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DESIGN OF MATRIX REGULATORS FOR CIRCULANT CONTROL
SYSTEMS

The paper is devoted to the problem of designing matrix regulators for a special class of
multivariable feedback control systems called circulant systems. The exposition is based on the
characteristic transfer function method, which allows reducing the investigation of N -
dimensional multivariable control system to investigation of N fictitious one-dimensional
systems. An analytical formula for elements of circulant matrix regulators is derived.

Keywords: multivariable control system, circulant system, permutation matrix,
characteristic transfer function, matrix regulator.

Introduction.The problem of multiple-input multiple-output (MIMO) control
system design is one of the centrals in multivariable feedback control [1-3]. The paper
is devoted to the issue of designing matrix regulators for a significant class of MIMO
control systems described by circulant transfer matrices.Such systems are widespread
in various technical applications, especially in process control and aerospace
engineering [1-3]. The proposed approach is based on the characteristic transfer
functions (CTF) method [4]. That method allows reducing the task of analysis and
design of an N-dimensional square (i.e. having N inputs and N outputs) MIMO system
to N one-dimensional tasks, which, in many cases, can be solved by conventional
methods of classical control [5].

The general matrix block diagram of a MIMO system with the matrix regulator
K(s)is shown in Fig. 1, where: ¢ (s) and f(s) stand for Laplace transforms of the N-

dimensional input and output vectors ¢@(t) and f(t); W(s) denotes the transfer

matrix of the plant with entries that are scalar rational functions in complex variable
s. The destination of the matrix regulator K(s)consists of providing the required

performance indices of the closed-loopMIMO system [1, 2].

P(3) S(s)
K(s) & W)

Fig. L Sgquare MIMO control systemwith plant W (s) and matrix regulator K(s)
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Circulant control systems. The distinctive feature of circulant MIMO systems is
that their transfer matrices are circulant [6, 7]. In a circulant matrix, each subsequent
row is obtained from the preceding row by shifting all elements (except for the N th)
by one position to the right; the N th element of the preceding row then becomes the
first element of the following. For the circulant matrix W(s) of the plant we have:

WS WS WL(S) e Wy (9)
W(s) = Wy (S) Wi (9) W(s) ... W, (9) . (1)
W(S) WS W) o W, (9)

Each diagonal of a circulant matrix consists of the same elements, and the
diagonals located at the same distance from the lower left corner and from the
principal diagonal consist of identical elements. Physically, this means that in
circulant systems, it is possible to single out some groups of subsystems with identical
transfer functions of all cross-connections, i.e. having some internal symmetry. It is
easy to see that any circulant matrix is completely defined by the first (or any other)
row. Using the designations W, (s), W(s) (i=1,2,...,N —1) for the first row of the

circulant matrix W(s) (1), the latter can be represented in the matrix polynomial form
(2, 3]:

N-1
W(s) = Wy(s)l + D W (s)U*, (2
k=1
where
010 ..0
e G)
100 --0

is the orthogonal permutation matrix [6, 7].
The eigenvalues S, of the permutation matrix U are the roots of the equation

det[gl —U]=p" -1=0, (4)
and, for any N, are expressed in the analytical form:
B =exp{j$} (i=1,2,..,N). 6)
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The CTFs q;(s) of the circulant matrix W(s) (1), (2) can be represented, for any

number N of separate channels, as

6.(9=W(9) + Y W,(9) exr{j%k} (i=1,2,..,N), (©)

Besides, the canonical basis of the circulant matrix W(s) and the modal matrix

C are inherited from the permutation matrix U (3) [2, 3].
Design of circulant systems with matrix regulators.Let both the plant W(s)

and the regulator K(s) in Fig. 1 are circulant, i.e. are described by circulant transfer

matrices having the following canonical representations [2, 3]:
W(s) = Cdiag{q;(s)}C"',K(s) = Cdiag{p;(s)}C", @)

where the orthogonal modal matrix C is composed of the normalized eigenvectors C;
of the permutation matrix U (3). Then, the transfer matrix G(s) of the open-loop
corrected system is equal to

G(S)  G(9 Gy(9 . Gy,y(9)

®)

or, taking into account (7),to
G(s) = Cdiag{q,(s)}C 'Cdiag {p, (5)}C"' =Cdiag{q,(s)p, (9)}C"' =Cdiag{g, (s)}C",(9)
where
9 (9=a(p(s) (=12,.,N) (10)

are the CTFs of the corrected circulant system with the circulantmatrix regulator.

Let us find the relationships between the transfer matrices G(s), W(s) and K(s)
for circulant systems with matrix regulators. Giving the desired transfer matrix of the
open-loop system G(S), we can immediately write down, based upon equations (8)-(10),

K(s) =W (s)G(s) = Cdiag{p,(s)}C, (11)
where
n©=39  (_12.N) (12)
g (s
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are the CTFs of the required matrix regulator K(s) in (7).

Formally, the N equations in (12) are quite similar to the corresponding
equations for single-input single-output (one-dimensional) control systems. On the
other hand, here, we have a set of N equations, which depend on 2N transfer
functions w, (), W,(S), ...,W,_,(S) and G,(S),G,(9),..., Gy_,(s) in (1) and (8).

