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1. Introduction

Let Π± be the upper and lower half-planes of the complex plane C, and let A

be the class of functions Φ analytic in Π+ ∪Π− satisfying the condition

|Φ(z)| ≤ C|z|n0 , |Imz| ≥ y0 > 0,

where n0 is a natural number, y0 > 0 is arbitrary and C is a constant, possibly

depending on y0. By Lp(ρ), 1 < p < ∞ we define the following space

Lp(ρ) :=
{
f : ∥f∥Lp(ρ) :=

∫ +∞

−∞
|f(x)|pρ(x)dx < ∞

}
,

where

(1.1) ρ(x) =
∞∏
k=1

∣∣∣x− xk

x+ i

∣∣∣αk

,

at that
∞∑
k=1

αk < ∞, and 0 < αk < 1, k = 1, 2, ...

We investigate the Riemann boundary value problem in the half-plane in the space

Lp(ρ), 1 < p < ∞ in the following setting:

1The author was supported by the Science Committee of RA, in the frames of the research
project 21AG-1A045
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Problem Rp. Let f ∈ Lp(ρ), 1 < p < ∞. Determine an analytic in Π+ ∪ Π−

function Φ ∈ A to satisfy the boundary condition:

(1.2) lim
y→+0

∥Φ+(x+ iy)− a(x)Φ−(x− iy)− f(x)∥Lp(ρ) = 0, (1 < p < ∞),

where ρ(x) is defined by (1.1), a(x) ̸= 0 is an arbitrary function from the class

Cδ(−∞,+∞), δ > 0 and Φ± are the contractions of function Φ on Π± respectively.

The similar problem in C(ρ) (the class of functions f continuous on the real axis

with weight ρ) was investigated in the paper [19]. In that case it is shown that the

homogeneous problem has one linearly independent solution. Note that a similar

homogeneous problem in L1(ρ) has an infinite number of linearly independent

solutions [20].

By Tp we denote

Tp =
{
xk : αk >

1

p

}
.

In this work, it is established that in the case Tp = ∅, the homogeneous problem

Rp does not have a solution different from zero. When Tp ̸= ∅ the homogeneous

problem Rp has a finite number of linearly independent solutions.

2. Preliminary results

Let κ = inda(t), t ∈ (−∞,+∞),

(2.1)
S+(z) = exp

{ 1

2πi

∫ +∞

−∞

ln a1(t)dt

t− z

}
, z ∈ Π+,

S−(z) =
(z + i

z − i

)κ
exp
{ 1

2πi

∫ +∞

−∞

ln a1(t)dt

t− z

}
, z ∈ Π−,

where

a1(t) =
( t+ i

t− i

)κ
a(t), inda1(t) = 0.

In what follows, we assume that the sequence {xk}∞1 has a finite limit x0.

Lemma 2.1. Let the sequence {xk}∞1 satisfy the following conditions:

(2.2)
∞∑
k=1

αk ln |x0 − xk| > −∞,

(2.3) |xk − xj | > c|xk − x0|, j ̸= k

for some fixed c > 0. Then

inf ρm = ρ0 > 0, m = 1, 2, ...,

where

ρm =

∞∏
k ̸=m

∣∣∣xm − xk

xm + i

∣∣∣αk

.
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Proof. From condition (2.3) we have∣∣∣xj − xk

xj + i

∣∣∣αk

> cαk

∣∣∣x0 − xk

xj + i

∣∣∣αk

and
∞∏
k ̸=j

∣∣∣xj − xk

xj + i

∣∣∣αk

>

∞∏
k=1

cαk

∞∏
k ̸=j

∣∣∣x0 − xk

xj + i

∣∣∣αk

.

According to the condition (2.2) there exists δ > 0 such that inf ρm = δ > 0,

m = 1, 2, .... □

Let us denote

(2.4) δk(x) =

∞∏
j ̸=k

∣∣∣x− xj

x+ i

∣∣∣αj

and

δ(x) = δk+1(x)− δk(x), x ∈ [xk, xk+1).

Here we state Lemmas 2.2 and 2.3, which were proved in [19].

Lemma 2.2. There exist x′
k ∈ [xk, xk+1), k = 1, 2, ... such that δ(x′

k) = 0.

Let X1 = (−∞, x′
1) and Xk = [x′

k−1, x
′
k), k = 2, 3, ... . It is clear that Xk ∩

Xk+1 = ∅, k = 1, 2, 3, ... .

Lemma 2.3. Let the sequence of points {xk}∞1 satisfy either conditions (2.2) and

(2.3). Then there exists δ > 0 such that for any k = 1, 2, ... :

inf
x∈Xk

δk(x) > δ > 0.

