ISSN 0002-306X. Изв. НАН РА и ГИУА. Сер. ТН. 2012. Т. LXV, № 2.

УДК 621.3.061

ЭНЕРГЕТИКА

В.П. АРАКЕЛЯН, Л.А. АКОПЯН

НОВЫЙ ПОДХОД К ОПРЕДЕЛЕНИЮ Y-МАТРИЦЫ ЭЛЕКТРОЭНЕРГЕТИЧЕСКОЙ СИСТЕМЫ

Получены формулы расчета элементов матрицы узловых комплексных проводимостей схемы замещения электроэнергетической системы. Осуществлено построение матрицы Y-формы пассивных параметров электроэнергетической системы.

Ключевые слова: электроэнергетическая система, схема замещения, проводимость, формулы, матрица.

Электроэнергетическая система (ЭЭС) – электрическая часть энергетической системы, является достаточно сложной. Элементы современных ЭЭС имеют множество внутренних и наружных связей, которые требуют большого объема информации для расчета и анализа ее режимов [1-4]. Учитывая разные виды моделирования элементов современных ЭЭС, сложность схем электрических сетей, а также возможности вычислительной техники, предлагаются новые формулы расчета параметров схемы замещения и виды обобщенных параметров ЭЭС. Преимуществами данного подхода являются универсальность полученных расчетных формул и легкая программная реализация.

Предположим, что ЭЭС состоит из М+1 узлов (см. рис. 1).

Рис. 1. Схема замещения ЭЭС Ү-формой

В качестве базисного (балансного) выбирается узел с индексом "0". Принимается, что мощности узлов станций (1,2,...,Г) и нагрузки (Г+1, Г+2,..., Г+Н=М) приведены на шины повышающих и понижающих трансформаторных подстанций. При моделировании режимов сложных ЭЭС становятся важными виды представления схем замещения их элементов [5]. Матрицу узловых комплексных проводимостей ЭЭС, содержащей М независимых узлов, можно представить в виде

$$Y = \begin{vmatrix} Y_{11} & -Y_{12} & \dots & -Y_{1M} \\ -Y_{21} & Y_{22} & \dots & -Y_{2M} \\ \dots & \dots & \dots & \dots \\ -Y_{i1} & -Y_{i2} & \dots & -Y_{iM} \\ -Y_{M1} & -Y_{M2} & \dots & Y_{MM} \end{vmatrix},$$
(1)

где $Y_{11}, Y_{22}, ..., Y_{MM}$ - собственные комплексные проводимости независимых узлов; $Y_{12}, Y_{21}, ..., Y_{M1}$ - взаимные комплексные проводимости независимых узлов.

Матрица узловых комплексных проводимостей содержит полную информацию о конфигурации системы, ее параметрах и составляется непосредственно на основе схемы замещения. Схема узла ЭЭС показана на рис.2.

Рис. 2. Схема узла ЭЭС

Представляя линию электропередачи (ЛЭП) моделью Y [2], для взаимных комплексных проводимостей получим [3]

$$Y_{i0} = (Z_{i0})^{-1}, Y_{i1} = (Z_{i1})^{-1},$$

$$Y_{i2} = (Z_{i2})^{-1}, \dots, Y_{ij} = (Z_{ij})^{-1}, Y_{iM} = (Z_{iM})^{-1}.$$
(2)

Полные комплексные сопротивления ветвей определяются в виде

$$\begin{cases} Z_{i0} = \dot{W}_{B,i0} sh\dot{\gamma}_{0,i0} l_{i0}, Z_{i1} = \dot{W}_{B,i1} sh\dot{\gamma}_{0,i1} l_{i1}, \\ Z_{i2} = \dot{W}_{B,i2} sh\dot{\gamma}_{0,i2} l_{i2}, Z_{i3} = \dot{W}_{B,i3} sh\dot{\gamma}_{0,i3} l_{i3}, \\ \dots \\ Z_{ij} = \dot{W}_{B,ij} sh\dot{\gamma}_{0,ij} l_{ij}, Z_{iM} = \dot{W}_{B,iM} sh\dot{\gamma}_{0,iM} l_{iM}, \end{cases}$$
(3)

