ISSN 0002-306X. MWU3B. HAH PA nTUYA. Cep. TH. 2013. T. LXVI, Ne 3.

UDC 681.3 COMPUTER SCIENSE
AND INFORMATICS

T.H. SHAHINYAN

A METHOD FOR PARALLEL TESTING OF ELECTRONIC DESIGN
AUTOMATION APPLICATIONS

Applications that are used in electronic design automation (EDA) are usually developed
by hundreds of engineers and the development process lasts years. Parallel to the software
development process many automated tests (AT) are developed by software quality assurance
(SQA) engineers. Tests are used for regular testing of software functionality, performance and
other features. The number of tests usually reaches several thousands. And running the whole
test suite in an acceptable time interval is a challenging task. A method for parallelization and
fastening test runs is presented.

Keywords: software testing parallelization, distributed runs, linux scripting.

Introduction. The duration of AT can last from several seconds to several hours.
Short tests are preferable, because their future usage and modification is fast. But there
always are tests that last long. The successive run of a whole test suite can take tens of
hours or even several days. So this makes it unacceptable to use successive runs.
Therefore the distributed runs are used for fastening the testing process.

The main types of distributed runs are:

1. Distribution between several computers.

2. Distribution between multiple CPUs of the same computer.

3. Conbination of 1 and 2.

Distribution between several computers is more complicated, because it is also
required to consider their loading, and for that purpose commercial applications like
grid engine [1] are used. In this work, the second type of distribution is presented,
which doesn’t depend on other applications and is developed using bash [2] scripting
in the environment of Linux [3] operating system (OS). Using the Linux OS is not
arbitrary. It is the main environment for developing EDA applications and it also has
all the required feautures for parallelization of tasks. Modern servers can have tens and
even hundreds of CPUs [4], and using distributed runs can significantly reduce the
testing time.

Task Definition. Given M tests. It is required to run tests on the N CPUs of the
same computer. For each test the maximum run time (RT) Tiu.x is known, where
i=1,M. The maximum RT is used for killing a test, when its duration exceeds Tiyax -
This is required for not having hanging tests, which may occur for various reasons.
When killing a test, all child processes should be killed recursively. After the end of

223

each test, the next test should automatically begin. The test driver should give the
following run time information:

1. The total number of tests.

2. The number of test being run, the test name, start time and maximum RT.

3. The name of the finished test, its status and duration.

Overview of the Proposed Method. During the parallel distribution of tests, it is
important to sort them so that their durations appear in an ascending or descending
order, so that tests with close durations should run one after the other. This is required
for shortening the total RT. The ascending order is usually preferebale because if a test
driver is interrupted, more tests can be run before interruption.

To organize a distributed run a BASH script is used, which accepts the following
arguments:

= -list <File> with the test list of the following format: test path [maxruntime]

= [-n] <integer> number of parallel jobs to run (default is 1)

= [-maxruntime] <integer> maximum RT of ATs in seconds.

Used when a test in the list file hasn’t own maxruntime (default is 3600).

The subtasks that uccur during this main task are as follows:

1. Creating a loop that runs all tests with N threads.

2. Having self monitoring threads.

3. Killing child processes recursively.

To organize a loop for running all tests, a BASH while a loop is used (Fig.1). To
organize subtask 2, a test is run in the background mode and a job monitoring loop is
created (Fig.2). For killing processes recursively a BASH function is created (Fig.3).

while read test_path test_maxruntime < Slist_file
###Do required checks for test_path and test_maxrumtime
##If any job is finished, remove from list###
pidn="echo "$pids" | cut -d " " -f3n"
while ["Spidn" 1=""]
do
sleep Stime_slice
for pid in “echo Spids’
do
ps -p $pid > /dev/null 2>&1
status=37
if [$status -ne 0] ###not running###
then
###remove pid from pids list###
pids=8 {pids/Spid /}
fi
done
pidn="echo "$pids" | cut -d " " -fSn’
done

###Run parallel jobs and add to pids list###
if ["Spidn" ==""]
then
echo "Test $i of Stest_count - $test_path - imeout: $test_maxruntime"”
let "=$i+1"
test_runner $test_path $test maxnmtime >> $logFilleName 2>&1 &
pid=$!
pids="$pid Spids"
fi

done
Fig. 1. A BASH loop that runs all tests with N threads on the same computer
224

fimction test_runer() {
test_path=$1
test_maxruntime=3$2
time_skce=1

cd $test_path
$test_path/nm & #HRun test i background mode
pid=3§!