Denote δ̃(x) = {δk(x), x ∈ Xk}, k = 1, 2, .... From Lemmas 2.2 and 2.3 it follows

that function δ̃(x) is continuous, and inf δ̃(x) > 0, x ∈ (−∞,∞).

Here we consider two cases:

1. We assume that Tp = ∅. Let f(z) ∈ Lp(ρ). Define the function Φ(z) as follows

(2.5) Φ(z) =
S(z)

2πi

∫ +∞

−∞

f(t)dt

S+(t)(t− z)
, z ∈ Π±.

Then Φ(z) ∈ Hp(ρ) (see [4], [5]).

2. Consider Tp ̸= ∅. Define the function Φk(z) as follows

(2.6) Φk(z) =
S(z)

2πi(xk − z)

∫
Xk

f(t)(xk − t)dt

S+(t)(t− z)
, k = 1, 2, ... z ∈ Π±.

Theorem 2.1. The estimate

∥Φ+
k (x+ iy)− a(x)Φ−

k (x− iy)∥Lp(ρ) ≤ C∥f∥Lp(ρ),

where the constant C is independent of y and k, is true. The limit relation

lim
y→+0

∥Φ+
k (x+ iy)− a(x)Φ−

k (x− iy)− f(x)∥Lp(ρ) = 0
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also holds.

Proof: Consider
Φ+

k (x+ iy)− a(x)Φ−
k (x− iy) =

=
S(x+ iy)

2πi(xk − x− iy)

∫
Xk

f(t)

S+(t)

dt

t− x− iy
−

− a(x)S(x− iy)

2πi(xk − x+ iy)

∫
Xk

f(t)

S+(t)

dt

t− x+ iy
=

= I1(f, x, y) + I2(f, x, y),

where

I1(f, x, y) =
y

π

S(x+ iy)

xk − x− iy

∫
Xk

f(t)(xk − t)dt

S+(t)((t− x)2 + y2)
,

I2(f, x, y) =
yT (x; y)

2πi

∫
Xk

f(t)(xk − t)dt

S+(t)(t− x+ iy)
,

where

T (x; y) =
S(x+ iy)

xk − x− iy
− a(x)S(x− iy)

xk − i+ iy
.

As ∫ +∞

−∞

|xk − x|αk

|x+ i|αk

y|dx|
|xk − x− iy| ((t− x)2 + y2)

≤ const,

then

∥I1(f, x, y)∥L1(ρ) =

= C̃1

∫ +∞

−∞

|xk − x|αk

(1 + |x|)α|x+ i|αk

y|dx|
(xk − x− iy)

∫
Xk

|f(t)||xk − t||dt|
((t− x)2 + y2)

≤ C1∥f∥L1(ρ)

∫ +∞

−∞

|xk − x|αk

(1 + |x|)α|x+ i|αk

y|dx|
(xk − x− iy)

≤ M ′
1∥f∥L1(ρ),

where M ′
1 is a constant does not depend on y and k.

So

∥I1(f, x, y)∥L1(ρ) ≤ M ′
1∥f∥L1(ρ).

Similarly we get

∥I1(f, x, y)∥L∞(ρ) ≤ M
′′

1 ∥f∥L∞(ρ),

where f ∈ L∞(ρ). By applying Riesz-Thorin interpolation theorem [3], we obtain

(2.7) ∥I1(f, x, y)∥Lp(ρ) ≤ M1∥f∥Lp(ρ), 1 < p < ∞.

As S+ is bounded, then using the fact (Lemma 3 in [16]) that for sufficiently large

R at |x| > R the following estimate we have

(2.8) |S+(x+ iy)− a(x)S−(x− iy)| ≤ C2|S+(x+ iy)| y

|x+ i|
,
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where C2 > C1 > 0 some constant independent of y, we get

|T (x)| ≤ Cy

(xk − x)2 + y2
,

where C > maxk {xk} is a constant.

Since ∫ +∞

−∞

|xk − x|αk

|x+ i|αk

y|dx|
((xk − x)2 + y2)

≤ const,

then

∥I2(f, x, y)∥L1(ρ)

≤ C̃2

∫ +∞

−∞

|xk − x|αk

|x+ i|αk

y|dx|
((xk − x)2 + y2)

∫
Xk

|f(t)||xk − t||dt|
|(t− x+ iy)|

≤ C2∥f∥L1(ρ)

∫ +∞

−∞

|xk − x|αk

|x+ i|αk

y|dx|
((xk − x)2 + y2)

≤ M
′

2∥f∥L1(ρ),

where M
′

2 is a constant does not depend on y and k.

So

∥I2(f, x, y)∥L1(ρ) ≤ M
′

2∥f∥L1(ρ).