где $\dot{W}_{B,i0}, \dot{W}_{B,i1}, \dot{W}_{B,i2}, ..., \dot{W}_{B,ij}, \dot{W}_{B,iM}$ - комплексные величины волновых сопротивлений ЛЭП; $\dot{\gamma}_{B,i0}, \dot{\gamma}_{B,i1}, \dot{\gamma}_{B,i2}, ..., \dot{\gamma}_{B,ij}, \dot{\gamma}_{B,iM}$ - комплексные коэффициенты распростра-

нения волны ЛЭП; $l_{B,i0}, l_{B,i1}, l_{B,i2}, \dots, l_{B,ij}, l_{B,iM}$ - длины ЛЭП.

Составляющие системы уравнений (3) определяются способами и программой расчета вторичных параметров ЛЭП [6,7]. Учитывая систему (3), после соответствующих преобразований систему (2) представим в виде

$$\begin{cases} g_{i0} = Re(Y_{i0}) = \cos(\psi_{i0}^{sh} - \psi_{i0}^{W}) / A_{i0}, b_{i0} = Im(Y_{i0}) = \sin(\psi_{i0}^{sh} - \psi_{i0}^{W}) / A_{i0}, \\ g_{i1} = Re(Y_{i1}) = \cos(\psi_{i1}^{sh} - \psi_{i1}^{W}) / A_{i1}, b_{i1} = Im(Y_{i1}) = \sin(\psi_{i1}^{sh} - \psi_{i1}^{W}) / A_{i1}, \\ g_{ij} = Re(Y_{ij}) = \cos(\psi_{ij}^{sh} - \psi_{ij}^{W}) / A_{ij}, b_{ij} = Im(Y_{ij}) = \sin(\psi_{ij}^{sh} - \psi_{ij}^{W}) / A_{ij}, \\ g_{iM} = Re(Y_{iM}) = \cos(\psi_{iM}^{sh} - \psi_{iM}^{W}) / A_{iM}, b_{iM} = Im(Y_{iM}) = \sin(\psi_{iM}^{sh} - \psi_{iM}^{W}) / A_{iM}, \end{cases}$$

$$(4)$$

где $g_{i0}, g_{i1}, g_{i2}, ..., g_{ij}, g_{iM}$ - взаимные активные проводимости продольной ветви схемы; $b_{i0}, b_{i1}, b_{i2}, ..., b_{ij}, b_{iM}$ - взаимные реактивные проводимости продольной ветви схемы.

В общем случае

$$\psi_{ij}^{sh} = \operatorname{arctg} \operatorname{cth} \alpha_0 l \cdot tg\beta_0 l, \quad \psi_{ij}^{W} = \Theta_{ij} - \delta_{ij}, \tag{5}$$

где

$$\Theta_{ij} = (1/2) \operatorname{arctg}(g_{0,ij} / b_{0,ij}), \delta_{ij} = (1/2) \operatorname{arctg}(R_{0,ij} / X_{0,ij}), A_{ij} = \sqrt{(a_{ij}^a)^2 + (a_{ij}^r)^2}, \quad (6)$$

$$a_{ij}^{a} = Re(\dot{W}_{B,ij}sh\dot{\gamma}_{0,ij}l_{ij}), a_{ij}^{r} = Im(\dot{W}_{B,ij}sh\dot{\gamma}_{0,ij}l_{ij}).$$
(7)

Для комплексной проводимости поперечной ветви схемы замещения ЭЭС получим

$$Y_{ij}^{n} / 2 = sh\dot{\gamma}_{0,ij}l_{ij} / \dot{W}_{B,ij} .$$
(8)

После соответствующих преобразований активная и реактивная проводимости поперечной ветви принимают вид

$$g_{ij} = Re(Y_{ij}^{\Pi} / 2) = (A_{ij}^{n} / 2) cos(\psi_{ij}^{sh} + \psi_{ij}^{W}),$$

$$b_{ij} = Im(Y_{ij}^{\Pi} / 2) = (A_{ij}^{n} / 2) sin(\psi_{ij}^{sh} + \psi_{ij}^{W}),$$
(9)

