
163

ISSN 0002-306X. Èçâ. ÍÀÍ ÐÀ è ÃÈÓÀ. Ñåð. ÒÍ. 2013. Ò. LXVI, ¹ 2.

UDC 530.15:004.032.2 COMPUTER SCIENCE AND
 INFORMATICS

A.A. KHZARJYAN

AN APPROACH OF STAR MEMORY SYSTEM USE FLOW AUTOMATION AND ITS
VERIFICATION

Modern SoC design restricted with Time to Market and yield. A widely used IP block in
SoC is an embedded memory which is more inclined to defects. One of the well-known
Infrastructural IP is a STAR Memory System (SMS) which is a general solution of BIST and
repair. This paper introduces an approach of SMS use flow template library construction with
application of formal verification algorithm. It is implemented as a supporting tool to optimize
the SMS use flow design and verify the customer needs.

Keywords: STAR Memory System, use flow, formal verification, System-on-Chip, build
in self-test, intellectual property.

Introduction. Every new semiconductor technology node provides further
miniaturization and higher performance. On the other hand, the growth in demand for
System-on-Chips (SoCs) has spurred a flood of better, faster, smaller chips. The
creation of such SoCs necessitates using several embedded IP blocks from different
vendors. Most of the known IP blocks, though, are functional ones, such as embedded
processor, embedded memory, embedded analog, etc. Rather, infrastructure IP is
embedded in an IC solely to ensure its manufacturability and lifetime reliability [1].

It is reasonable to notice that embedded memory IPs become the major
component of SoC that will occupy more than 94% SoC area in the year 2014 [2]. In
the aspect of manufacturing yield, embedded memories are more inclined to defects
than other SoC components. To improve the yield, the embedded memories should be
armed with redundancy [3]. In general, SoC obtains the BIST that is used to perform
only testing while BIRA and BISR [4]. Components of the engine are necessary for
repairing the embedded memories. One of the well-known build in test and repair
solutions is a STAR Memory System (SMS) [3] that is a complete solution of build in
test and repair which provides a full set of infrastructural IP compilers with the
corresponding generation, insertion and verification tools.

Customers usually use different IP blocks with a wide range of SMS components
to build their SMS use flows. It means that the customers have to learn all SMS
components with taking into account all their specific details. As a result, the use flow
design can become time consuming and an error prone process. One of the possible
ways of using the flow design optimization is encapsulation of its complexity by
providing a standard mechanism of SMS usage. Analysis of various customer use
flows has revealed that there are some standard use flows of SMS usage. Those use
flows are templates of SMS usage flow customization that are similar to the well-

164

known ITIL templates [5]. Similarly, SMS use flow templates can form a template
library which can be provided to simplify the customers’ work. In general, the use
flow template library (UFTL) will serve as a basis for designing specific use flows.
The use flow design tool will be provided to the customer to adopt the proposed
templates to their own cases. They can also extend the library by inserting new
templates into the provided library. Modification of the basic template will require
verification of changes.

The paper introduces an approach to the UFTL construction which is carried out

by the language for building SMS components. A converter is proposed to transfer the
use flows to workflow processes. An approach to the UFTL formal verification based
on formal verification algorithm of workflow processes [6, 7] is also presented in the
paper. This algorithm was previously used for ITIL verification. The illustration of the
approach application is illustrated on the most useful use flow template which is a
SMS usage default flow. The modification of the mentioned flow is a customer-driven
case. The application of the formal verification on it has been performed to check
correctness of the modified use flow template.

1. Template-based language of SMS use flow design. It is necessary to define a
language that can be used to implement any custom use flow of SMS design. The
language has to support implementation of each use flow of SMS design and
verification (DVP). At first, it has to support the definition of each IP block that can be
used during SMS DVP. The next requirement is to support the addition of definitions
for each new SMS DVP flow by its automation language. It means that the language
has to be general as much as it is possible. One of the well-known methods of
language generalization is its construction based on templates. Usually template-
based languages have possibilities to extend the set of their predefined templates. Our
approach to the SMS DVP automation is based on template-based language
implementation which will be introduced below.

