ISSN 0002-306X. Изв. НАН РА и ГИУА. Сер. ТН. 2013. Т. LXVI, № 2.

УДК 620.186:621.981.635

МАШИНОСТРОЕНИЕ

М.Г. СТАКЯН, Ш.ДЖ. СИСТАНИ, М.С. ТОРОСЯН

ОЦЕНКА ПРОЧНОСТИ И ДОЛГОВЕЧНОСТИ ДЕТАЛЕЙ МАШИН ПРИ ПОВЕРХНОСТНОМ ПЛАСТИЧЕСКОМ ДЕФОРМИРОВАНИИ

На основе комплексного учета проектно-технологических мероприятий дана количественная оценка надежности конструкции машины выводом математических моделей процессов усталостных повреждений и поверхностного упрочнения для ответственных деталей конструкции.

Ключевые слова: вал, параметры кривой усталости, поверхностное пластическое деформирование, надежность, математическая модель.

Проблема создания современной конструкции конкурентоспособной машины, отличающейся высокой производительностью, безотказностью работы за весь срок службы, выпускаемой в крупносерийном или массовом производстве, обладающей минимальной материалоемкостью и затратами на изготовление и эксплуатацию в условиях подорожания конструкционных и горюче-смазочных материалов, выдвигает требования по использованию всего резерва несущей способности ответственных деталей и сборочных единиц конструкции. Этого можно достичь за счет регулирования напряженно-деформированного состояния опасных сечений деталей, выбора доступных и недорогих марок конструкционных сталей и применения упрочняющих технологий для повышения сопротивления усталости и износостойкости их рабочих поверхностей [1-3].

Однако прогнозирование надлежащего уровня безотказности работы элементов конструкции, различных по размерам и формам, технологии изготовления, режимам нагружения и эксплуатационным условиям, является сложной задачей. Это обусловлено тем, что на выносливость деталей влияет большое число факторов, разнообразное сочетание действия которых затрудняет надежную оценку их работоспособности с вероятностных позиций [4].

Для достоверного определения характеристик сопротивления усталости необходимо воспользоваться уравнениями семейств квантильных линий усталости, параметром которых является уровень вероятности неразрушения P(N), представленный квантилем z_p нормированной функции нормального распределения P(z), и которые имеют следующий вид:

для зоны N ≤ 5 · 10⁶ (левая ветвь) –

$$N \le N_{G(v)}, \lg N = (\overline{\lg N_{(v)}} + z_P s_{Nr(v)}) - (\overline{m_{(v)}} + z_P s_{m(v)})(\lg \sigma - \overline{\lg \sigma}_{(v)}) = C_{(v)} - m_{(v)} \lg \sigma; \quad (1)$$

для зоны N > 5 · 10⁶ (правая ветвь) -

$$N > N_{G(v)}, \ \lg N_{G(v)}, \ \lg \sigma_{R(v)} = \left(C_{(v)} - \lg N_{G(v)}\right) / m_{(v)}.$$
⁽²⁾

В (1)-(2) приняты следующие обозначения:

$$m_{(v)} = \overline{m_{(v)}} + z_{P}s_{m(v)}, \ C_{(v)} = \overline{C_{(v)}} + z_{P}s_{C(v)}, \ \overline{m_{(v)}} = \overline{r_{(v)}}/s_{N(v)}^{2},$$

$$\overline{C_{(v)}} = \overline{m_{(v)}}\overline{\lg \sigma_{(v)}} + \overline{\lg N_{(v)}}, \ s_{Nr(v)} = s_{N(v)}\sqrt{(1 - r_{(v)}^{2})(n - 1)/(n - 2)},$$

$$s_{m(v)} = (s_{N(v)}/s_{\sigma(v)})\sqrt{(1 - \overline{r_{(v)}^{2}})(n - 1)/(n - 2)}, \ s_{C(v)} = s_{Nr(v)} + s_{m(v)}\overline{\lg \sigma_{(v)}},$$

$$r_{(v)} = \mu_{(v)}/s_{N(v)}s_{\sigma(v)}, \ \overline{\lg N_{(v)}} = \frac{1}{n}\sum_{1}^{n} \lg N_{i(v)}, \ \overline{\lg \sigma_{(v)}} = \frac{1}{n}\sum_{n}^{1} \lg \sigma_{i(v)}, \ (3)$$

$$s_{N(v)} = \sqrt{\frac{1}{n - 1}\sum_{1}^{n} (\lg N_{i(v)} - \overline{\lg N_{(v)}})^{2}}, \ s_{\sigma(v)} = \sqrt{\frac{1}{n - 1}\sum_{1}^{n} (\lg \sigma_{i(v)} - \overline{\lg \sigma_{(v)}})^{2}},$$

$$\mu_{(v)} = \frac{1}{n - 1}\sum_{1}^{n} (\lg N_{i(v)} - \overline{\lg N_{(v)}})(\lg \sigma_{i(v)} - \overline{\lg \sigma_{(v)}}),$$

