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DEVELOPING AND INVESTIGATING A METHOD FOR DIGITAL FORMAL
NEURON DESIGN

A method for digital formal neurons synthesis is developed and implemented by means of
C++ programing language. The method developed, compared with the simplex method of
formal neurons synthesis, is characterized by low complexity. A digital formal neuron analysis
is performed. An optimality criterion is proposed, which makes it possible to give some
evaluation of the synthesized formal neuron.

Keywords: digital formal neuron, neural network, software of automatic synthesis,
simulation.

Introduction. An artificial neural network (ANN) is a system that is based on
operations of biological neural networks, and hence can be defined as an emulation of
biological neural systems. ANN's are at the forefront of computational systems
designed to produce, or at least mimic, intelligent behavior [1,2]. ANN consists of
millions of formal neurons connected to each other, the model of the biological
neuron. We will investigate a formal neuron with “sign” activation function [3-5]. The
first model of DFN was proposed by McCulloch and Pitts. This model implements the
function of threshold logic units (TLU) [6].

n
y =sign(x o - 6). (1)
i=1
But, it is known that with one TLU, it is impossible to implement all Boolean
functions, because of linear inseparability [3-5,7,8]. Then DFN was developed and
input interactions were added, which helps DFN to implement all Boolean functions
[4,5]. In a general case DFN has a view shown in Fig. 1.

X ———— 1
e
Xp—®n
Xj— @ y
;
V. |— o
Xis1 !
%1 ...n
;.

Fig. 1. Graphical view of DFN

where, instead of block “V” it could be any of Boolean functions. For some certainty
we will discuss DEN with “AND” input interaction and the results will be generalized
for the remaining input interactions.
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A method for the DFN design. In the known methods of DFN synthesis a lot of
parameters are required [4,5]. For example a DFN specified by Venn’s threshold
diagram requires sums of weights for all possible input combinations. It means that
DFN with n inputs will require 2" parameters. It may cause some technical difficulties.
Another question also arises, how should weights and threshold be calculated to
implement the necessary Boolean function.

In this work, for developing a method of DFN synthesis, the following has been
taken into account. From a technical point of view, it is more important and easier to
give the amount of DFN inputs and the function which should implement the
synthesized DFN.

To synthesize a DFN it is necessary to construct a system of inequalities for all
possible combinations of inputs, and solve it according to the given Boolean function.
In Table 1, all inequalities for each input combination are shown, and the inequality
which is responsible for the appropriate digit y; of the given function y.

Table 1
N2 | X X2 | X sign(,X) y
1 0 0 0 0>0 Yo
2 0 0 1 > ® Y1
3 0 1 0 >0 Y2
4 0 1 1 ot > 0 Y3
21111 opot. te'=0 | v

If the appropriate digit y; of the given function y is equal to 0, the inequality is
false, and vice versa if the appropriate digit y; of the given function y is equal to 1, the
inequality is true. For example if y3=0, o;+m, < O, and if y3=1, ®+w, > O.

Now let’s understand the principle of the developed method of DFN synthesis.
For simplicity, let’s observe DFN with 3 inputs and construct a characteristic inequality
system (2).

0=>0,
wy =0,
[O)) > @,

w;+ wy, +wy =0,

Y wsze, @)
w1 + w3 + ws = 0,
W, + w3 + wg = 0,
W1+ Wy + w3 + Wy + W5 + W + w; = 0.

