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ON APPLICATION OF L1 ADAPTIVE CONTROL TO MULTIVARIABLE
CONTROL SYSTEMS

Part 1. General-Type Multivariable Systems

Some issues concerning the stability of multivariable square (i.e. having the same
number of inputs and outputs) adaptive control systems for rejection of external
disturbances are discussed. Based on the properties of positive real transfer matrices, it
is shown that such systems are stable for arbitrary large values of the adaptation gain,
even in the case of systems with right half plane zeros.
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The paper examines application of L; adaptive control to multivariable control
systems [1]. L; adaptive control was developed to address some of the deficiencies
apparent in Model Reference Adaptive Control (MRAC), as loss of robustness in the
presence of fast adaptation [2, 3].The first part of the paper is devoted to application of
L, adaptive control to general-type square, i.e. having the same number of inputs and
outputs, Multiple-Input Multiple-Output (MIMO) control systems [4, 5], subjected to
external disturbances. Some essential dynamic features of that class of adaptive
systems are specified and discussed. A special class of the so-called uniform MIMO
systems [5] will be discussed in Part 2.

General-Type MIMO Systems. As a basic model of linear N -dimensional, i.e.
having N inputs and N outputs, MIMO systems with constant parameters let us
consider the system that can be expressed in the following standard state-space form:

%(t) = AX(t) + Bu(t),
y(t) =Cx(t),

where x(t) is an n,-dimensional state vector; u(t) and y(t) are N -dimensional
vectors of inputs and outputs; A, B, C are constant matrices of appropriate sizes. In

what follows, we will assume that system completely controllable and observable,
strictly stable (i.e. the matrix A is Hurwitz), and, maybe, with Right Half Plane
(RHP) transmission zeros.

)
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The MIMO system (1) can also be described in the operator form by the N x N
transfer function matrix W (s) ={w;(s)}, where w;(s) (i,j=12,..,N) are scalar
strictly proper rational functions in complex variable s. The elements w;j(s) on the
principal diagonal of W(s) are the transfer functions of separate (or direct) channels,
and the non-diagonal elements wj(s) (i= j) are the transfer functions of cross-

connections from the jth channel to the i th.
Generally, the transfer matrix W (s) is connected with the matrices A, B, C in
(1) by the formula [4]

W(s)=C(sl —A)'B, (2)

where | is an identity matrix.

Square MIMO systems can be divided into classes (or types) depending on their
structural properties. In this respect, if no conditions are imposed on the form of the
transfer matrix W(s) (2), we will refer to that system as a general-type (or just

general) MIMO system [5].
Disturbance Rejection by Means of Adaptive Control. In this section, we will
adhere to the L; architecture with state predictor and low-pass matrix filter presented

in [1]. Let an N -dimensional strictly stable MIMO system be described in state-space
by the following equations:
X(t) = Ax(t) + B(u(t) + o(t)),  x(0) =X,
y(t) =Cx(t),

where o(t) is an N -dimensional time-dependent vector of unknown externally
bounded (| o(t)| < Ap) disturbances that should be rejected by adaptive control, and

all other matrices and vectors have the dimensions as in (1).
The state predictor has the same structure as the system in (3):

3)

X(t) = AX(t) + Bu(t) + 5(1)),  %(0) =%,
y(t) =Cx(t),
and the only difference is that the unknown disturbance vector o (t) is replaced by its

estimate & (t) .
The disturbance rejection process is governed by the following adaptation law [1]

(4)

S6(t)=TB" P&(t), (5)

where &(t) = x(t) — X(t) is the prediction error, P (P=P" >0) is the solution of the
Lyapunov equation
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ATP+PA=-Q (6)

for an arbitrary symmetric positive definite matrix Q (Q =Q' >0), and the positive

scalar T" is called the adaptation gain [1].
The control signal u(t) of the system is given in operator form as

u(s) =Q(s)(kgr(s) —5(s)), (7)

where r(s) is an N -dimensional reference signal, ky isan N x N static (gain) matrix,

and Q(s) is the transfer matrix of a low-pass filter. In the simplest case, the matrix
Q(s) is chosen in the form

Q(s)=a(s)!, (8)
where q(s) is a strictly proper scalar transfer function ,usually, satisfying the DC gain

condition g(0) = 1. Its state-space realization assumes zero initialization.