где $m_{(v)}$, $C_{(v)}$ - показатели наклона и параметры квантильных линий усталости; $\overline{\lg \sigma_{(v)}}, \overline{\lg N_{(v)}}$ - координаты центров распределения циклических долговечностей; $s_{Nr(v)}$ - меры индивидуального рассеяния данных на уровнях центров распределения; $s_{m(v)}$ - с.к.о. показателей наклона; $\mu_{(v)}$ - корреляционные моменты; $r_{(v)}$ - коэффициенты линейной корреляции; $\overline{\lg \sigma_{(v)}}, \overline{\lg N_{(v)}}$ - координаты экспериментальных точек; n - объем испытаний (в (1)-(3) принята краткая форма представления параметров, например, $\overline{m_{(v)}}$ означает \overline{m} или $\overline{m_v}$ для левой ветви квантильных линий).

В уравнениях (1)-(3) величины m, C, N_G, σ_R являются интегральными характеристиками прочности и долговечности деталей в широком интервале многоцикловой усталости ($10^5 \le N \le 10^7$), практически охватывающем весь срок службы современных машин и технологического оборудования и представляющем значительный интерес. Указанные величины взаимосвязаны. На основании теоретико-экспериментальных разработок, базирующихся на анализе значительного объема вычислений, выведены эмпирические функции [3]

$$m = f_1(\sigma_R), C = f_2(\sigma_R), C = f_3(m), N_G = f_4(\sigma_R),$$
(4)
96

которые являются уравнениями регрессии первой степени ($|r| = 0,85 \dots 0,95$) и позволяют с достаточной точностью расчетным путем определить основные параметры (1)-(3), минуя длительные и дорогостоящие испытания на усталость (особенно натурные).

Эксплуатационные свойства и несущая способность деталей машин в значительной степени определяются физико-механическим состоянием их рабочих поверхностей. Эффективным и доступным методом формирования поверхностного слоя является поверхностное пластическое деформирование (ППД), которое изменяет микроструктуру и свойства материала, повышает его твердость и прочность за счет остаточных сжимающих напряжений, снижает шероховатость поверхности и создает регулярный микрорельеф. Форма микронеровностей этого микрорельефа благоприятна практически для всех случаев эксплуатационных режимов, т.к. пологая форма выступов и впадин на 1...2 порядка ниже, чем при обработке резанием, и характеризуется большей опорной поверхностью [4].

В [5,6] рассмотрено изменение характеристик физико-механического состояния поверхностных слоев валов, изготовленных из среднеуглеродистой и низколегированной стали 40Х в состоянии поставки ($\sigma_B = 870 M\Pi a$, $HB = 215 \dots 250$), широко применяемой в передаточных механизмах машин различного назначения, в зависимости от режимных параметров упрочняющей технологии (обкатка роликом). Изменение этих величин представлено в виде многопараметрической зависимости

$$\Psi(HV,\Delta h, R_a, R_z, R_{max}, v, s, t, F) = 0, \qquad (5)$$

которая для практического применения, аналогично (4), заменена системой параметрических функций:

$$HV = f_1(\Delta h, F, s), HV_{max} = f_2(F, s), \Delta h = f_3(F, s), R_a, R_z, R_{max} = f_{4,5,6}(F, s), \quad (6)$$

где HV — микротвердость; F и s - нормальная сила (H) и продольная подача обкатывающего элемента, MM/oб; R_a , R_z , R_{max} - параметры шероховатости обработанной поверхности, MKM; Δh - глубина наклепанного слоя, MM.

Полученный экспериментальный материал обработан по вычислительной программе [5]. Выведены математические модели процесса упрочнения, позволяющие выбрать оптимальные параметры упрочняющей технологии [6].

Логическим завершением вычислений, которые до настоящего времени раздельно относятся к математическому моделированию процессов накопления усталостных повреждений с одной стороны и выполнению упрочняющих технологий - с другой, является третий этап расчетных процедур: установление функциональных связей между двумя группами параметров указанных процессов, позволяющее дать оценку надежности конструкции машины на основе комплексного учета расчетно-проектных и технологических мероприятий.