где

$$A_{ij}^{\Pi} = \sqrt{\left(a_{ij}^{an}\right)^2 + \left(a_{ij}^{rn}\right)^2}, a_{ij}^{a\Pi} = \operatorname{Re}(sh\dot{\gamma}_{0,ij}l_{ij} / \dot{W}_{B,ij}), a_{ij}^{r\Pi} = \operatorname{Im}(sh\dot{\gamma}_{0,ij}l_{ij} / \dot{W}_{B,ij}).$$
(10)

Диагональные элементы $Y_{11}, Y_{22}, ..., Y_{ii}, Y_{MM}$ матрицы узловых комплексных проводимостей – собственные комплексные проводимости, определяются сум-

мой комплексных проводимостей, подключенных к узлу. Знак собственных комплексных проводимостей всегда положительный, а знак взаимных комплексных проводимостей – отрицательный. Если между узлами і и ј электрическая связь отсутствует, то взаимная комплексная проводимость $Y_{ij} = 0$. По этой причине матрица комплексных проводимостей [Y] слабозаполненная. Для собственных комплексных проводимостей получим

$$Y_{ii} = \sum_{\substack{j=1\\j\neq i}}^{M} Y_{ij} + \frac{1}{2} \sum_{\substack{j=1\\j\neq i}}^{M} Y_{ij}^{II} , \quad i = 1, 2, 3, ..., M.$$
(11)

Исследование проводилось для ЭЭС Армении. Сооружена макромодель ЭЭС. На основе макромодели представлена схема замещения ЭЭС (см. рис. 3). Матрица [Y] комплексных проводимостей ЭЭС имеет следующий вид:

$$Y = \begin{vmatrix} Y_{00} & -Y_{01} & -Y_{02} & -Y_{03} & -Y_{04} \\ -Y_{10} & Y_{11} & -Y_{12} & -Y_{13} & -Y_{14} \\ -Y_{20} & -Y_{21} & Y_{22} & -Y_{23} & -Y_{24} \\ -Y_{30} & -Y_{31} & -Y_{32} & Y_{33} & -Y_{44} \\ -Y_{40} & -Y_{41} & -Y_{42} & -Y_{43} & Y_{44} \end{vmatrix}$$
(12)

Рис. 3. Схема замещения ЭЭС

Результаты исследований представлены в табл. 1 и 2.

Таблица 1

ij	Формула	g _{ij , <i>Cm</i>}	b _{ij, <i>См</i>}	$g_{ij}^{I} \cdot 10^{-4}$, CM	b _{ij} ^ї ·10 ⁻⁴ , <i>См</i>
01	классическ.	-0,006427	0,036978	0,008937	1,6875
(10)	новая	-0,006426	0,037006	0,008678	1,686231
12	классическ.	-0,006866	0,039506	0	1,5795
(21)	новая	-0,006866	0,039533	0	1,578452
03	классическ.	-0,078139	0,36896	0	8,552311
(30)	новая	-0,07804	0,369144	0	8,547651
14	классическ.	-0,12276	0,854073	0,008764	1,82946
(41)	новая	-0,122456	0,854275	0,008732	1,829444
24	классическ.	-0,052321	0,301039	0,028726	5,4243
(42)	новая	-0,052319	0,301133	0,028295	5,422269
34	классическ.	-0,12276	0,854073	0	1,82946
(43)	новая	-0,122568	0,854255	0	1,829444