The block diagram of the control system with the state predictor (4), the adaptive
disturbance rejection law (5), and control signal u(s) (7), is shown in Figure 1.

a(r)

r(r) u(r) x(1) »()
1 k%, 0O(s) x=Ax+ B(u+o)

X=A%+ B(u+6)

() =x(1)—2(1)

a(r)

Fig. 1. Block diagram of the adaptive MIMO control system with the state predictor and the
adaptive disturbance rejection law (5)

Thus, the architecture of the discussed adaptive control system represents a linear
MIMO system with integral feedback and therefore can be investigated by the
methods and approaches of linear multivariable feedback control [4, 5]. It should be
noted that due to the adopted L, scheme with the state predictor, the transfer matrix

Q(s) (8) in the control signal u(s) (7) is not present in the disturbance rejection law
(5). Let us consider in more detail the structure and performance characteristics of the
adaptive system in Figure 1. Toward that end, we introduce the n, x N transfer matrix

W, (s)=(sl —A)'B ©)
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relating the input to the system (1) with the state vector x(t), and the corresponding

(the same) matrix V\A/X (s) =W, (s) for the state predictor. Then, the block diagram in
Figure 1 can be recast to an equivalent form in Figure 2.

ol(r)

I

. =
B'PW (s)

I s

1

I

!

|

Fig. 2. Equivalent block diagram of the adaptive system in Fig. 1

Based on the block diagram in Figure 2, it is easy to derive the following matrix
equations of the adaptive system with the state predictor:

Y(5) = CW, (S)QUKq(5) + CW, (5)] 1 = Q)1 +Wp(S)] Wy (s) |o(s) . (10)
or, since CW () =W(s) [see equations (2) and (9)],
Y(S) =W(S)QUks T(5) +W(S)| 1 Q)1 +Wo(9)] " Wo(s) [oe) . (1)
where
Wp() = W 5): We (5) =BT PW,(5). (12)

As can be seen from (10), the output signal of the system y(s) consists of two
components generated, respectively, by the input reference signal r(s) and by the
disturbance o(s). Since the adaptive MIMO system in Figures 1 and 2 is linear, the

superposition principle holds and, according to the equation (10), the dynamics of the
system can be represented by two independent block diagrams in Figures 3 and 4.

Let us proceed to the stability analysis of the adaptive system in Figure 1. From
the block diagram in Figure 3, it is evident that it represents, since both transfer
matrices Q(s) and W (s) are assumed stable, a stable open-loop MIMO system, which

does not depend on the adaptation gain I". Therefore, no problem with stability can
arise here.
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r(1) ()

[ k, 0(s) w(s) >

Fig. 3. Equivalent block diagram of the adaptive system with respect to the input reference
signal r(t)

al(r)

— rB’PH'I(x)
A

Fig. 4. Equivalent block diagram of the adaptive system with respect to the disturbance o (t)

On the contrary, the block diagram in Figure 4 contains a negative feedback loop
with the open-loop transfer matrix W, (s) (12) and the following closed-loop transfer
matrix:

-1
Ry (5) =[1 +Wo ()] *Wo(s) {I {WB (s)} EWB (s). (13)

The characteristic equation of that system is
det[ | +W0(s)]:det[l +£WB(5)} 0, (14)
S

and, clearly, the poles of the adaptive system depend on the adaptation gain I", which
can be considered as the gain of the open-loop transfer matrix W, (s) (12).

Note now that, allowing for (9), the system with the N x N transfer matrix
W;g (s) in (12) can be written in state-space form as

%(t) = AX(t) + Bu(t),

15
Yo (0) = Cox(t) (15)

where
C,=B"P. (16)

Taking into account the form of the matrix C, (16) and recalling the Kalman-
Yakubovich lemma [1-3, 6], we come to a conclusion that Wg(s) belongs to the so-
called Positive Real (PR) transfer matrices for which the Hermitian matrix
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ReWs (jo) =2 Wa (o) + W (~jo) | a7)

is positive semi-definite (for brevity we shall write ReWg (jw) >0) for all real w, for
which je is not a pole of any element of Wy (s) .

