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Abstract. The paper considers the Riemann boundary value problem in the half-plane in the
space LP(p), where weight function p(z) has infinite number of zeros. A necessary and sufficient
condition is obtained for the normal solvability and Noetherianness of the considered problem. If

the problem is solvable, solutions are represented in an explicit form.
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1. INTRODUCTION

Let II* be the upper and lower half-planes of the complex plane C, and let A

be the class of functions ® analytic in IIT UTI~ satisfying the condition
|®(2)] < CJ2]™, [Imz] > yo >0,

where ng is a natural number, yo > 0 is arbitrary and C' is a constant, possibly

depending on yo. By LP(p),1 < p < co we define the following space

“+oo
20 = {7+ 15l i= [ 1@ pla)dn < oo},
where
_ ad T — T |Yk
@ o) = T3
at that

[ee]
Zak<oo, and O<ap<l1l,k=1,2,..
k=1

We investigate the Riemann boundary value problem in the half-plane in the space

L?(p),1 < p < oo in the following setting:
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Problem R,. Let f € LP(p),1 < p < oo. Determine an analytic in IIT U II~
function ® € A to satisfy the boundary condition:

(1.2) lim @ (z +iy) — a(x)® (z —iy) — f(@)|[zrpy =0, (1 < p < o00),

where p(x) is defined by (1.1 ., x) # 0 is an arbitrary function from the class
C%(—00,+00),0 > 0 and ®* are the contractions of function ® on II* respectively.

The similar problem in C(p) (the class of functions f continuous on the real axis
with weight p) was investigated in the paper [I9]. In that case it is shown that the
homogeneous problem has one linearly independent solution. Note that a similar
homogeneous problem in L!(p) has an infinite number of linearly independent
solutions [20].

By T, we denote
T, = {mk g > %}
In this work, it is established that in the case T, = ), the homogeneous problem
R, does not have a solution different from zero. When T}, # () the homogeneous
problem R, has a finite number of linearly independent solutions.
2. PRELIMINARY RESULTS

Let k = inda(t), t € (—o0, +00),

1 [T>=1 t)dt
SJF(z):exp{%/ m}, zeIIT,

(2.1) e 72
. I s A 1 [T Inay(t)dt _
5= (35) “p{%/_oo oL h sel
where

t4+i\"

ar(t) = (t_i) a(t),  inday(t) = 0.

In what follows, we assume that the sequence {z}$° has a finite limit xg.

Lemma 2.1. Let the sequence {x}3° satisfy the following conditions:

(2.2) Zak In|zg — zx| > —o0,
k=1
(2.3) ok — x5 > clag —xol,  JFk

for some fized ¢ > 0. Then
infpp, =po >0, m=12 ..

where
H ’xm — T |¢
T +1
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Proof. From condition (2.3) we have

Tj — Tp |¥* ap | To — Tk Xk

T;+1 T+

Tj— Tk ¥ 0— Tk |“
H‘JJJ—FZ >}}_[1ak]:[‘xj+i

According to the condltlon ) there exists § > 0 such that infp,, = § > 0,

and

m=1,2,.... ([l
Let us denote
s T — X;|%
(2.4) si(@) =] ‘ — iJ
Jj#k
and
§(z) = Ot1(z) — on(x), T € [Tp, Thg1)-

Here we state Lemmas [2.2| and which were proved in [I9].
Lemma 2.2. There exist x), € [T, Try1), k= 1,2,... such that 6(z},) = 0.

Let X7 = (—oo,2}) and Xy = [2},_,,2}), k = 2,3,... . It is clear that X N
Xpp1 =0, k=1,2,3,....

Lemma 2.3. Let the sequence of points {xy}5° satisfy either conditions (2.2)) and
(2.3). Then there exists 6 > 0 such that for any k =1,2,...:

inf Jk(x) > 6> 0.
zeX}

Denote 6(z) = {8x(2), x € X3}, k = 1,2, ... From Lemmas andit follows
that function d(z) is continuous, and inf §(z) > 0, 2 € (—o0, 00).

Here we consider two cases:
1. We assume that T, = ). Let f(z) € LP(p). Define the function ®(z) as follows

z) [T
(2.5) (z) = *Zsm)[ 5% z e I+,

Then ®(z) € HP(p) (see [], [5]).
2. Counsider T}, # 0. Define the function ®;(z) as follows

S [ - d
27m(mk—z) Xy SJr(t)(t_Z) ) k—1,2,

Theorem 2.1. The estimate
12} (= + iy) — a(2) @y (z = iY)l|o(p) < Cllfllr(p)
where the constant C' is independent of y and k, is true. The limit relation
. + . o —_ s o —
i [ (2 + iy) — a(@)®} (2 = iy) = F@)l| o) = 0
5
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also holds.