Для точного воспроизводства регрессионных связей между параметрами (1)-(3) в данной работе рассматривается вариант получения указанных связей только при учете упрочняющих технологий, т.к. взаимное расположение сравниваемых семейств квантильных линий усталости имеет свои отличительные особенности - точка перегиба линий усталости $G(\sigma_R, N_G)$ с увеличением степени наклепа поверхностных слоев деталей до определенной величины перемещается в зону больших циклических перенапряжений и долговечностей, а показатели рассеяния циклических долговечностей несколько снижаются [3]. На градиент параметров (1)-(3) влияют также вид упрочняющей технологии и ее совместное применение с термообработкой или нанесением защитных покрытий. Учитывая весь спектр действия различных факторов, из всего объема ранее выполненных исследований выбраны и классифицированы варианты испытаний, относящиеся к валам, изготовленным из конструкционных сталей 45 и 40Х, подвергнутых пластическому обкатыванию поверхностей упрочняющим инструментом и испытанных при циклическом изгибе или изгибе с кручением. Рассмотренные испытания классифицированы по диаметру d, коэффициенту концентрации напряжений α_{σ} , глубине наклепанного слоя Δh и режимным параметрам обкатывания *V*, *s*, *t*.

Аналогично (5), для новой группы параметров, характеризующих материаловедческие, прочностные и технологические аспекты проектирования, предложена новая многопараметрическая связь:

$$\Phi[(\sigma_B, \sigma_R, HB, M), (C, m, N_G, d, \alpha_{\sigma}), (V, S, t, \Delta h, HV)] = 0,$$
(7)

которая также заменена новой системой уравнений

$$\begin{cases} \Delta h = \varphi_1(F,S), \ \overline{\sigma_R} = \varphi_2(\Delta h, \alpha_\sigma, d), d = \varphi_3(\overline{\sigma_R}, \alpha_\sigma, \Delta h), \delta M = \varphi_4(d, \alpha_\sigma, \Delta h), \\ \overline{m} = \varphi_5(\overline{\sigma_R}), \ \overline{C} = \varphi_6(\overline{m}), \ \overline{m} = \varphi_7(HV_{max}), \ \overline{m} = \varphi_8(\Delta h), \end{cases}$$
(8)

где δM – относительное снижение массы детали при уточнении прочностных расчетов.

Классифицируя и используя ранее выполненный значительный объем экспериментальных исследований по ППД ответственных деталей и узлов машин, составлены базы данных параметров (7) для наиболее распространенного конструкционного материала – стали 40Х. Для выбора вида математической модели из уравнений

$$y_x = a_0 + a_1 x, \tag{9}$$

$$y_x = a_0 + a_1 x + a_2 x^2, (10)$$

$$y_x = a_0 + a_1 x + a_2 x^2 + a_3 x^3, \tag{11}$$

$$y_x = a_0 + a_2 x^{-(m + \Delta m)}$$
(12)

применен пакет прикладных программ (ППП) [5], позволяющий выполнить трехуровневую оптимизационную процедуру по методу наименьших квадратов (МНК) – графический выбор функций из (9)-(12); расчеты минимальных сумм квадратов разностей $E_i = \sum (y_i - y_{xi})^2 \Rightarrow min$; выбор оптимальной функции из (9)-(12), обеспечивающей условие

$$min(E_i \Rightarrow min).$$
 (13)

Результаты статистических вычислений представлены в табл. 1 – 3.

Таблица 1

№	Образцы, d=7,520 мм		d,	Значения <i>Е</i> для (9) - (12)				Параметры оптимальной функции				
			мм	(9)	(10)	(11)	(12)	a_0	<i>a</i> ₁	$a_2 \cdot 10^6$	$a_3 \cdot 10^9$	
1			7,5	45,030	45,029	45,027	45,033	485334	-6,676	21	1,5	
2	дкие		10,0	9,875	9,873	9,872	9,878	485870	-4,194	7,2	2,3	
3	L 1		15,0	15,488	15,484	15,465	15,491	517427	-4,926	16	0,95	
4			20,0	25,842	25,839	25,836	25,845	550714	-4,928	4,1	1,4	
5	й	69	7,5	144,487	144,482	144,480	144,490	310833	-1,837	3,2	1,5	
6	ени	=1,703,12 $\alpha_{\sigma} = 1,011,$	10,0	1,479	1,473	1,471	1,482	372119	-1,414	11	1,6	
7	онцентраторами напряж		15,0	14,642	14,593	14,541	14,645	396861	-1,824	1,8	1,4	
8			20,0	39,719	39,712	39,710	39,722	432923	-2,291	0,81	0,62	
9			7,5	2,146	2,139	2,136	2,149	188627	-1,305	2,4	1,4	
10			=1,703,1	10,0	12,432	12,398	12,379	12,435	244478	-2,063	2,1	1,9
11				15,0	4,397	4,389	4,386	4,413	265133	-1,697	0,63	0,58
12	C K	α_{σ} :	20,0	2,508	2,505	2,504	2,512	294365	-2,313	2,5	1,8	