To get some additional insight in that issue, we invoke the characteristic transfer
functions method [4, 5], on the basis of which the transfer matrix Wg(s) can be
represented in the following canonical form:

Wi (s) = L(s)diag{a (S)}LX(s), (18)

where the functions qu (s) (i=12,...,N) are called Characteristic Transfer Functions
(CTF) (we will assume them distinct), and the modal matrix L(s) is composed of the
linearly independent eigenvectors [;(s) of the matrix Wg(s). As shown in [5], the

condition ReWg(jw) >0 implies that all scalar CTFs qf(s) are also PR, that is

Re[qgP (jew)] =0 for all real . This also means that all g (s) are strictly stable and
minimum-phase, have relative degree (the excess of number of poles over the number

of zeros) 0 or 1, and the Nyquist plots of g°(jw) lie entirely in the right half complex

plane or, equivalently, the phases of q®(jw) are always less or equal to +90°.
Inspection of equations (12) shows that the matrices W, (s) and Wg(s) differ by

a scalar multiplier T"/s. Since the multiplication of transfer matrices (for s=const)
by a scalar multiplier does not change the eigenvectors and results in multiplication of
all eigenvalues by the same multiplier [5], the canonical representation of the matrix
W, (s) (12) will have, allowing for (18), the form

Wo (s) = L(s) diag{a; (s)}L(s), (19)

where
qio(s):gqu(s) (i=12,..,N) (20)

are the CTFs of the transfer matrix W, (s) (12), which differ from the CTFs g (s) of

Wg (s) by the multiplier '/ s . Therefore, the CTFs g’ (s) have relative degree 1 or 2
and are minimum-phase, even if the initial system W(s) (2) has RHP transmission

zeros. Besides, the phases of g (jw) are always less or equal to +180° (since the

phase shift of the pure integrator in g’(s) is constant and equal to +90°), which
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implies that the Nyquist plots of g(jw) cannot encircle the critical point (-1, jO),

irrespectively of the value of the gain I". In turn, the root loci of the CTFs g’ (s) (20)
will tend to infinity, as T'—>oo, along the negative real semi-axis or along the
asymptotes that are parallel to the imaginary axis and lie in the left half plane.
Summarizing, we have shown that the adaptive system in Figure 1 is stable for
any strictly stable transfer matrix W(s) and any value of the adaptation gain I". That

feature ensues from the fact that the transfer matrix Wg(s) (12) of the equivalent

MIMO system in Figures 2 and 3 always belongs to the class of PR matrices.
Example. Consider a two-dimensional (N =2) MIMO system with the transfer
matrix

500 18.75

W(s) = (s+2)(s+5) (s+0.5)(s+10) 21)
25 112.5
s+4 (s+1)(s+2)

and the matrix Q(s) =[1/(0.1s+1)]I .
The matrices A, B, and C of the state-space representation of that system are

-2 1 0 0 0 0 O 0 0
0-5 0 0 0 0 O 16 0
0 0-05 1 0 0 O 0 0
A=l 0 0 0 -10 0 0 O |,B=|0 4], (22)
00 0 0-4 0 0 4 0
00 0 0 0-1 1 0 0
|00 0 0 0 0-2] 10 8]
C{?,l.zs 0 46875 0 0 0 o] 23)
0 0 0 0 6.25 14.0625 0
The solution P of the Lyapunov equation (6) for Q=1 is
[0.25  0.0357 0 0 0 0 0 ]
0.0357 0.1071 0 0 0 0 0
0 0 1.0000 0.0952 0 0 0
P=| 0 0 00952 0059 0 0 0 (24)
0 0 0 0 0125 0 0
0 0 0 0 0 05000 0.1667
| 0 0 0 0 0 0.1667 0.3333 |
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The transfer matrix Wy (s) (12) for the system in (21)-(23) and the matrix P (24)
is diagonal (see Appendix A) and equal to

272(s +4.059)

0
_T| (s+5)(s+4)
Wo(s) = s 0 80(s +8.4) (25)
(s+10)(s+2)

The Nyquist plots, as well as the root loci of the diagonal elements w?;(s) and

WSZ (s) of the matrix W,(s) (25) are shown in Figure 5. As can be seen from the
graphs in Figure 5, the two-dimensional adaptive system with the transfer matrix W (s)
(21) is stable for any value of the adaptation gain T'>0.