The issue is to find the rational transfer functions k,(s),k,(9),...,Ky_,(S) so that,
the given transfer matrices W(s) (1) and G(s) (8), the N scalar equations (10) [or
the matrix equation (8)] be satisfied. The analytical solution of that task cannot be
generally found. Therefore, we shall try to bring the equations in question to a form,
which will simplify the numerical solution of the task by means of modern computer
aids.

Towards that end, let us derive the analytical equations for CTFs g;(s) for N=3.

Based on (6)-(12), we have

(9

()= (5)+ w(Jexp| 12|+ (sJexp 127, )
U]
)

pz(s):ko(s)+k1(s)exp{j;—”}+k2(s)exp{j47”}, (14)

The substitution of equations (13) and (14) into (10) and examination of the
obtained equations shows that the relationship between the elements of the transfer
matrices G(S), W(s) and K(s) can be written in the following compact form:

G,(5)) [k ()W (s)+k (s)w:(s)+k,(s)wi(s)
G(9) | = |k (s)W ( s)+k ( )W0 s)+k, (s)w,(s) |=
G,(s) k, ()W, (5)+k (S)w(s)+kK, (s)w,(s)

(15)

= | W(s) W(s) wy(s) || k(s)

(
(
(
W,(9) W, () W(S)Mw)}
w,(9) () w(s)) k(9



Note that the matrix
Wy(s)  Wy(s)  wi(s)
W(s) = | w(s)  w(S) Wy(9) (16)
W (S)  wi(s) Wy (s)
in the equation (15) is transposed with respect to the transfer matrix of the plant W(s),
ie. W(s)=W'(s).

It can be shown that analogous [to (15)] relationships hold true for N=4, N=5
and N =6. Therefore, by induction, the relationship between the N -dimensional

column vectors G(S) =[G,(S) G(S) .... Gy ,(9)]" and K(s) has the form
G(s) =W' (s)K(s). (17)
From (17), we get the formula

K(s)=[W" (9] G(s) (18)

relating the vector K(S), composed of the elements of the first row of the circulant

regulator K(s), with the transfer matrix of the plant W(s) and the vector é(s),

composed of the elements of the first row of the desired open-loop transfer matrix
G(s).

Since the matrix W(S) =W'(S) is circulant, it has a standard canonical

representation
W(s)=CdiagiG(s)}C", (19)
where the CTFs ¢ (s) are given by the following expressions:
- - 27(i -1
6.(9) = W(S) + > W, (9 exp{J%k}. 20)
k=1
Taking into account (19) we have, instead of (18), the final expression
K (s) =Cdiag {;}C‘é(s) = Cdiag {;}C*é(s), 1)
a(s G (s)

which relates two vectors é(S) and K (s) and is well-suited for numerical computations.
Example.Assume we have a three-dimensional circulant plant with the following
elements of the first row:
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100 50 —-60

W, (S) = ——, w(s)=———, w,(8)=—. 22
(9 0.88' +s H(9) 0.8’ +s (9 0.168 +s* +s 2)
The CTFs q;(s) of that matrix can be represented analytically in the form:
10(3s+9) 10[(1.5-0.866])s+10.5F9.526 |
G =—"35"—"73"" %:(9= (23)
0.168’ +S +s 0.168’ +S +s

The Nyquist and Nichols plots of the CTFs (23) are shown in Fig. 2. The
inspection of the graphs in Fig. 2 indicates that the initial circulant system is unstable.

6l
q;(je)

40
g, ( jer)

20
) = o

Imaginary Axis
Magnitude (db)

g, (je) -20

-10 q,( jar)

40 q,(jw) q,(jw)

-15 -10 -5 o 5 10 =300 =200 -100 0
Real Axis Phase (deg)
(a) (b)

Fig. 2. Frequency characteristics of the three-dimensional circulant plant W(s) (22).
(a) Nyquist plots; (b) Nichols plots

Let us find a circulant matrix regulator K(s), which will provide stability ofthe
given system and, in addition, provide that the value of the oscillation index M with
respect to output signals be equal to unity, i.e. M =1. Towards that end, we need to
find such a circulant transfer matrix of the corrected system G(s), which possesses the
required performance characteristics. The analysis shows that the goal can be achieved
by the 3x3 matrix G(s) with the following elements of the first row:

0.1907s’ +1.4775" +2.691s+1

G S)= s
(9 0.004s’ +0.081s" +0.5355* +1.358° + s

_0.056385’ +0.141S’ +0.05638s
©0.0045’ +0.081s" +0.5355" +1.355" + s’
0.08624s’ +0.21565° + 0.08624s
0.004s’ +0.081s" +0.5355° +1.358* +s

Gi(9)

24

Gz (9=
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The CTFs g,(s), 9,(s) and g,(s) of the corresponding system have the

0.3332s’ +1.83365" +2.83365+1

form: g, (S) = ,
9.0 0.004S’ +0.081s" +0.5355’ +1.358* +

6,.(s)- (0.1939F j0.02586)S’ + (1.2987 F j0.064605)S* + (2.6197 F j0.02586)s+1
3 0.004S’ +0.081s" +0.5355° +1.358> +S '

The Nyquist and Nichols frequency characteristics of these CTFs are shown in Fig. 3.
The frequency characteristics of the closed-loop CTFs are presented in Fig. 4(a).