Proof: Consider
of (z +iy) — a(x)®y (z —iy) =

B Sz + iy) f) a

C2mi(my —x —iy) Jx, ST()t—x—iy

B a(x)S(xz — iy) dt
2mi(xy — x + 1y) S+ Ot—x+iy

- Il(fvxay) +12(f’x’y)’

where
= LS [ S0
" mag—x —iy Jx, STt —2)*+y?)’
yT ;) f@®)(xg —t)dt
L(f,.y) 2mi / ST)(t —z+iy)’
where
T(2:y) = S(:chiy? B a(a:)S({vf.iy).
Ty — T — Y T —1+1y
As
/JrOQ nml ol < const
oo A ok —x =iyl ((E—2)* +y?) T ’
then

I (fy 2 )2y =
_ /+°° |z, — x| yldz| / |f(O)]|x — t]|dE|
- 1
Xk

coo (LfzD)|z+ilor (zn — 2 —iy) Jx, ((E—2)*+y?)

+oo

. — ] yldal
< Cull o) / < M| fllz1 0,

—oo (L [a))¥|z il (2 — 2 —dy)
where M] is a constant does not depend on y and k.

So
I (fs )Ly < Mill il
Similarly we get
112 (f 2,9l < MY 11l
where f € L™ (p). By applying Riesz-Thorin interpolation theorem [3], we obtain
(2.7) I (f 2, ) L) < MallfllLegpy, 1<p < oo.

As St is bounded, then using the fact (Lemma 3 in [16]) that for sufficiently large

R at |z| > R the following estimate we have
(2.8) ST (2 +iy) — a(2)S™ (z — iy)| < C2|S™ (z + iy)|
6

)

Yy
|z + ]



ON A RIEMANN BOUNDARY VALUE PROBLEM ...

where Cy > (7 > 0 some constant independent of y, we get

Cy
T(x)] < m,
where C' > maxy, {x}} is a constant.
Since . . ;
Tp — x|k X
[m ||;+z|‘|9‘k (zs _yx)z_f_yg) < const,
then

HIQ(fvmvy)”Ll(p)
<, /+°° |z — x| yldz| / |f(t)||xx — t]|dE]
T e e (ke —2)2 +y?) Jx, (-2 4dy)l

R yldz| /
< C(2||f||L1(p) /_OO lz +ior ((zr — 2)2 + 32) < Mz”fHLl(p)’

where Mé is a constant does not depend on y and k.
So

1L2(fs 2, 9oy < Mol fllLr(p)-
Similarly we get
I 12(f, 2, y) | oo oy < Mo || fll oo ()

where f € L*(p). By applying Riesz-Thorin interpolation theorem, we get
(2.9) I12(f, 2, y)|lLe(p) < M| fllLe(p), 1 <p < oo.
Hence, from and , we obtain

12 (2 + iy) — (@)@ (& = iy)l| o) < M fllzep)

where 1 < p < oo and M = max{Mi, M>} is a constant independent of y and k.
The estimate of the theorem is proved.
Now let’s prove the second statement of the theorem. Let f,(x) € C® be a

sequence of finite functions such that

(2.10) nlggonn(x)*f(z)”Lp(p) =0,1<p<oo.

For any n we set

~ S(z) oo fu(t) (zp — t)dt N
D, (z) = , .
(2) = St — 2 /, ST —2) Z€
and from Sokhotski-Plemelj formula (see [2]), we get
. 4+ . _ x o _ —
@) i 8 i)~ a()@ (i)~ falo)|

Using the estimate of this theorem, we obtain

Jim | of (o +iy) — a@)®; (2 = iy) = )],
7
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<[+ i) — 0@ @ i)~ 2@, @) = T @
(@)~ #f @ i) —ale) (B i)~ @@=
5t i) — al@) B (@ = i) = @) 2 al@) = @
Taking into account and (2.11]), we conclude

Jim (| @ @+ iy) = a(@) @ (@ = iy) = [@)] ) =0

<

Theorem is proved. O

3. THE MAIN RESULT

3.1. The problem R, for T, = (.

Theorem 3.1. Let T, = (. Then the homogeneous problem R,, (f = 0) does not

have solution different from zero.

Theorem 3.2. Let f € LP(p) and T, = 0. Also let the sequence of points {xy}7°
satisfy the conditions , . Then the following assertions hold:
a) If k > 0, then the general solution of the inhomogeneous Problem R, may be
represented as

z) [t t)dt
(3.1) O(z) = 5251'2) /_OO S‘*‘{t()()t—z)’ zeTUIl.
b) If k < 0, then the inhomogeneous Problem R, is solvable if and only if the

function f satisfies the conditions
/ @) at

oo ST() (t+14) ’

The general solution can be represented by .