Выбор оптимальной функции для $\overline{\sigma_R} = \varphi_2(\Delta h, \alpha_\sigma, d)$

Таблица 2

	ізцы, 20 мм		Δ	Знач	ения <i>Е</i> ∙ 1() ⁵ для (9)	- (12)	Параметры оптимальной функции				
N⁰	Oбpa	d=7,5	<u>—</u> , ММ	(9)	(10)	(11)	(12)	<i>a</i> ₀	метры оптимальной фу $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{a_3\cdot 10^5}{a_3\cdot 10^8}$		
1			0	0,0022	0,0021	0,0023	0,0024	0,0025	1,000	2,000	$\frac{-1}{-}$	
2		ладиис	0,05	$\frac{0,0011}{40}$	$\frac{0,0011}{30}$	$\frac{0,0011}{30}$	$\frac{0,0012}{170}$	0,0026 1,0220	0,999 -0,0153	$\frac{-1}{7,2}$	5 2,3	
3	Ĺ	-	0,10	<u>0,0012</u> 6	<u>0,0012</u> 4	<u>0,0012</u> 2	<u>0,0013</u> 8	0,0028 0,9641	<u>0,999</u> 0	2 1,6	-5 0,95	
4			0,15	<u>0,0030</u> 1	0,0028 0,8	0,0026 0,8	<u>0,0039</u> 4	0,0034 0,9264	<u>0,999</u> 0	$\frac{-6}{4,1}$	7 1,4	
5		$\alpha_{\sigma}=1,01\dots 1,69$	0	<u>1,875*</u> —	<u>1,863*</u> _	<u>1,861*</u> _	<u>1,986*</u> _	<u>0,0025</u> —	<u>1,000</u> _	2	$\frac{-5}{-}$	
6	ний		0,05	<u>1,875*</u> 2	$\frac{1,873^{*}}{1}$	1,872* 1	<u>2,075*</u> 6	0,0026 0,8886	<u>0,999</u> 0	$\frac{0}{3,2}$	$\frac{-3}{1,5}$	
7	апряже		$\alpha_{\sigma} = 0$	0,10	1,875* 0,02	1,873* 0,007	1,871* 0,02	1,995* 0,06	0,0028 0,8500	<u>0,999</u> 0	$\frac{-4}{11}$	2 1,6
8	орами н				0,15	1,875* 0,5	$\frac{1,872^{*}}{0,4}$	$\frac{1,870^{*}}{0,4}$	$\frac{2,071^{*}}{1}$	0,0034 0,8020	<u>0,999</u> 0	2 1,8
9	центрат	12	0	<u>1,875*</u> —	<u>1,874*</u> _	<u>1,873*</u> _	<u>1,922*</u> _	<u>0,0025</u> —	<u>1,000</u> _	1	<u>1</u> _	
10	С кон	,703,	0,05	<u>1,875*</u> 9	$\frac{1,876^{*}}{7}$	<u>1,872*</u> 6	$\frac{2,075^{*}}{20}$	0,0026 0,8385	0,999 0,0010	-5 0,81	8 0,62	
11		$\alpha_{\sigma} = 1$	0,10	1,875* 3	1,873* 2	1,871* 2	2,003* 10	0,0028 0,7975	0,999 -0,0001	0 2,4	$\frac{-4}{1,4}$	
12			0,15	1,875* 0,8	$\frac{1,874^{*}}{0,6}$	$\frac{1,872^{*}}{0,6}$	$\frac{1,986^*}{3}$	0,0034 0,7423	0,999 -0,0001	$\frac{-6}{2,1}$	7 1,9	

Выбор оптимальных функций для $d = \varphi_3(\overline{\sigma_R}, \alpha_\sigma, \Delta h)$ и $\delta M = \varphi_4(d, \alpha_\sigma, \Delta h)$

Примечания: 1. В числителе даны расчетные данные для $d = \varphi_3(\overline{\sigma_R}, \alpha_{\sigma}, \Delta h)$, а в знаменателе - $\delta M = \varphi_4(d, \alpha_{\sigma}, \Delta h)$.

2. Значения Е, обозначенные *, представлены без множителя $\cdot 10^5$.

