  

Generally, the transfer matrix ( )W s  is connected with the matrices , ,A B C  in 

(1) by the formula [4] 

 1( ) ( )W s C sI A B  ,  (2) 

where I  is an identity matrix.  

Square MIMO systems can be divided into classes (or types) depending on their 

structural properties. In this respect, if no conditions are imposed on the form of the 

transfer matrix ( )W s  (2), we will refer to that system as a general-type (or just 

general) MIMO system [5]. 

 Disturbance Rejection by Means of Adaptive Control. In this section, we will 

adhere to the 1L  architecture with state predictor and low-pass matrix filter presented 

in [1]. Let an N -dimensional strictly stable MIMO system be described in state-space 

by the following equations: 

 
0( ) ( ) ( ( ) ( )), (0) ,

( ) ( ),

x t Ax t B u t t x x

y t Cx t

   


  (3)  

where ( )t  is an N -dimensional time-dependent vector of unknown externally 

bounded ( 0| ( ) |t   ) disturbances that should be rejected by adaptive control, and 

all other matrices and vectors have the dimensions as in (1).  

The state predictor has the same structure as the system in (3): 

 0ˆ ˆ ˆ ˆ( ) ( ) ( ( ) ( )) , (0) ,

ˆ ˆ( ) ( ),

x t Ax t B u t t x x

y t Cx t

   


  (4) 

and the only difference is that the unknown disturbance vector ( )t  is replaced by its 

estimate ˆ ( )t . 

The disturbance rejection process is governed by the following adaptation law [1]  

 ˆ( ) ( )Tt B P t   ,  (5) 

where ˆ( ) ( ) ( )t x t x t   is the prediction error, P  ( 0TP P  ) is the solution of the 

Lyapunov equation 
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 TA P PA Q     (6) 

for an arbitrary symmetric positive definite matrix Q  ( 0TQ Q  ), and the positive 

scalar   is called the adaptation gain [1]. 

The control signal ( )u t  of the system is given in operator form as 

 ˆ( ) ( )( ( ) ( ))gu s Q s k r s s  ,  (7) 

where ( )r s  is an N -dimensional reference signal, gk  is an N N  static (gain) matrix, 

and ( )Q s  is the transfer matrix of a low-pass filter. In the simplest case, the matrix 

( )Q s  is chosen in the form  

 ( ) ( )Q s q s I ,  (8) 

where ( )q s  is a strictly proper scalar transfer function ,usually, satisfying the DC gain 

condition (0)q  = 1. Its state-space realization assumes zero initialization. 

The block diagram of the control system with the state predictor (4), the adaptive 

disturbance rejection law (5), and control signal ( )u s  (7), is shown in Figure 1. 

 

Fig. 1. Block diagram of the adaptive MIMO control system with the state predictor and the 

adaptive disturbance rejection law (5) 

 Thus, the architecture of the discussed adaptive control system represents a linear 

MIMO system with integral feedback and therefore can be investigated by the 

methods and approaches of linear multivariable feedback control [4, 5]. It should be 

noted that due to the adopted 1L  scheme with the state predictor, the transfer matrix 

( )Q s (8) in the control signal ( )u s  (7) is not present in the disturbance rejection law 

(5). Let us consider in more detail the structure and performance characteristics of the 

adaptive system in Figure 1. Toward that end, we introduce the xn N  transfer matrix 

 1( ) ( )xW s sI A B    (9)  



437 

relating the input to the system (1) with the state vector ( )x t , and the corresponding 

(the same) matrix ˆ ( ) ( )x xW s W s  for the state predictor. Then, the block diagram in 

Figure 1 can be recast to an equivalent form in Figure 2. 

 

Fig. 2. Equivalent block diagram of the adaptive system in Fig. 1 

 Based on the block diagram in Figure 2, it is easy to derive the following matrix 

equations of the adaptive system with the state predictor:  

  
1

0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x g xy s CW s Q s k r s CW s I Q s I W s W s s
    

  
,  (10)  

or, since ( ) ( )xCW s W s  [see equations (2) and (9)], 

  
1

0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )gy s W s Q s k r s W s I Q s I W s W s s
    

  
 ,  (11)  

where 

 0 ( ) ( )BW s W s
s


 ; ( ) ( )T

B xW s B PW s .  (12)  

As can be seen from (10), the output signal of the system ( )y s  consists of two 

components generated, respectively, by the input reference signal ( )r s  and by the 

disturbance ( )s . Since the adaptive MIMO system in Figures 1 and 2 is linear, the 

superposition principle holds and, according to the equation (10), the dynamics of the 

system can be represented by two independent block diagrams in Figures 3 and 4. 