Similarly we get

∥I2(f, x, y)∥L∞(ρ) ≤ M
′′

2 ∥f∥L∞(ρ),

where f ∈ L∞(ρ). By applying Riesz-Thorin interpolation theorem, we get

(2.9) ∥I2(f, x, y)∥Lp(ρ) ≤ M2∥f∥Lp(ρ), 1 < p < ∞.

Hence, from (2.7) and (2.9), we obtain

∥Φ+
k (x+ iy)− a(x)Φ−

k (x− iy)∥Lp(ρ) ≤ M∥f∥Lp(ρ)

where 1 < p < ∞ and M = max{M1,M2} is a constant independent of y and k.

The estimate of the theorem is proved.

Now let’s prove the second statement of the theorem. Let fn(x) ∈ Cα be a

sequence of finite functions such that

(2.10) lim
n→∞

∥fn(x)− f(x)∥Lp(ρ) = 0, 1 < p < ∞.

For any n we set

Φ̃n(z) =
S(z)

2πi(xk − z)

∫ +∞

−∞

fn(t)(xk − t)dt

S+(t)(t− z)
, z ∈ Π±.

and from Sokhotski-Plemelj formula (see [2]), we get

(2.11) lim
y→+0

∥∥∥Φ̃+
n (x+ iy)− a(x)Φ̃−

n (x− iy)− fn(x)
∥∥∥
L1(ρ)

= 0.

Using the estimate of this theorem, we obtain

lim
y→+0

∥∥Φ+
k (x+ iy)− a(x)Φ−

k (x− iy)− f(x)
∥∥
Lp(ρ)
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≤
∥∥∥Φ̃+

n (x+ iy)− a(x)Φ̃−
n (x− iy)− fn(x)

∥∥∥
Lp(ρ)

+ ∥fn(x)− f(x)∥Lp(ρ)

+
∥∥∥(Φ̃+

n (x+ iy)− Φ+
k (x+ iy)

)
− a(x)

(
Φ̃−

n (x− iy)− Φ−
k (x− iy)

)∥∥∥
Lp(ρ)

≤
∥∥∥Φ̃+

n (x+ iy)− a(x)Φ̃−
n (x− iy)− fn(x)

∥∥∥
Lp(ρ)

+ 2 ∥fn(x)− f(x)∥Lp(ρ) .

Taking into account (2.10) and (2.11), we conclude

lim
y→+0

∥∥Φ+
k (x+ iy)− a(x)Φ−

k (x− iy)− f(x)
∥∥
Lp(ρ)

= 0.

Theorem is proved. □

3. The main result

3.1. The problem Rp for Tp = ∅.

Theorem 3.1. Let Tp = ∅. Then the homogeneous problem Rp (f ≡ 0) does not

have solution different from zero.

Theorem 3.2. Let f ∈ Lp(ρ) and Tp = ∅. Also let the sequence of points {xk}∞1
satisfy the conditions (2.2), (2.3). Then the following assertions hold:

a) If κ ≥ 0, then the general solution of the inhomogeneous Problem Rp may be

represented as

(3.1) Φ(z) =
S(z)

2πi

∫ +∞

−∞

f(t)dt

S+(t)(t− z)
, z ∈ Π+ ∪Π−.

b) If κ < 0, then the inhomogeneous Problem Rp is solvable if and only if the

function f satisfies the conditions∫ +∞

−∞

f(t)

S+(t)

dt

(t+ i)j
= 0, j = 1, 2, ...,−κ− 1.

The general solution can be represented by (3.1).

Proof. The proof of the point a) follows from Lemma 2.3 and Theorem 3.1.

b) Let κ < 0. Denote

(3.2) Φ+(x+ iy)− a(x)Φ−(x− iy) = fy(x).

Taking into account that a(x) =
S+(x)

S−(x)
, we get

Φ+(x+ iy)

S+(x)
− Φ−(x− iy)

S−(x)
=

fy(x)

S+(x)
.

Denoting

Φ+
y (z) =

Φ+(z + iy)

S+(z)
, z ∈ Π+, Φ−

y (z) =
Φ−(z − iy)

S−(z)
, z ∈ Π−,

we get

Φ+
y (x)− Φ−

y (x) =
fy(x)

S+(x)
.
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In the case κ < 0, the function Φ−
y (z) has zero of order |κ − 1| at the point of

z = −i. Consequently, f(x) satisfies the conditions∫ +∞

−∞

f(t)

S+(t)

dt

(t+ i)j
= 0, j = 1, 2, ...,−κ− 1.