10 ] 15

Imaginary Axis
Imaginary Axis

-10 ] -15

T 0 5 10 15 20 -10 0 10 20
Real Axis Real Axis

(@) (b)
Fig. 5. Nyquist plots (a) and root loci (b) of wl(s) and w3, (s)

The results of simulation of the two-dimensional adaptive system with the help of
Simulink for r(t)=[0,0]", sinusoidal disturbances with unit amplitudes in both
channels and the period T =6.28s, where the oscillations in the second channel are
shifted by +90 degrees, and three different values of the adaptation gain ' (T" =50,
I' =250, and T"=1000) , are shown in Figure 6. As can be seen from the transient

responses, the behavior of the adaptive system agrees with the frequency and root
characteristics of Wy(s) (25).

The examination of the root loci in Figure 5(b) and of the graphs in Figure 6
allows one to reveal another specific feature of adaptive systems designed for rejection
of external disturbances. From Figure 5(b), it is clear that if the relative degree of any

of the CTFs g/ (s) of the matrix W,(s) is 2, then, as the value of the adaptation gain T
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increases indefinitely, the corresponding root loci tend to infinity along the asymptotes
that are parallel to the imaginary axis and lie in the left half plane. In other words, the
imaginary parts and, consequently, the natural frequencies of the poles of the closed-
loop system with the transfer matrix F.(s) in Figure 4 increase as the gain T

increases. However, these poles do not have the opportunity to cross the imaginary
axis to the right-half plane. Because the estimation loop is decoupled from the control
loop, the external disturbance and noise cannot affect this pattern of the poles and
have no opportunity to lead to instability.

6 8 10 ) 2 4 6 8 10

Time (s)

(a) Control signal u(t) (b) Output signal y(t)

) 2 4
Time (s)

2 2 4 6 8 10 02 p) 4 6 8 10
Time (s) Time (s)
(c) Control signal u(t) (d) Output signal y(t)
0.3
0.2
0.1
0
-0.1
0 2 4 6 8 10 gl 2 4 6 8 10
Time (s) Time (s)
(e) Control signal u(t) (f) Output signal y(t)

Fig. 6. Simulation results: (a),(b) T'=50; (c),(d) T =250; (e),(f) I =1000
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Note now that the output signal y(t) of the adaptive system represents, since
r(t) =0, an undesirable (or error) motion, which is due to external disturbances. In this

respect, as can be seen from Figure 6, the increase in T' brings to smaller deviations of
y(t) from zero, i.e. to the higher performance of the L, adaptive system (the absolute

maximum deviation of the output signals for r=1000 is more than 20 times as small
as for r=50). The further increase in T will result in smaller errors tending to zero as
I'>ow.

Appendix A. The state vector x(t) in (1) can be chosen as a combination of state

spaces x; (t) of all transfer functions w;(s) forming the transfer matrix W (s) ={w (s)}
(2). Let us assume that each scalar transfer function w,(s) has the state-space
representation

% (1) = Ay () +byu; (0, v O =cixg @), (i=12...N), (A1)

where the orders of the vectors x;(t) are n;, the matrices A; are of size n; xn;, and

the sizes of column vectors b; and c; are n;x1. The system matrix A in that case
has a block-diagonal structure with the diagonal matrix blocks A;, i.e. A=diag{A;},

and the positive definite matrix Q (Q=Q" >0) in the Lyapunov equation (6) can be
chosen block-diagonal and matching the structure of the matrix A, i.e. Q =diag{Q;},

where Q; =Qj >0 (i,j=12...,N).