Let us proceed to the stability analysis of the adaptive system in Figure 1. From 

the block diagram in Figure 3, it is evident that it represents, since both transfer 

matrices ( )Q s  and ( )W s  are assumed stable, a stable open-loop MIMO system, which 

does not depend on the adaptation gain  . Therefore, no problem with stability can 

arise here.  



438 

 

Fig. 3. Equivalent block diagram of the adaptive system with respect to the input reference 

signal ( )r t  

 

Fig. 4. Equivalent block diagram of the adaptive system with respect to the disturbance ( )t  

On the contrary, the block diagram in Figure 4 contains a negative feedback loop 

with the open-loop transfer matrix 0 ( )W s  (12) and the following closed-loop transfer 

matrix: 

  
1

1

0 0( ) ( ) ( ) ( ) ( )B BF s I W s W s I W s W s
s s






  
    

 
.  (13)  

The characteristic equation of that system is  

  0det ( ) det ( ) 0BI W s I W s
s

 
    

 
,  (14)  

and, clearly, the poles of the adaptive system depend on the adaptation gain  , which 

can be considered as the gain of the open-loop transfer matrix 0 ( )W s  (12).  

Note now that, allowing for (9), the system with the N N  transfer matrix 

( )BW s  in (12) can be written in state-space form as 

 
( ) ( ) ( ),

( ) ( ),e e

x t Ax t Bu t

y t C x t

 


  (15)  

where 

 T
eC B P .  (16) 

Taking into account the form of the matrix eC  (16) and recalling the Kalman-

Yakubovich lemma [1-3, 6], we come to a conclusion that ( )BW s  belongs to the so-

called Positive Real (PR) transfer matrices for which the Hermitian matrix 
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1

Re ( ) ( ) ( )
2

B B B
TW j W j W j     

 
  (17)  

is positive semi-definite (for brevity we shall write Re ( ) 0BW j  ) for all real  , for 

which j  is not a pole of any element of ( )BW s .  

To get some additional insight in that issue, we invoke the characteristic transfer 

functions method [4, 5], on the basis of which the transfer matrix ( )BW s  can be 

represented in the following canonical form: 

 1( ) ( ) { ( )} ( )B
B iW s L s diag q s L s ,  (18) 

where the functions ( )B
iq s ( 1,2,..., )i N  are called Characteristic Transfer Functions 

(CTF) (we will assume them distinct), and the modal matrix ( )L s  is composed of the 

linearly independent eigenvectors ( )il s  of the matrix ( )BW s . As shown in [5], the 

condition Re ( ) 0BW j   implies that all scalar CTFs ( )B
iq s  are also PR, that is 

Re[ ( )] 0B
iq j   for all real  . This also means that all ( )B

iq s  are strictly stable and 

minimum-phase, have relative degree (the excess of number of poles over the number 

of zeros) 0 or 1, and the Nyquist plots of ( )B
iq j  lie entirely in the right half complex 

plane or, equivalently, the phases of ( )B
iq j  are always less or equal to 90 .  

Inspection of equations (12) shows that the matrices 0 ( )W s  and ( )BW s  differ by 

a scalar multiplier / s . Since the multiplication of transfer matrices (for s const ) 

by a scalar multiplier does not change the eigenvectors and results in multiplication of 

all eigenvalues by the same multiplier [5], the canonical representation of the matrix 

0 ( )W s  (12) will have, allowing for (18), the form  

 0 1
0 ( ) ( ) { ( )} ( )iW s L s diag q s L s ,  (19)  

where 

 0 ( ) ( )B
i iq s q s

s


  ( 1,2,..., )i N   (20) 

are the CTFs of the transfer matrix 0 ( )W s  (12), which differ from the CTFs ( )B
iq s  of 

( )BW s  by the multiplier / s . Therefore, the CTFs 0 ( )iq s  have relative degree 1 or 2 

and are minimum-phase, even if the initial system ( )W s  (2) has RHP transmission 

zeros. Besides, the phases of 0 ( )iq j  are always less or equal to 180  (since the 

phase shift of the pure integrator in 0 ( )iq s  is constant and equal to 90 ), which 
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implies that the Nyquist plots of 0 ( )iq j  cannot encircle the critical point ( 1, 0)j , 

irrespectively of the value of the gain  . In turn, the root loci of the CTFs 0 ( )iq s (20) 

will tend to infinity, as  , along the negative real semi-axis or along the 

asymptotes that are parallel to the imaginary axis and lie in the left half plane. 

Summarizing, we have shown that the adaptive system in Figure 1 is stable for 

any strictly stable transfer matrix ( )W s  and any value of the adaptation gain  . That 

feature ensues from the fact that the transfer matrix ( )BW s  (12) of the equivalent 

MIMO system in Figures 2 and 3 always belongs to the class of PR matrices.  