A proposed language, called SMS DVP Template Language (DTL), implements
SMS DVP requirements by supporting the IP compiler libraries for each vendor and
the DVP flow modifiable definitions. DTL contains construction for describing the
elements of DVP. It also provides presentation of IP compiler hierarchy, data hierarchy
classification, Design and Verification Information. DTL constructs are based on the
main concept: “Everything is an element” (Fig. 1).

BNF like syntax forms are used to describe the main constructs of DTL. The
scheme of the DTL construct has the following structure:

<element> – is the element name which is defined as a template in DTL.
<item> – zero or more items that are specific for the described element. Each

item also could be simple (atomic) or complex (list of sub items).
‘;’, ‘\n’ – corresponds to the dot comma punctuation mark or a new line

respectively.

165

Generally, there are two types of elements that can be used in DTL: simple and
complex. The simple element has only atomic items while the complex element
container item has a nested hierarchy that can be made up of simple and complex
elements. There is no restriction on the complexity or depth of the nested hierarchy.

The simple element scheme is presented in (Fig. 2).

 Fig. 1. Scheme of DTL construct Fig. 2. Simple element

The complex element general scheme, which is more suitable for describing
vendors IP, is presented in (Fig. 3).

Besides the flexibility of data hierarchy description, DTL also provides a
possibility of IP compiler classification which is necessary to support each aspect of
various vendors’ similar IP in one DTL template. For example, each IP compiler has
its own specific parameters which are introduced as a set of simple elements. As a
result, the classification enables to specify individual features of each IP compiler only
in its classified template as shown in (Fig. 4).

 Fig. 3. Complex element Fig. 4. Definition of IP compiler

IP compilers’ infrastructural hierarchy is also possible to describe by using DTL.
There are two ways of describing IP compilers’ hierarchy in DTL. The first is
designing the DTL templates by placing them in planar structure (Fig. 5). In this case,
their dependencies will be realized through references implemented by simple
elements. The second is designing the DTL templates in the nested structure (Fig. 6).
Selecting the hierarchy representation structure is the vendors, preference.

 Fig. 5. Planar Structure of IP compilers Fig. 6. Nested Structure of IP compilers

<element> {<item>} (‘;’|‘\n’) <simple_element> {<simple_item>} (’;’|‘\n’)

<complex_element> {<simple_item>} ‘{‘
 ‘class’ <vendor>’.’<IP_compiler> [(’;’ | ‘\n’)]
 | {{<simple_element>}
 | {<complex_element>}}
‘}’ [(’;’ | ‘\n’)]

element ip_type {
class vendor.ip_compiler_name;

element parameter;
...
element section {

element subparameter;
...

};
};

element IP_type1 {
class vendor.ip_compiler1;
element ip_type2;
...

};
element IP_type2 {

class vendor.ip_compiler2;
element ip_type3;
...

};
...

element IP_type1 {
class vendor.ip_compiler;

element IP_type2 {
class vendor.ip_compiler;
element ip_type3;

...
}

...
};

166

The IP compiler definition has to be used to define each IP block. The definition
of IP block is supposed to identify all the necessary parameters of the corresponding
IP compiler by their values. Each IP block contains reference to its IP compiler by
using its classification. The scheme of IP block definition is presented in (Fig. 7).

If the IP block is a part of infrastructure hierarchy it has to be defined as part of it.
In the case of planar structure, each IP block has a reference to its sub-block except the
last one (Fig. 8).

 Fig. 7. IP block definition Fig. 8. Description of IP blocks in SoC

The generation step of SMS DVP can be automated based on the information
which is described above. The insertion step of SMS DVP requires the definition of
SoC by specifying its IP blocks and the necessary information for insertion. The
general scheme of SoC description is presented in (Fig. 9).