Theorem 3.2 is proved. □

3.2. The problem Rp for Tp ̸= ∅.

Theorem 3.3. Let Tp ̸= ∅. Then the general solution of the homogeneous problem

Rp (f ≡ 0), can be represented as:

Φ0(z) = S(z)
∑

xk∈Tp

Ak

xk − z
,

where {Ak} ∈ lp.

Proof. It is clear that the number of points xk ∈ Tp is finite and by np we denote

those points. It is sufficient to establish that the function rk(z) = S(z)(xk − z)−1

does not satisfy condition (1.2) if xk /∈ Tp. Indeed

|rk(x+ iy)− rk(x− iy)| = |R1(x, y) +R2(x, y)| ,

where

R1(x, y) =
(xk − x) (S+(x+ iy)− a(x)S−(x− iy))

(xk − x)2 + y2
,

R2(x, y) =
iy (S+(x+ iy) + a(x)S−(x− iy))

(xk − x)2 + y2
.

Using inequality (2.8), we get

∥R1(x, y)∥Lp(ρ)

≤ C1y
p

(∫ +∞

−∞

|xk − x|p(1+αk)dx

|x+ i|p |1 + |x||pα0
(
(xk − x)2 + y2

)p
) 1

p

< C.

On the other hand

∥R2(x, y)∥Lp(ρ) ≥ C0

(
2

∫
|x−xk|<δ

yp|xk − x|pαkdx(
(xk − x)2 + y2

)p) 1
p

> C1 > 0.

where C1 does not depend on δ. So ∥rk(x+ iy)− rk(x− iy)∥Lp(ρ) ≥ M > 0. □

Theorem 3.4. Let f ∈ Lp(ρ) and Tp ̸= ∅. Also let the sequence of points {xk}∞1
satisfy conditions (2.2), (2.3) and κ ≥ 0. Then the general solution of the inhomogeneous

Problem Rp may be represented as Φ(z) = Φ0(z) + Φ1(z) where Φ0 is the general

solution of the homogeneous problem and

(3.3) Φ1(z) =

∞∑
k=1

Φk(z),
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where

Φk(z) =
S(z)

2πi(xk − z)

∫
Xk

f(t)(xk − t)dt

(t− z)
, k = 1, 2, ...

Proof. Since κ ≥ 0, then from Theorem 2.1 we have

∥Φ+
1 (x+ iy)− a(x)Φ−

1 (x− iy)∥L1(ρ) ≤ C∥f∥Lp(ρ),

where the constant C is independent on y and k. Therefore, similar to the proof of

the second part of Theorem 2.1, we obtain

lim
y→+0

∥Φ+
1 (x+ iy)− a(x)Φ−

1 (x− iy)− f(x)∥Lp(ρ) = 0.

Taking into account Theorem 3.3 we get the proof of the theorem. □

Theorem 3.5. Let f ∈ Lp(ρ) and Tp ̸= ∅. Also let the sequence of points {xk}∞1
satisfy conditions (2.2), (2.3) and κ < 0. Then the general solution of the in-

homogeneous problem Rp may be represented as Φ(z) = Φ0(z)+Φ1(z), where Φ1(z)

is defined by (3.3) and

Φ0(z) = S(z)
∑

xk∈Tp

Ak

xk − z
,

here {Ak}∞k=1 ∈ l1, A−κ+1, A−κ+2, ... are arbitrary complex numbers, and the numbers

A1, A2, ..., Aκ are uniquely defined by the system of linear equations

(3.4)



∑∞
k=1

Ak

(xk+i) = −
∑∞

j=1 I1 1∑∞
k=1

Ak

(xk+i)2 = −
∑∞

j=1 (I2 1 + I1 2)∑∞
k=1

Ak

(xk+i)3 = −
∑∞

j=1 (I3 1 + 2I2 2 + I1 3)

. . .∑∞
k=1

Ak

(xk+i)−κ = −
∑∞

j=1

∑−κ
m=1 C

−κ
m Im−κ−m

,

where Cn
m are the binomial coefficients and

Imn =
1

2πi(xk + i)m

∫
Xk

f(t)(xk − t)

S+(t)(t+ i)n
dt, m, n = 1, 2, ...,−κ .

Proof. In the case κ < 0, S−(z) has a pole of order −κ(κ < 0) at the point

z = −i. Hence in order Φ(z) to be solution of the in-homogeneous problem Rp, for

A1, A2, ..., A−κ it must be hold (3.4). Note that the determinant of the linear system

(3.4) is a Vandermonde determinant and is determined by the following formula:

det =
∏

1≤k<j≤−κ

(
1

xj + i
− 1

xk + i

)
.

Since 1
xk+i , k = 1, 2, ...,−κ are distinct, the determinant is non-zero. Hence the

numbers A1, A2, ..., A−κ may be uniquely defined by the system of linear equations

(3.4). □
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