40

Magnitude (dh)

Fg,( jor)

1g,(jw)} 40
g, ( _}‘f‘.{]‘]

5 0 5 360 21 180 90 [
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(a) (b)

Fig. 3. Frequency characteristics of the three-dimensional corrected circulant system G(s)
(24). (a) Nyquist plots; (b) Nichols plots
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Fig. 4. Frequency (a) and transient (b) responses of the closed-loop circulant system
The transient responses of the system under the unit steps applied simultaneously

to all inputs at time t=1.0 s are given in Fig. 4(b). The same overshoot of all channels
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is OS = 5.3 % . Note that the transient responses of all channels of the system are the
same, which is explained by the fact that, in the circulant system, only the first
characteristic system is activated under the applied input unit steps.

The solution of the equation (21) gives the following elements of the first row of
the circulant matrix regulator K(s):

0.43128° +1.078s+0.4312

S) = ,
() S +14s+40
k(s) = —0.04643s> —0.1161s—0.04643
' S* +14s+40 ’
0.2819s” +0.7055+0.2819
k,(s) = 5 .
S +14s+40

Conclusion.An analytical formula relating the elements of the first row of the
matrix regulator and the given transfer matrices of the corrected circulant system and
the plant is derived in the paper. That formula exploits the canonical representation of
circulant control systems on the bases of the CTFs method. It should be emphasized,
that for circulant systems, the CTFs and the modal matrices can be written in
analytical form for any number of channels N . That allows one to develop effective
program codes (e.g., in the MATLAB language [8]) for computer-aided design of
circulant control systems of an arbitrary dimension. It can be shown that the derived
formula applies also to anticirculant systems [2, 3], i.e. to MIMO control systems with
anticirculant transfer matrices.
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O.L. &UUNUr3UYL, U.fe. NPLEY3UL

8hUNPI3ULS WUNUYULUUL ZUUUUULSECE UUSP8USPL
YUreUudNrpueErh LUVUQONRUL

“Yhunwpyynud £ hbnwunupd juwny puquuswth junwjupdwi hwdwljupgbph hwnntly
nuuh, wyjuybu Ynsyws, ghpynijjutnn hwdwljwpgbph dwwinphgujh tjupquynphsubph twhiw-
gédwl utnhpp: Lkpjuyugdudp juunwpus b punipugphy thnpuwigdwt $nibljghwbph db-
pnyny, npp poy) E nwhu VN -swthwbh hnpwngupd juybpny jurujupdwd hwdwlwpgbph
htwnwgnuunudp hwtighgul) Uk dnunpny b Ejpnd &V hwnbp hwjuyujut hwdwljupgtph ht-
nugnuniwi: nipu b pipduwé whwjhnhl] putwdl’ ghplnyjubn dwnphguygh tjupquynphsh
wnwnpphph npnoudwt hudwp:

Unwhgpuypli punkp. Puquusuth junwjupdwt hwdwlwpg, ghpynigyuin hudwlwupg,
unbnuithnpunipniiitiph dwwnphg, punipugpps hnjupwbgdwi $niyghw, dwnphgugh tjupgqu-
Unphy:

O.H.TACHIAPAH, A.T. YIIUKAH

HNPOEKTUPOBAHHUE MATPUYHBIX PEI'YJIATOPOB JJIA HUPKYJIAHTHBIX
CHUCTEM YIIPABJIEHUSA

PaccmaTpuBaetcs 3agada NPOEKTUPOBAHUSA MAaTPUYHBIX PETYJIATOPOB AJ CHELUAIBHOIO
KJIacca MHOIOMEPHBIX CUCTEM YIIPaBIEHUS ¢ OOPAaTHOH CBSI3bI0, HA3bIBAEMBIX LIUPKYJISIHTHBIMH
cucreMaMu. M310)xeHue OCHOBAaHO Ha METOJIE XapaKTEepUCTHYECKUX MepeaaTouHbIX (QYHKINH,
KOTOpBIH N03BOJIAET CBECTU HcclieoBaHue N-MepHOH B3aUMOCBSA3aHHON CUCTEMBI YIIPaBIECHUS
K uccienoBanuio N (GUKTUBHBIX CHCTEM C OJHMM BXOJOM M BBIXOAOM. BhIBeneHa aHanuTu-
geckas opMyna IS ONPEAeIeHHs IEMEHTOB IUPKYJITHTHOIO MAaTPUUHOTO PETyIsATOpA.

Knroueevie cnoea: MHOrOMeEpHas CUCTEMaA yNPABJICHUS, LIMPKYJIIHTHAs CUCTEMA, MaTpUIa
[IEPECTAHOBOK, XapaKTePUCTHIECKas IepeAaTouHas (pyHKIH, MATPUIHBIN PErysTop.
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