Let the given function be “01100000”. Each “0” or “1” digit is the function
output for an appropriate line of the system (2). The first “0” digit shows, that the first
inequality is false. It is possible only for positive thresholds. For optimality the
software will set the threshold to be equal to possible minimal discrete positive value,
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i.e. ®=1. The first “1” digit shows that the second inequality is true. It is possible only
for the weights equal to or greater than 1. For optimality, the software will set the
weight more than the threshold by the possible discrete value, i.e. w;=1. Continuing in
such a way, we can calculate all weights and thresholds for the given function. This
method is applicable for any amount of inputs and for implementing any Boolean
function by the synthesized DFN.
The algorithm described above is implemented by C++ programming language
and is given below.
1. int neuron::solve_neuron(unsigned long a_function)
2. |
3 if(a_function>functions)
4, {
5. cout<<"Wrong function\n™;
6 return 1;
7.}
8.  //solving code here
9. theta=0;
10. for(int i=0;i<n_synapses;i++)
11. omega_vector[i]=0;
12. bitset<512> f(a_function);
13.
14. if(f[0]==0)
15. theta=1;
16. int temp=0;
17. for(int i=1;i<=n_synapses;+-+i)
18. {
19. for(int j=0;j<n_synapses;j++)
20. /ffind last 1(unknown)
21. if(omega[i][j]==1)
22. temp=j;//temp will remember the last 1 which is unknown always
23.  /Inow we will count the sum of omegas befor this unknown
24. int sum=0;
25. for(int e=0;e<temp;e++)
26. sum+=omega[i][e]*omega_vector[e];
27. /Inow we have omega(temp)>=theta-sum, so we will do omega(temp)=theta-sum for F=1
28. /land omega=theta-sum-1 for F=0(so condition will not met and f will be 0)

29. if(f[i]1==1)

30. omega_vector[temp]=theta-sum;

31. else

32. omega_vector[temp]=theta-sum-1;
33. }

34. return O;

35. }
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As you can see from line 17, the algorithm solves the system by one cycle which
repeats (n_synapses+1) times, where n_synapses is the amount of synapses (weights).
Let n=n_synapses+1, where n is the amount of variables, then the complexity of the
algorithm will be O(n). Comparing the developed method with DFN synthesis by the
simplex method [4,5,9], the complexity of which in the average case is O(n®), and in
the worst case is O(n?2" ) [10], we gain a lot of time. For visual comparison in Fig. 2,
you can find the complexity difference graphics between the developed algorithm and
the simplex one in the logarithmic scale.
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Fig. 2. Complexity comparison between the developed algorithm and the simplex.
log(O(n®2")) — the worst case of the simplex method, log(O(n®) — the average case of the
simplex method, log(O(n)) — the developed method

Optimality criterion. First of all, we are interested in DFN implementation in
hardware. Thus, from a technical point of view, it is important to have as minimal
deviation as possible of the DFN parameters. Besides, to evaluate the efficiency of the
developed algorithm, the following optimality criterion is proposed:

max w; — min w;

= T .
where 1<i, j<2"-1, max w; , min w; are correspondingly the maximum and minimum
weights for all possible Boolean functions. It is obvious that the more R is near to 1,
the lower is the deviation of DFN parameters, because DFN with discrete valued
weights should have maximum changing range of weights to be equal to not lower
than 2" to make possible to implement all Boolean functions. So if R<1, there is at
least one function that cannot be implemented by the synthesized DFN. If R>1, we
have a lack of deviation, and it can be reduced to be equal to 1. So, summarizing, to be
sure that we have calculated the weights and the threshold of DFN optimally, it is
necessary and sufficient to have R=1. Now let’s prove that the developed algorithm
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ensures the optimal criterion to be equal to 1. If the first digit of the given function
Yo=0, as it has already been mentioned, the software will set ® to be equal to 1 (See
Table 1). In the other case if y,=1, the software will set ® to be equal to 0. Thus, we
can write the following © = ;. In the same way, we can write for the remaining lines
of Table 1: w;, =y, —y1, w, =¥, — ¥z, w3 =—Y,+y; +¥; — 5, etc. So after the
calculations, we will have Table 2.