Example. Consider a two-dimensional ( 2N  ) MIMO system with the transfer 

matrix 

 

500 18.75

( 2)( 5) ( 0.5)( 10)
( )

25 112.5

4 ( 1)( 2)

s s s s
W s

s s s

 
    
 
 
 

   

  (21)  

and the matrix ( ) [1/ (0.1 1)]Q s s I  . 

The matrices , ,A B  and C  of the state-space representation of that system are 

 

2 1 0 0 0 0 0

0 5 0 0 0 0 0

0 0 0.5 1 0 0 0

0 0 0 10 0 0 0

0 0 0 0 4 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 2

A

 
 


 
 
 

  
 
 

 
  

, 

0 0

16 0

0 0

0 4

4 0

0 0

0 8

B

 
 
 
 
 

  
 
 
 
 
 

,  (22)  

 
31.25 0 4.6875 0 0 0 0

0 0 0 0 6.25 14.0625 0
C

 
  
 

.  (23)  

The solution P  of the Lyapunov equation (6) for Q I  is 

 

0.25 0.0357 0 0 0 0 0

0.0357 0.1071 0 0 0 0 0

0 0 1.0000 0.0952 0 0 0

0 0 0.0952 0.0595 0 0 0

0 0 0 0 0.125 0 0

0 0 0 0 0 0.5000 0.1667

0 0 0 0 0 0.1667 0.3333

P

 
 
 
 
 

  
 
 
 
 
 

 .  (24) 
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The transfer matrix 0 ( )W s  (12) for the system in (21)-(23) and the matrix P  (24) 

is diagonal (see Appendix A) and equal to 

 0

272( 4.059)
0

( 5)( 4)
( )

80( 8.4)
0

( 10)( 2)

s

s s
W s

ss

s s

 
    
 
 

  

.  (25) 

 The Nyquist plots, as well as the root loci of the diagonal elements 0
11( )w s  and 

0
22 ( )w s  of the matrix 0 ( )W s  (25) are shown in Figure 5. As can be seen from the 

graphs in Figure 5, the two-dimensional adaptive system with the transfer matrix ( )W s  

(21) is stable for any value of the adaptation gain 0  .  

   

                                 (a)                                                              (b) 

Fig. 5. Nyquist plots (a) and root loci (b) of 
0
11( )w s  and 

0
22 ( )w s  

The results of simulation of the two-dimensional adaptive system with the help of 

Simulink for ( ) [0,0]Tr t  , sinusoidal disturbances with unit amplitudes in both 

channels and the period 6.28T s , where the oscillations in the second channel are 

shifted by 90  degrees, and three different values of the adaptation gain   ( 50  , 

250  , and 1000  ) , are shown in Figure 6. As can be seen from the transient 

responses, the behavior of the adaptive system agrees with the frequency and root 

characteristics of 0 ( )W s  (25). 

The examination of the root loci in Figure 5(b) and of the graphs in Figure 6 

allows one to reveal another specific feature of adaptive systems designed for rejection 

of external disturbances. From Figure 5(b), it is clear that if the relative degree of any 

of the CTFs 0
( )iq s  of the matrix 0 ( )W s  is 2, then, as the value of the adaptation gain   
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increases indefinitely, the corresponding root loci tend to infinity along the asymptotes 

that are parallel to the imaginary axis and lie in the left half plane. In other words, the 

imaginary parts and, consequently, the natural frequencies of the poles of the closed-

loop system with the transfer matrix ( )F s  in Figure 4 increase as the gain   

increases. However, these poles do not have the opportunity to cross the imaginary 

axis to the right-half plane. Because the estimation loop is decoupled from the control 

loop, the external disturbance and noise cannot affect this pattern of the poles and 

have no opportunity to lead to instability. 

     
                          (a) Control signal ( )u t                              (b) Output signal ( )y t  

     
                 (c) Control signal ( )u t                                     (d) Output signal ( )y t  

    
                 (e) Control signal ( )u t                               (f) Output signal ( )y t   

Fig. 6. Simulation results: (a),(b) 50  ; (c),(d) 250  ; (e),(f) 1000   
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Note now that the output signal ( )y t  of the adaptive system represents, since 

( ) 0r t  , an undesirable (or error) motion, which is due to external disturbances. In this 

respect, as can be seen from Figure 6, the increase in   brings to smaller deviations of 

( )y t  from zero, i.e. to the higher performance of the 1L  adaptive system (the absolute 

maximum deviation of the output signals for 1000   is more than 20 times as small 

as for 50  ). The further increase in   will result in smaller errors tending to zero as 

 . 