An example of a simple use flow which implements DVP of SMS is presented in
Fig. 10. The example is given based on the constructs of DTL.

Fig. 9. Description of IP blocks in SoC Fig. 10. Use flow example

ip_type ip_block_name {
class vendor.ip_compiler_name;

 parameter1 value1;
...

};

ip_type1 ip_block_name1 {
class vendor.ip_compiler_name;

 subblock ip_block_name2;
...

};

ip_type2 ip_block_name2 {
class vendor.ip_compiler_name;

 subblock ip_block_name3;
...

};
...

soc soc_name {
ip_blocks {

ip_block1 ...
ip_block2 ...
…

}
…

};

memory mem1 {
class vendor1.compiler1;
NW 1024;
NB 23;
CM 8;

};
memory mem2 {

class vendor2.compiler2;
NW 512;
NB 36;
BK 16;

};
wrapper wr1 {

class vendor3.compiler3;
memory mem2;

};
wrapper wr2 {

class vendor3.compiler4;
memory mem1;
FREQ 100MHZ;

};
processor proc1 {

class vendor3.compiler4;
wrapper {wr1 wr2};

};
server srv1 {

class vendor3.compiler5;
NVS efuse128;
processor {{proc1 3}};

};

167

2. Mapping of the use flow templates on workflow processes. The formal
model of workflow processes is based on the model of IBM's MQSeries Workflow [8]
that has been extended by adding the necessary formalism to consider the formal
verification problem [6, 7].

The workflow model components are activities and connectors. The activities are
associated with a context being defined as data passing to an activity. It is called input
container. An activity also returns data called output container. Control and data
connectors provide connections between the activities. A control connector has an
associated Boolean predicate called transition condition. A directed graph based on
sets of activities and control connectors is called control flow of a workflow/business
process. Full details can be found in [6-8].

Mapping of DTL on the workflow process model can be described as follows:

 The IP blocks are mapped to activities.
 The IP blocks infrastructural hierarchy can be presented by control connectors.
 The parameters of each IP block can be presented as activity data container

elements.
An example of a workflow process is presented in the next section.
3. An example of formal verification algorithm application on a SMS use

flow template. Let us illustrate the application of formal verification algorithm on

one of the use flows. Fig 11 shows the workflow of use flow template sample that is
most used by our customers. It’s a use flow template of SMS usage default flow. For
the verification of the given process, a precondition and a postcondition should be
specified [6,7]. The specific conditions are created based on the needs of verification
against the definite aspects of the process behavior.

PreC = i(Read).Base ≠  ,where  denotes the unknown value of the variable.
PostC = (Serror = TRUE OR Sserver = PASS) AND Send = TRUE.