Таблица 3

	Функции	31	начения Е	Е для (9) -	(12)	Пар	Параметры оптимальной функции			
N⁰	кривой усталости	(9)	(10)	(11)	(12)	<i>a</i> ₀	<i>a</i> ₁	a2	a ₃	
1	$m = \varphi_1(\overline{\sigma R})$	98,905	98,864	98,861	106,012	-0,665	0,034	5,7·10 ⁶	-9,4· 10 ⁹	
2	$\bar{C} = \varphi_2(\bar{m})$	21,753	21,132	20,657	699,184	4,470	2388	0,051	-0,002	

Выбор оптимальных функций для $\overline{m} = \varphi_5(\overline{\sigma_R}), \overline{C} = \varphi_6(\overline{m})$

Предварительный анализ данных табл. 1 - 3 свидетельствует о превалирующей значимости кубической параболической связи (11), для которой и представлены коэффициенты a_0 , a_1 , a_2 , a_3 . Однако значения a_2 , a_3 в большинстве случаев указывают на незначительное влияние на конечный результат 2-го и 3-го членов уравнения (11), который меняется в пределах допустимых расчетных погрешностей (~5...8%). Поэтому в практических расчетах можно дать предпочтение прямолинейной связи (9).

СПИСОК ЛИТЕРАТУРЫ

- 1. Несущая способность упрочненных деталей машин / А.Ф. Дащенко, В.С. Кравчук, В.Д. Иоргачев. Одесса: Астропринт, 2004. 160 с.
- Курочкин Л.Я. Статистический подход к выбору технологии и упрочнения деталей машин // Респ. межвед. н.-т. сб. "Детали машин". - Киев: Техника, 1990. - Вып. 51. – С. 90 - 94.
- 3. Поверхностное динамическое упрочнение деталей машин / Н.В. Олейник, В.П. Кычин, А.Л. Луговской. Киев: Техника, 1984. 151 с.
- Технологические методы обеспечения надежности деталей машин / И.М. Жарский, И.Л. Баршай, Н.А. Свидунович и др. - Минск: Выш. шк., 2010. – 336 с.
- Стакян М.Г., Систани Ш.Дж., Айказян М.Э. Математическое моделирование процесса упрочнения рабочих поверхностей // Изв. НАН РА и ГИУА. Сер. ТН. - 2013.
 - Т. 66, N 1. - С. 20 - 27.
- Стакян М.Г., Систани Ш.Дж., Айказян М.Э. Моделирование физико-механического состояния поверхностных слоев с применением упрочняющих технологий // Вестн. ГИУА (П). Сер. "Механика, машиновед., машиностр". - 2013. - Вып. 16, N 3. - С. 52 – 58.

ГИУА (ПОЛИТЕХНИК). Материал поступил в редакцию 08.01.2013.

Մ.Գ. ՍՏԱԿՅԱՆ, Շ.Ջ. ՍԻՍԹԱՆԻ, Մ.Ս. ԹՈՐՈՍՅԱՆ

ՄԵՔԵՆԱՄԱՍԵՐԻ ԱՄՐՈՒԹՅԱՆ ԵՎ ԵՐԿԱՐԱԿԵՑՈՒԹՅԱՆ ԳՆԱՀԱՏՈՒՄԸ ՄԱԿԵՐԵՎՈՒԹԱՅԻՆ ՊԼԱՍՏԻԿ ԴԵՖՈՐՄԱՑՄԱՆ ԴԵՊՔՈՒՄ

Նախագծատեխնոլոգիական միջոցառումների համալիր հաշվառման հիման վրա տրվել է մեքենայի կառուցվածքի հուսալիության քանակական գնահատումը՝ դուրս բերելով կառուցվածքի պատասխանատու մեքենամասերի հոգնածային վնասվածքների և մակերևութային պլաստիկ դեֆորմացման գործընթացների մաթեմատիկական մոդելները։

Առանցքային բառեր. լիսեռ, հոգնածային կորի պարամետրեր, մակերևութային պլաստիկ դեֆորմացում, հուսալիություն, մաթեմատիկական մոդել։

M.G. STAKYAN, SH.J. SISTANI, M.S. TOROSYAN

MACHINE ELEMENTS STRENGTH AND LONGEVITY ASSESSMENT IN CASE OF SURFACE PLASTIC DEFORMATION

On the basis of a complex consideration of design-and-technological measures, a quantitative evaluation of the structure reliability has been given by deriving mathematical models of fatigue damages and surface strengthening of responsible elements of the structure.

Keywords: shaft, parameters of fatigue curve, surface plastic deformation, reliability, mathematical model.