Under such conditions, the Lyapunov equation (6) reduces to the following set of
N? equations

AR +PRiA =-Q; (,J=12..,N). (A2)
It can be shown that, in such a case, the matrix W, (s) (12) is diagonal:
Wy (s) = diag {wy (5)} , (A3)

with the diagonal elements
Iy _
W (9) = D BRR(Sl A0 By (k=12 N). (A4)
i=1

Correspondingly, the transfer matrix F;(s) (13) also takes on the diagonal form:

Fs(s) =diag {M} : (A.5)

1+ W (s)
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and the characteristic equation (14)

det[l + diag {Wlfk (s)}} = ﬁ[l+ W, (s)] =0 (A.6)

k=1

splits up into N “one-dimensional” equations:
T N
1+;Zbﬁ<Pik(sl ~A) b, =0 (k=12,..,N). (A7)
i-1

These equations allow to investigate the stability of the N -dimensional adaptive
system in Figure 1 on the basis of standard methods of classical feedback control.
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SL. 20Y9ZULLPUSUL, L.2. YUMTULSUL, 6.2 ULPUNY, O. L. QUUAULN3UL, L.A.
2N9UuUbhU3UL

LULQUUUQ YWUNUYUNUTUL ZUULTYU QB NRU L1 ZULMT U 901 9QULUd UL T UL
YprUNRESUL YGIULGSUL

Uuwu 1. Cunhwimp wbuph puquuswih hwdwlupgbp

TYhunwplyws ki npnp hwpgtp, npnip wntyynid B wipunwpht Ypnnyuniupubpp skqnpug-
ubnt hwdwp twhpwnbudws hwpdwpynn punwlniuh (wyuhtipt” dnunpbph b Gptph dhliing
pwliuljt niikgnn) puquuswth junwjupdwi hudwljupgbph Juyniinipyup: Zhdudbng npu-
Jwl hpujwi hnjuwbgdwi dwnphgtph hunynpmnibbtph Jpu’ gnyg Eupgws, np wypyhuh
hwdwlwpgbpp juynit o hwpdwpdwt gnpswiligh judugyulwh dks wpdbpubph, tnyuhuly
wowlnnujut qpnutpny hwdwlwpghph nhwpnud:

Unwigpughll pupkp. junujupdw puqdusuth hwdwlupg, hwpdwpynn junwdwpnd,
surthwidnipuyhtt Unnly, Juyniinipnil, gpuljut hpuwh hwdwlupg:
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T.H. OTAHHUCSAH, H A. BAPIAHSH, E.P. XAPUCOB, O.H. 'ACITIAPSAH,
H.I'. OBAKUMSH

O IPUMEHEHMUHU L1 AJAIITUBHOI'O YIIPABJIEHHWS B MHOTOMEPHBIX
CUCTEMAX YIIPABJIEHUS

Yacrs 1. MHOFOMepHLIe CUCTEMBbI 06mer0 BHA

PaccMOTpeHBI HEKOTOpBIE BOTIPOCHI, CBA3aHHBIE C YCTOWYNBOCTBIO aJalTHBHBIX KBaIpat-
HBIX (T.€. IMEIOIIUX PAaBHOE YHCIIO BXOZOB M BBIXOJIOB) MHOTOMEPHBIX CHCTEM YIpaBJICHHSA,
MpeIHa3HaYeHHBIX s KOMIICHCAI[MH BHEIIHUX BO3MYyIIeHUH. OCHOBBIBasICh HAa CBONCTBAX I0-
JIOXKUTENBHBIX NEHCTBUTENBHBIX MEPEAaTOYHBIX MaTpHll, MOKa3aHO, YTO MOJOOHBIE CHCTEMBI
YCTOWYHBBI TIPH NTPOM3BOJIEHO OOJBIINX 3HAYCHUSIX KO (UITEHTa alanTaluy, JaxKe B cirydae
CHCTEM C IIPAaBOCTOPOHHUMH HYJISIMHU.

Kniouesvle cnosa: MHOTOMEpHAs CUCTEMa YIPABJICHUS, aJallTUBHOE YIIPaBJICHUE, ITAIOH-
Has MOZIENb, YCTOMIMBOCTB, MOJI0XKUTEIbHAS NEHCTBUTEIbHAS CHCTEMA.
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