Fig. 11. Workflow process of default use flow

Read
Base

Lrow

Select
row

Check
mem

Add
mem

Add
group

Lrow

Crow

Crow

Smem

Smem=exists

Smem=new

Crow

Cmem, Lmem

Cmem

Lgroup

Crow¹¹

Check
rule

Crow=¹

Lgroup

Sgroup

Select
mem

Lmem

Cmem

Create
mem

Cmem

Smem, Cmem

Create
wrp

Cmem

Swrapper, Lwrapper

Error

Select
group

Lgroup

Cgroup

Create
proc

Cgroup, Lwrapper

Sprocessor, LprocessorCreate
server

End

Lprocessor, Lgroup

Sserver

Srule=Fail

Srule=Pass

Cmem=¹

Cmem¹¹
Cgroup=¹Cgroup¹¹

Send

168

The application of the formal verification algorithm on the described process will
identify the presence of cycles in it. A detailed analysis of cycles will show that
process cycles are intervals. The first step of the algorithm will reduce the cyclic graph
to the acyclic one [7]. It will initially construct the set of the first order intervals -
SC={<Select row, Check row, Add mem Add group>, <Select Mem, Create mem,
Create Wrap>, <Select group, Create proc>. The next step is the replacement of
intervals by corresponding equivalent activities <Form group, Form mem wrap, Form
proc> [7]. The exit transitions of new activities have to contain branching information
the corresponding cycle that is interpreted in terms of branching state registers. They
are cycle invariants. For instance, Form group activity has a transition to Check group.
Its transition condition is formulated from transition condition of Select row to Check
group with addition of a branching register BrSr. BrSr = 1 presents the execution path
<Read, Select row, Check group,…> and BrSr = 2 is presenting execution path
<Read, Select row, Check mem,…>. Transition conditions of other new activities are
constructed similarly. Reduction of the mentioned intervals by equivalent activities
will result in a new process (Fig. 12). The second phase analysis of the graph means
that it is acyclic. The acyclic process verification algorithm [6] has to be applied to the
reduced process presented in Fig. 12. After the execution of the verification algorithm
and after checking the correctness condition, we find that the process is correct.

Fig. 12. Reduced process

Some of the presented activities can be modified by the user. They are Create
proc, Creat mem, Creat wrp, End activities.

To improve the overall quality of this process Analyze and Notify additional tasks
have been added to the process (Fig. 13) by one of our customers. This activity
analyzes if everything execution of a process. In case of an abnormally executed
process, the activity Notify would notify about it.

A new postcondition:
PostC = (Serror = TRUE OR Sserver = PASS) AND Sanalyzed=TRUE AND

Spassed=TRUE AND Send = TRUE

Read
Base

Lrow

Form
group

Lrow

BrSr, Crow, Lmem, Lgroup

Error

Form
mem
wrp

Lmem, Lgroup

BrSm, Cmem, Lwrapper

Form
proc

Lgroup, Lwrapper

BrSg, Cgroup, Lprocessor

Create
server

Lprocessor, Lgroup

End

Check
rule

Lgroup

Sgroup

Crow=¹ & (BrSr=1 V BrSr=2)

Srule=Pass

Cmem=¹ (BrSm=1 V BrSm=2)

Srule=Fail

Cgroup=¹ (BrSg=1 V BrSg=2)

Sserever

Serror

169

As a result of applying similar steps of the process transformation and
verification, the condition of incorrect processes will be satisfied [6]. The control
connector between the activities Notify and End has to be removed to correct the
modified template logic. The postcondition has to be changed to:

PostC = (Serror = TRUE OR Sserver = PASS) AND Sanalyzed =TRUE AND
((Spassed =TRUE AND Send = TRUE) OR (Spassed =FALSE AND Snotify = TRUE)).

Applying the algorithm to the corrected process will result in the satisfaction of
the correct process condition [6].

Fig. 13. Modified section of the process

Conclusion. The approach to the template-based language is proposed which is
used as a basis for development of automated environment for design and verification
use flows of the STAR Memory System. The main purpose of the proposed language
is optimization of SMS use flows by encapsulation of its complexity by providing a
common environment to SoC designer. A use flow template library (UFTL) is offered
to design specific use flows by modification of the proposed templates by customers.
A formal verification algorithm of workflow processes has been proposed to verify the
correctness of the customers’ use flows after the modification. The application of the
presented approach is illustrated on a SMS default use flow.

REFERENCES

1. Zorian, Y. What is Infrastructure IP // IEEE Design & Test of Computers.- May-June,
2002.- Vol. 19, No 3.- P. 5-7.

2. The National Roadmap for Semiconductors. - 2000.
3. Shoukourian S., Vardanian V., Zorian, Y. SoC Yield Optimization via an Embedded-

Memory Test and Repair Infrastructure // Design & Test of Computers IEEE. - 2004.- Vol.
21.- P.200 – 207.

4. Rei-Fu Huang, Chen Chao-Hsun, Wu Cheng-Wen. Economic Aspects of Memory
Built-in Self-Repair // IEEE Design & Test of Computers.- 2007. – Vol. 24.- P. 164 - 172.