Table 2
N | X X2 | X1 sign(w,X) y DFN parameters calculation
110 0| O 0>06 Yo 0=%,
210 0|1 >0 Y1 w1 =Y~ V1
310 110 ;>0 Y2 Wy, =Yy — Y2
410 1 1

oyt mptz> O Y3 W3 ==Y+ +¥,— V3

2n-2
n

211|111 oot 4020 | v wyhlze-ESa”_y;:
i=1

Here, by adding and subtracting, we should understand the arithmetical operation
and not the logical. It is obvious that the weight which has maximal members is wyn_;.
wyn_y =0 —XE 2w — Yony. 3)
Thus, it will specify the maximum and minimum values among all weights for all
Boolean functions. Let’s discuss the last weight w,n_, of DFN with 2, 3, 4, ..., n
inputs.
n=2w0;=-Y+¥ +¥; ¥, (4)
n=3,0;=Yo=Y1~ Y2~ Y3+ Vat+¥s+¥s —¥7,
N=4w;s=~Yo+V1+¥2+tY3+V2—Vs= Ve~ Y7 = Vs~ Yo~ Yo+ Y11 * Y12 t Y1z +
+¥12 — V1s-

Continuing in the same way, we can write the following:

wyn_y = (=) (% + Z E) + (—1)"2371 — Y1
i j

Let the total amount of members for the first sum (3;y,) is Al, and for the
second one (2};¥;) be A2, in this case we can write the following:
A =Cr+C3+ -+ 2L,

Ay =CE+Chr+ -+ C2K,

where k=1,2,3,... So, taking into account the known equation 2" = XL, CL, we can
write the following:
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ifniseven: A; =201 -2 A, =271
if nis odd: A=A, =211,
Now let’s calculate max(w,n_1) and min(w,n_4). For this purpose, let’s discuss
2 cases:
1. When n is even: max(w,n_4) will be determined if yg + ;% = 0,y,n_; =0
(y; €{0,1},0 <i < 2™ —1), as they are negative components and if each
member of },; y; is equal to 1: Thus for max(w,n_;) we will have:

max(w,n_y) = A, = 271
In the same way, min(wzn_,) Wwill be determined if };¥, = 0,y, = 1,
yon_; = 1 and if each member of }; 3, is equal to 1:
min(wn_q) = —(4; +2) = =2"1
maxwyn_; —minwyn_; 271 — (=271
R = 2Tl = 271 = 1

2. When n is odd: max(w,n_1) ill be determined if 3; 3, = 0,y,n_; = 0,y, =

1 and if each member of Y}; ¥, is equal to 1. Thus we will have

max(wyn_q) = A, +1 =271

min(wyn_,) will be determined if y5 + ;3 = 0,y,n_1 =1 and if each
member of X, ¥, is equal to 1. Thus we will have:

min(wzn_l) = _A2 - 1 = _277.—1
max wyn_; —minwyn_; 2" — (=271
R = o = o =1.

As you can see, the developed algorithm allows to calculate the weights and the
threshold of the DFN optimally.

It is also possible to ensure the efficiency of the developed algorithm by the
following considerations. Let’s discuss DFN with 2 inputs n=2. As you can see from
equation (4), the range of w; is w3 € [—2: 2], thus R=(2-(-2))/4=1. It can be shown
that DFN with 3 and more inputs can be constructed with multiple DFNs with 2
inputs. But as weights and thresholds of each DFN with 2 inputs are calculated
efficiently, we will get efficient weights and thresholds for the whole system.
Therefore, by making a reverse operation of coming back from mutually connected
multiple DFNs to the DFN with 3 and more inputs; we will get optimally calculated
weights and thresholds for the DFN with 3 and more inputs.