§=1,2, .,k — 1.

Proof. The proof of the point a) follows from Lemma and Theorem
b) Let £ < 0. Denote

(3-2) (2 +iy) — a(2)®” (v —iy) = fy(@).
N S*(x)
Taking into account that a(x) = (@)’ we get
oty @iy _ f)
S+ (x) 5 (x) S+(x)
Denoting
DT (z +iy) P (z—iy) _
@;(z)—w7zeﬂ+, <I>y(z)—5_7(z)7 cIl—,
we get
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In the case k < 0, the function @ (z) has zero of order |k — 1| at the point of
z = —i. Consequently, f(x) satisfies the conditions

/+°° f@t) dt

oo ST() (t+14)

Theorem 3.2 is proved. O

=0, j=1,2,..,—k—1.

3.2. The problem R, for T, # (.

Theorem 3.3. Let T, # (). Then the general solution of the homogeneous problem
R, (f =0), can be represented as:

Ay,
T — 2

where { Ay} € 1P.

Proof. It is clear that the number of points xj, € T}, is finite and by n,, we denote
those points. It is sufficient to establish that the function ry(z) = S(2)(z) — 2)~*
does not satisfy condition (1.2) if z ¢ T},. Indeed

k(@ +y) — ri(@ —iy)| = [Ri(2,y) + Ra(z,9)],

where
~ (zp —2) (ST (2 +iy) —a(z)S™ (= —iy))
Ryi(z,y) = (25 — )2 + y2 )
iy (ST (x +iy) + a(x)S™ (x —1y))
RQ(xay) - (xk — $)2 T y2 .

Using inequality (2.8)), we get

| R (,y) ||Lp(p)

1
+o0 _ plp(ran)g P
< Cry? / ; L fo[ i P <C.
o AL (@ - 27 4 )

On the other hand
IRa(w )l 2 Co(2 [

o—apl<s ((zx — )2 +12)"
where C does not depend on 6. So ||rg(x + iy) — 7% (2 — iy)||Lr(p) > M > 0. O

yP|xg — x|PHdx

)%>Ol>0.

Theorem 3.4. Let f € LP(p) and T, # 0. Also let the sequence of points {xy}7°
satisfy conditions (2.2)), (2.3) and k > 0. Then the general solution of the inhomogeneous
Problem R, may be represented as ®(z) = Po(z) + P1(2) where ®¢ is the general

solution of the homogeneous problem and

(3.3) B1(2) = > Bu(2),
k=1
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where
S(z) f@&)(x — t)dt

= k=1,2
2mi(x, — 2) Jx, (t—2)

B — 1,4,...

Py ()
Proof. Since k > 0, then from Theorem [2.1] we have

197 (x + iy) — a(x)®] (x —iy)llLr () < ClfllLr(p),

where the constant C' is independent on y and k. Therefore, similar to the proof of

the second part of Theorem 2.1 we obtain
. + . - _ o - _
Jm 97 (= + i) — a(@)@y (@ —y) — f(@)llLep) = 0.

Taking into account Theorem we get the proof of the theorem. O

Theorem 3.5. Let f € LP(p) and T, # 0. Also let the sequence of points {xy}7°
satisfy conditions (2.2), (2.3) and & < 0. Then the general solution of the in-
homogeneous problem R, may be represented as ®(z) = ®o(z)+P1(2), where 1(z)

is defined by (3.3) and
Ay

)
T — 2

Dy(2) = S(2) Z

ZEkETp
here {Ar}2, € I, A1, A_.io, ... are arbitrary complex numbers, and the numbers
Ay, Ao, ..., A, are uniquely defined by the system of linear equations
oo A [e'e)
D k=1 (;ck:-i) = *ijl Iia
o0 A o0
Yokt Tt = — 2og=1 (21 + 112)
(3-4) Yot Gt = — g1 Us1 + 212 + Iis) ;

00 A _ © K e
Zk:l (xr+i)—= — Zj:l Zmzl Om I —p—m
where C) are the binomial coefficients and

o J(0) (@ — 1)
ik + )™ Jx, ST +i)"

Imn dt, m,n = 1,2,...,—/4,.

Proof. In the case K < 0, S7(z) has a pole of order —k(k < 0) at the point
z = —i. Hence in order ®(%z) to be solution of the in-homogeneous problem R, for
Ay, Ag, ..., A_ it must be hold . Note that the determinant of the linear system
is a Vandermonde determinant and is determined by the following formula:

1 1
det = - .
‘ H (acj-i-z' xk—i—i)

1<k<j<—k

Since ﬁ, k = 1,2,...,—k are distinct, the determinant is non-zero. Hence the

numbers Aq, Ao, ..., A_,, may be uniquely defined by the system of linear equations

B4). O
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