5. IT Infrastructure Library, IT Service Management, Office of Government Commerce,
http://www.itil.co.uk/.

6. Kostanyan, A., Varosyan, A. Partial Recognizing Algorithm for Verification of
Workflow Processes // FUBUTEC.- Porto Portugal, 2008.- P. 89-94.

7. Kostanyan, A., Matevosyan V., Shoukourian S., Varosyan A. An Approach for Formal
Verification of Business Processes // BIS'09 SpringSim'09 San Diego USA.- 2009. -
Article 134. – P. 1-8.

Error
Create
server

Lprocessor, Lgroup

Analyze
Sserever

Serror Sanalyzed, Spassed

End
Send

Notify
Snotify

Spassed=FalseSpassed=True

170

8. Leymann, F., Roller D. Production Workflow: Concepts and Techniques // Prentice Hall
Press, 2000.- 479 p.

“Synopsys Armenia” CJSC. The material is received 12.04.2013.

Ա.Ա. ԽԶԱՐՋՅԱՆ

«ՍԹԱՐ» ՀԻՇՈՂՈՒԹՅԱՆ ՀԱՄԱԿԱՐԳԻ ՕԳՏԱԳՈՐԾՄԱՆ ԸՆԹԱՑՔԻ

ԱՎՏՈՄԱՏԱՑՄԱՆ ԵՎ ՍՏՈՒԳՄԱՆ ՄՈՏԵՑՈՒՄ

Ժամանակակից համակարգ բյուրեղի վրա (ՀԲՎ)-ի նախագծումը սահմանափակված է

դեպի շուկա ժամանակի և օգտակարության ելքով: Լայնորեն օգտագործվող մտավոր սեփա-

կանության (ՄՍ) կտորը ՀԲՎ-ում ներդրված հիշողությունն է, որն ավելի հակված է արատ-

ների: Հայտնի ենթակառուցվածքային ՄՍ է «ՍԹԱՐ» հիշողության համակարգը (ՍՀՀ), որը

ընդհանուր լուծում է՝ ներդրված ինքնաթեստավորման և վերանորոգման համար: Ներկայաց-

վում է ՍՀՀ օգտագործման ընթացքի կաղապարների գրադարանի կառուցումը՝ կիրառելով

ձևային ստուգման ալգորիթմի մոտեցումը: Այն իրականացվել է որպես աջակցման գործիք՝

օպտիմալացնելով ՍՀՀ օգտագործման ընթացքի նախագծումը և ստուգումը՝ հաճախորդների

կարիքներից ելնելով:

Առանցքային բառեր. «ՍԹԱՐ» հիշողության համակարգ, օգտագործման ընթացք, ձևա-

կան ստուգում, համակարգ բյուրեղի վրա, ներդրված ինքնաթեստավորում, մտավոր սեփա-

կանություն:

А.А. ХЗАРДЖЯН

ПОДХОД К АВТОМАТИЗАЦИИ И ПРОВЕРКЕ ПРОЦЕССА ИСПОЛЬЗОВАНИЯ
СТАР - СИСТЕМЫ ПАМЯТИ

Современное проектирование системы на кристалле (СнК) ограничено временем
выхода до рынка и полезным выходом. Широко используемый блок интеллектуальной
собственности (ИС) в СнК - это встроенная память, которая более склонна к дефектам.
Одна из известных инфраструктурных ИС СТАР - системы памяти (ССП) - это обобщен-
ное решение для ВСТ и ремонта. Предлагается подход к конструированию библиотеки
шаблонов процесса использования ССП и применения формального алгоритма проверки.
Данный подход реализован в виде инструмента поддержки оптимизации проектирования
использования ССП и проверки для нужд клиентов.

Ключевые слова: СТАР - система памяти, процесс использования, формальная про-
верка, система на кристалле, встроенное самотестирование, интеллектуальная собствен-
ность.