Experimental results. In Fig. 3 the results of the developed software for the
DFN with 3 inputs are shown which implement 6 (01100000) function. As you can
see, the synthesized DFN has the following parameters:
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Number of inputs: 3;

The total amount of weights (synapses): 7;

The total amount of all possible Boolean functions which can be implemented by
the DFN with 3 inputs: 256;

Weights: {1; 1; 0; -2; -1; -1; 2}

Threshold: @=1

Implementing function: 6 (01100000)

LS aram ! bash —Kensole v X
File Edit View Bookmarks Setkings Help

aram@smartalgorithmdell:~$ ./neuronix 3 ¢ -
Start

n_inputs=3
n_synapses=7
functions=256

OMEGA

060000080
1000000
0100000
1101008080
001000080
1010100
011001680
1111111

(o]

MEGA_VECTOR

110 -2-1-12

Theta=1

for the function & (ol110®000)
END.

aram@smartalgorithmdell:~$

| aram: bash

Fig. 3. The example of synthesized DFN by the developed software

The developed software also has a peculiarity to generate the description file of
the synthesized DFN by the Verilog-A modeling language. This Verilog-A description
file can be used in further DFN simulations. Below, you can find the Verilog-A
description file of the synthesized DFN.

/********************************************************

Verilog-A file of a neuron

Created by Neuronix v 0.0.1
********************************************************/
“include "constants.vams"

“include "disciplines.vams"

module va_neuron(Y_OUT,X_INPUT,W_WEIGHT,T_TRESHHOLD,vp,gd);
output Y_OUT; //Y_OUT is output

electrical Y_OUT;

input [2:0] X_INPUT; //X_INPUT is for inputs

electrical [2:0] X_INPUT;

input [6:0] W_WEIGHT; //W_WEIGHT is for weights of synapses
electrical [6:0] W_WEIGHT;

input T_TRESHHOLD; //T_TRESHHOLD is the treshhold of the neuron
electrical T_TRESHHOLD;

real sum=0; //initializing sum for weights

analog begin
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sum=V(W_WEIGHT[0])*V(X_INPUT[0])
+V(W_WEIGHT[1])*V(X_INPUT[1])
+V(W_WEIGHT[2])*V(X_INPUT[2])
+V(W_WEIGHT[3])*(V(X_INPUT[0])&&V(X_INPUT[1]))
+V(W_WEIGHT[4])*(V(X_INPUT[0])&&V(X_INPUT[2]))
+V(W_WEIGHT[5])*(V(X_INPUT[1])&&V(X_INPUT[2]))
+V(W_WEIGHT[6])*(V(X_INPUT[0])&&V(X_INPUT[1])&&V(X_INPUT[2]));
if(sum>=V(T_TRESHHOLD) begin sum = V(vp); end //sign function check
else begin sum = V(gd); end
V(Y_OUT) <+ transition (sum); // making output to Y_OUT
end
endmodule
Where “Y_OUT” is the output pin, “X INPUT” is the input pin, “W_WEIGHT”
is the weights, “T_THRESHOLD?” is the threshold of the synthesized DFN. “vp” is
the power supply and “gd” is the ground. The variable “sum” calculates the weighed
sum of the input, and if it is more than the threshold, Y_OUT=1, otherwise Y_OUT=0.
The synthesized Verilog-A description file was used in Synopsys HSPICE
simulation, the timing diagrams of which are shown in Fig. 4. As you can see, the
simulation was carried out for all input combinations and the synthesized DFN
implements the given function 6 (01100000).
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Fig. 4. Timing diagram of DFN with 3 inputs and which implements 01100000 function

Conclusion. The developed method, unlike the existing ones, has very low
complexity. The developed method satisfies the optimality criterion, which has been
proposed by the author, and which allows to calculate the weights and the threshold
efficiently from the technical point of view. The developed method was implemented
by the software written in C++ programming language. The developed software also
generates Verilog-A description file of the synthesized DFN which can be used in
HSPICE modeling software for further simulations. The workability of the developed
software has been checked and verified by many tests, one of which is presented in
this paper.