Appendix A. The state vector ( )x t  in (1) can be chosen as a combination of state 

spaces ( )ijx t  of all transfer functions ( )ijw s  forming the transfer matrix ( ) { ( )}ijW s w s  

(2). Let us assume that each scalar transfer function ( )ijw s  has the state-space 

representation 

 ( ) ( ) ( ), ( ) ( ),T
ij ij ij ij j ij ij ijx t A x t b u t y t c x t    ( , 1,2,..., )i j N ,  (A.1) 

where the orders of the vectors ( )ijx t  are ijn , the matrices ijA  are of size ij ijn n , and 

the sizes of column vectors ijb  and ijc  are 1ijn  . The system matrix A  in that case 

has a block-diagonal structure with the diagonal matrix blocks ijA , i.e. { }ijA diag A , 

and the positive definite matrix Q  ( 0TQ Q  ) in the Lyapunov equation (6) can be 

chosen block-diagonal and matching the structure of the matrix A , i.e. { }ijQ diag Q , 

where 0T
ij ijQ Q   ( , 1,2,...,i j N ). 

Under such conditions, the Lyapunov equation (6) reduces to the following set of 
2N  equations  

 ( , 1,2,..., ).T
ij ij ij ij ijA P P A Q i j N      (A.2) 

It can be shown that, in such a case, the matrix 0 ( )W s  (12) is diagonal:  

  0
0 ( ) ( )kkW s diag w s ,  (A3) 

with the diagonal elements 

 0 1

1

( ) ( ) ( 1,2,..., )

N
T

kk ik ik ik ik

i

w s b P sI A b k N
s






   .  (A.4) 

Correspondingly, the transfer matrix ( )F s  (13) also takes on the diagonal form: 

 
0

0

( )
( )

1 ( )

kk

kk

w s
F s diag

w s


  
  

  

.  (A.5) 
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and the characteristic equation (14) 

  0 0

1

det ( ) 1 ( ) 0

N

kk kk

k

I diag w s w s



      
      (A.6) 

splits up into N  “one-dimensional” equations: 

 1

1

1 ( ) 0 ( 1,2,..., ).

N
T
ik ik ik ik

i

b P sI A b k N
s






      (A.7)  

 These equations allow to investigate the stability of the N -dimensional adaptive 

system in Figure 1 on the basis of standard methods of classical feedback control. 
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ՀՈՎԱԿԻՄՅԱՆ 

ԲԱԶՄԱՉԱՓ ԿԱՌԱՎԱՐՄԱՆ ՀԱՄԱԿԱՐԳԵՐՈՒՄ L1 ՀԱՐՄԱՐՎՈՂ ԿԱՌԱՎԱՐՄԱՆ 

ԿԻՐԱՌՈՒԹՅԱՆ ՎԵՐԱԲԵՐՅԱԼ 

Մաս 1. Ընդհանուր տեսքի բազմաչափ համակարգեր 

Դիտարկված են որոշ հարցեր, որոնք առնչվում են արտաքին վրդովմունքները չեզոքաց-

նելու համար նախատեսված հարմարվող քառակուսի (այսինքն` մուտքերի և ելքերի միևնույն 

քանակն ունեցող) բազմաչափ կառավարման համակարգերի կայունությանը: Հիմնվելով դրա-

կան իրական փոխանցման մատրիցների հատկությունների վրա՝ ցույց է տրված, որ այդպիսի 

համակարգերը կայուն են հարմարման գործակցի կամայական մեծ արժեքների, նույնիսկ 

աջակողմյան զրոներով համակարգերի դեպքում: 

Առանցքային բառեր. կառավարման բազմաչափ համակարգ, հարմարվող կառավարում, 

չափանմուշային մոդել, կայունություն, դրական իրական համակարգ:  
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Т.Н. ОГАННИСЯН, Н.А. ВАРДАНЯН, Е.Р. ХАРИСОВ, О.Н. ГАСПАРЯН,  

Н.Г. ОВАКИМЯН 

О ПРИМЕНЕНИИ L1 АДАПТИВНОГО УПРАВЛЕНИЯ В МНОГОМЕРНЫХ 

СИСТЕМАХ УПРАВЛЕНИЯ 

Часть 1. Многомерные системы общего вида 

Рассмотрены некоторые вопросы, связанные с устойчивостью адаптивных квадрат-

ных (т.е. имеющих равное число входов и выходов) многомерных систем управления, 

предназначенных для компенсации внешних возмущений. Основываясь на свойствах по-

ложительных действительных передаточных матриц, показано, что подобные системы 

устойчивы при произвольно больших значениях коэффициента адаптации, даже в случае 

систем с правосторонними нулями.  

Ключевые слова: многомерная система управления, адаптивное управление, эталон-

ная модель, устойчивость, положительная действительная система.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