test_curnmtime=0

while [1]
do
ps -p $pid > /dev/oull 2>&1
status=§?
if [$status -eq 0]
then

s ohill nunming S
if [$test_curnmtime -gt $test_maxruntime]
then
#5 kil by runtime 5
kill tree $pid > /dev/null 2>&1
echo "KILLED $test_path at "date +96Y-%m-%%d-%%H-%6M-%S", because out of time”
sleep 1
break
else
kill if parent process doesn't exist #4&
ppid="ps -p $$ -o ppid | grep v PPID |[tr d ' "
i ["$ppid" ="1"] ; then
echo "KILLED $test_path at “date +%%Y-%m-%d-2%H-%M-%S", because parent process doesn't exist”
kil tree $pid > /devimull 2>&1
break
i
R continue RS
test_corrontime=3({ $test_curruntime + $time_skice))

else
test status="get test_status’
echo "FINISHED $test_path - DURATION: $test_curnmtime seconds - STATUS: $test_status”
break
f
sleep $time_slice
done

}
Fig. 2. Self monitored thread

function kill_tree (} {
local pid=§1
local child
local status
for child in $(ps -o pid —no-headers --ppid ${pid}}); do
kill_tree ${child}
done
kill $pid || kill -2 $pid > ‘devinull 2>&1
¥

Fig. 3. Function for killing all child processes recursively

Determining the Optimal Number of Threads. Hyper-Threading technology [5]
is a form of simultaneous multi-threading technology, where multiple applications, or
multiple threads of a single application, can be run simultaneously on one processor.
The Intel Xeon processor family implementation of Hyper-Threading technology

225

enables each physical processor to appear as two logical processors to the operating
system and software (Fig.4). Each logical processor maintains an independent
architectural state, and can respond to interrupts independently. The two logical
processors within each physical processor share the physical execution resources.
Doing so allows a second, simultaneous thread to use execution resources that are not
being used when only one thread is executing. The result is an increased utilization of
the execution resources within each physical processor package. This improvement in
CPU resource utilization yields higher processing throughput for the application.
Figure 4 compares a processor with Hyper-Threading technology to a processor
without Hyper-Threading technology. Hyper-Threading technology is well-suited for
multi-processor systems and can further enhance their performance. On a multi-
processor platform, the operating system can schedule separate threads to execute not
only on each physical processor simultaneously, but on each logical processor
simultaneously as well. This improves overall performance and system response
because many parallel tasks can be dispatched sooner due to twice as many logical
processors being available to the system. In the past, sharing memory across multiple
CPUs could limit the performance scaling, due to bottlenecks in accessing shared
memory. Because the caches are shared among the logical processors in a physical
processor, Hyper-Threading technology can benefit applications that implement a pair
of concurrent threads. The Intel Xeon family servers produce better performance when
threads are twice as many as processors due to Hyper-Threading.

Processor with Processor without
Hyper-Threading Technology Hyper-Threading Technology
{ Arch. State ‘ Arch. State] [Arch State
‘ APIC ’ [APIC J [APIC]
[On-Die Cache J | On-Die Cache
{ Processor Core] [Processor Core

Fig. 4. Comparison of an Intel® Xeon™ Processor with Hyper-Threading Technology to an
Intel Processor without Hyper-Threading Technology
Experimental results. To determine the efficiency of parallel threads on the
same computer, several runs were made on an Intel Xeon server with 47GB random
access memory (RAM) and16 CPUs, each 2800MGz. To use Hyper-Threading 32
tests with different durations from 107 to719 seconds were selected. The successive
RT was about 152 minutes. Table 1 shows RT results for variaous threads.

226

Table 1

Total RT for various threads, tests have different durations

Number of Parallel Threads Total RT (minutes) Relative speedup
1 152 1
16 12 12.7
32 12 12.7

In both cases of 16 and 32 threads the total RT was determined by the test with
maximum RT.

To determine the dependence of the total RT on the number of threads it was
determined to use tests with the same duration. This was done by copying and
renaming the same test. The test lasting 220 seconds was selected. Of course the test
duration is not constant. It may differ depending on the server loading. The following
tests were implemented to determine the speedup depending on the number of threads.
The toal RT for 32 successive runs was 99 minutes (Tbl. 2). And the maximum
speedup with 32 threads was 12.3. It is important to note that during the experiments,
the RAM was sufficient, and dynamic memory was not used.