46



References

1.  http://www.dhtusa.com/media/NeuralNetworkIntro.pdf
2. From Neuron to Brain, Fifth edition / G. John Nicholls, A. Robert Martin, Paul A.
Fuchs, et al. - November 7, 2011.-621p.
3. Haykin Simon. Neural Networks. A Comprehensive Foundation. Second Edition.-
Published by Pearson Education.- July 16, 1998.- 823 p.
4. Mxprusn C.O., Mkprusin A.C. OcHoBbl 111(poBoOii HeliponHpopMaTHKH: Y4eOHOe 1Oo-
cobue. — EpeBan: U3n-s8o TUYA “Yapraparer”, 2007. — 387 c.
5. Mxkprusn C.O. IlpoekTnpoBaHHe JOTHYECKHX YCTpoHcTB OBM Ha HeHpOHHBIX
aneMmenTtax. — M.: DHeprus, 1977. — 200 c.
6. Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
nervous activity // Bulletin of Mathematical Biophysics.- 1943.- Vol. 5.- P.115-133.
7. Rojas R. Neural Networks. - Springer-Verlag, Berlin, 1996.
8. http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-
html/node19.html
9. Scott R. J. Construction of Neuron Model//Ire Trans on Bio-Med. Electronics. —1961.-
Vol. 8, N®5.-P.198-202.
10. http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/Teaching/ORF522/lec8v2.pdf

SEUA (POLYTECHNIC). The material is received 10.12.2013.

0.2 MGSLNUSUY, 4.1, arhaNrauvns, a.U. WUrunsssuy, u.n. arbanrdvn

E4USPL HNLUUL LE3rNLLENh LUNMUQOU UL UGN UTUUMUL BY,
z2ssuensmur

Upwljyty b pyuyhlt $npuwy thjpnuubph btwhwgsdwt dbenn, npb hpuuwbwgyt) £ C++
Spugpuynpdwt (kqyh dhongny: Uswljyws dtpnnp, h wwwppbpnipnit $npdwy aljpntukph
uhtuplkquui uhdybkpu dbpnph, pinipugpynud k tuq puppnipjudp: Ywnwpgl) b pduyh
dnpduy upnuttph Jipndnipini: Unwewnlyyty k oyynhdwynipjut swthwithy, npnyg Jupkih
E quwhwwnt) uhuptqus $npdwy uhpnuubkpp:

Unwhgpuyhli punkp. pduyht dnpdu ulypnt, ubpntught gutg, wjnndun twhiwgsdu
Spwighp, uhunijjugnud:

O.A. IIETPOCHH, B.I1. TPUT'OPSAHIL, I'.A. KAPAIIETSH, A.P. TPUT'OPAH

PABPABOTKA U NCCIIEJOBAHUE METO/JA TPOEKTUPOBAHUSA IU®POBLIX
®OPMAJIbHBIX HENPOHOB

Pa3paboTan mMeTo] MPOEKTHPOBaHMS TH(POBBIX (HOPMATBEHBIX HEHPOHOB, KOTOPBIH pea-
JIM30BaH C MIOMOIIBIO SI3bIKa MporpamMmupoBanust C++. PazpaboTaHHbIN METOM, O CPaBHEHUIO
C CHMIIJIEKC METOJIOM CHHTE3MPOBaHMS (DOPMATTBHBIX HEHPOHOB, XapaKTEpU3yeTcsl MaoH CII0X-
HocThi0. [IpoBenien aHanm3 UQPOBEIX HOpMaTBbHBIX HEHPOHOB. [IpemnokeH KpuTepuii onTH-
MaJIbHOCTH, C TIOMOII[b0 KOTOPOTO MO>KHO OLICHUTh CHHTE3HPOBaHHbIE ()OPMalIbHbIE HEHPOHBI.

Knroueewte cnosa: mudposoit hopmManpHBIN HEUPOH, HEHPOHHAS CETh, IPOTPaMMa aBTO-
MaTHUYECKOTO MPOEKTUPOBAHUS, CUMYIISALUS.
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