Table 2
Total RT for various threads, tests have same duration
Number of Parallel Total RT Average RT of test Relative
Threads (minutes) (seconds) Speedup
1 99 185 1
16 10 259 9.9
32 8 430 12.3

Conclusion. The testing time is an important challenge. An increase of tests
count increases time challenges. A simple and efficient methodoly is proposed that
can be used for distributing runs among multiple CPUs of the same server.
Distribution among CPUs does not require commercial applications, thus it is cheap.
The number of threads can be greater than the number of processors due to Hyper-
Threading. Using a distributed run on 16 processors with 32 threads can shorten the
testing time almost by 25 percents compared to the run on 16 processors with 16
threads.

REFERENCES

1. Shankar U. Oracle Grid Engine User Guide. Release 6.2 Update 7. E21976-02. 2012.

2. Newham C. and Rosenblatt B. Learning the bash Shell. Second Edition. - O'Reilly,
January, 1998. — 334 p.

3. Garrels M. Introduction to Linux. A Hands on Guide. 1.25 Edition. - 2007. — 223 p.

227

4. Merritt R. CPU Designers Debate Multi-core Future. -EETimes Online, February 2008.
http://www.eetimes.com/showArticle.jhtml?articleID=206105179

5. Building Cutting-Edge Server Applications with Hyper-Threading Technology. White
Paper. Intel Corporation. 2002. — 10 p.

SEUA (POLYTECHNIC). The material is received 12.04.2013.

S.z. TUZhL3UL

ELBUSMNUUSEL LUNUQOUUL U4SNUUSUSUUL UhfUNUYUL Oruarerh
NhQUZGR FEUSUYNITUUL UGHENY

Ukpuwyugduws £ wyunndwwn phuntph (UE) gniquhbn pupjudwid b phutnwynpdwb
dudwtwlh Ypdundwt dkpnny: Ukpnnh hhupmd pujuwé b Linux owkpwghnt hwdwlwpgh
(02), hyywbu twl dudwbwlulhg puquuypngbunpughtt pndthymipbpttph htwpuwdnpnipe-
jnibiph Yhpwedwh ulgpoiupp: Unwewplyws dbpnni hpujwtwugjws b Linux OZ-h thwpk-
poud wofw uhphyunuynpldwb (Eqmitkpny, husp sh wwhwignd dhtwbuwlub Swjuubp:
Hyper-Threading wkjutninghuyph hhdwb Jpu dpwlqus puquuuypngbunpughtt pndyniphp-
utph Yhpwnnudp pnyp £ nnwjhu N wypngbunp nitikgnn pndihynipbph ypu pupjuly 2N wujua
Ufe-tp, hyp wyuwhnynd k phunwynpiut dudwtuyh fpgunnd’ hudbdwnws N hwun
Ufe-tph qniquhbn pupjudwi htn:

Unwbhgpughli punkp. Spugptph qniquhbe phunwynpnid, phunwynpdwi puhunid,
linux uljphyinuynpnid:

T.O. INATUHSH

METO/ ITAPAJUIEJIBHOI'O TECTUPOBAHMUSA ITPUKJIAIHBIX ITPOI'PAMM
ABTOMATU3AIIUA DJIEKTPOHHOI'O NPOEKTUPOBAHUA

[TpencraBnen MeTOA MapajUIeNbHOTO pacrpereieHust aBTomarndeckux tectoB (AT) u
YMEHBIIICHHST BPEMEHH TECTUPOBaHUs. B OCHOBE MeTO/a JICKUT UCIOJIB30BAaHUE BO3MOXKHOCTEH
oneparorHoit cuctembl (OC) Linux, a Takke COBpEMEHHBIX MHOTOITPOIIECCOPHBIX KOMITHIOTE-
poB. IIpeioxkeHHBIH METO]] peai30BaH ¢ UCIIOIb30BAHUEM SI3bIKOB CKPUIITHHTA, BXOJSIIHUX B
naketr OC Linux, uyto He TpeOyeT ¢uHaHCOBEIX 3aTpart. lcronbp3oBaHne KOMITBIOTEPOB, pa3pa-
OoTtanHBIX Ha ocHOBe TexHomoruu Hyper-Threading, mo3Bosier mapauielbHO pacIpenensiTh
2N AT na kommbroTepax ¢ N mpoiieccopamu, 4To 00eCIeUnBacT YMEHBIICHUE BPEMEHH TECTH-
POBaHMs 110 CpaBHEHHMIO C pactpeneneHreM N napamienbHbix AT.

Knwuessle crosa: napanienbHOe TECTUPOBAHKUE MPOrPAMM, PaCIpeieiIeHHe TECTHPOBa-
HUSL, JINHYKC-CKPHUIITUPOBAHHUE.

228