Взаимные комплексные проводимости

Таблица 2

Собственные комплексные проводимости

00 классическ. 0,084566 -0,405938 0,008937 10,239811 новая 0,084466 -0,40615 0,008678 10,233882 11 классическ. 0,136053 -0,930557 0,017701 5,09646 11 новая 0,135748 -0,930814 0,017407 5,094127 22 классическ. 0,059187 -0,340545 0,028726 7,0038 33 новая 0,059185 -0,340666 0,028295 7,000721 33 классическ. 0,200608 -1,223033 0 10,381771 44 новая 0,207841 -2,009185 0,03749 9,08322 44 новая 0,297343 -2,009663 0,037027 9,081157	ij	Формула	g _{іі , <i>См</i>}	b _{іі , <i>См</i>}	$g_{ii}^{I} \cdot 10^{-4}$	$b_{ii}^{I} \cdot 10^{-4}$, <i>CM</i>
Новая 0,084466 -0,40615 0,008678 10,233882 11 классическ. 0,136053 -0,930557 0,017701 5,09646 11 новая 0,135748 -0,930814 0,017407 5,094127 22 классическ. 0,059187 -0,340545 0,028726 7,0038 33 новая 0,059185 -0,340666 0,028295 7,000721 33 классическ. 0,200899 -1,223033 0 10,381771 44 новая 0,207841 -2,009185 0,03749 9,08322 44 новая 0,297343 -2,009663 0,037027 9,081157	00	классическ.	0,084566	-0,405938	0,008937	10,239811
классическ. 0,136053 -0,930557 0,017701 5,09646 новая 0,135748 -0,930814 0,017407 5,094127 22 классическ. 0,059187 -0,340545 0,028726 7,0038 33 классическ. 0,200899 -1,223033 0 10,381771 44 классическ. 0,207841 -2,009185 0,037027 9,08322		новая	0,084466	-0,40615	0,008678	10,233882
Новая 0,135748 -0,930814 0,017407 5,094127 22 классическ. 0,059187 -0,340545 0,028726 7,0038 33 классическ. 0,059185 -0,340666 0,028295 7,000721 33 классическ. 0,200899 -1,223033 0 10,381771 44 классическ. 0,207841 -2,009185 0,037027 9,08322	11	классическ.	0,136053	-0,930557	0,017701	5,09646
22 классическ. 0,059187 -0,340545 0,028726 7,0038 Новая 0,059185 -0,340666 0,028295 7,000721 33 классическ. 0,200899 -1,223033 0 10,381771 новая 0,200608 -1,223399 0 10,377095 44 классическ. 0,207841 -2,009185 0,03749 9,08322 новая 0,297343 -2,009663 0,037027 9,081157		новая	0,135748	-0,930814	0,017407	5,094127
22 новая 0,059185 -0,340666 0,028295 7,000721 33 классическ. 0,200899 -1,223033 0 10,381771 33 новая 0,200608 -1,223039 0 10,377095 44 классическ. 0,207841 -2,009185 0,03749 9,08322 44 новая 0,297343 -2,009663 0,037027 9,081157	22	классическ.	0,059187	-0,340545	0,028726	7,0038
33 классическ. 0,200899 -1,223033 0 10,381771 новая 0,200608 -1,223399 0 10,377095 44 классическ. 0,207841 -2,009185 0,03749 9,08322 новая 0,297343 -2,009663 0,037027 9,081157		новая	0,059185	-0,340666	0,028295	7,000721
новая 0,200608 -1,223399 0 10,377095 44 классическ. 0,207841 -2,009185 0,03749 9,08322 новая 0,297343 -2,009663 0,037027 9,081157	33	классическ.	0,200899	-1,223033	0	10,381771
классическ. 0,207841 -2,009185 0,03749 9,08322 новая 0,297343 -2,009663 0,037027 9,081157		новая	0,200608	-1,223399	0	10,377095
новая 0,297343 -2,009663 0,037027 9,081157	44	классическ.	0,207841	-2,009185	0,03749	9,08322
		новая	0,297343	-2,009663	0,037027	9,081157

Выводы

1. Формулы расчетов элементов матрицы Ү ЭЭС позволяют определить обобщенные параметры сложных систем.

2. Расчетные формулы взаимных и собственных комплексных проводимостей позволяют уточнить значения проводимостей продольных и поперечных ветвей схемы замещения системы, существенно изменяя значения активных проводимостей поперечных ветвей (0,36...2,89%).

3. Уменьшение активных проводимостей поперечной ветви схемы замещения ЭЭС дает возможность уменьшить потери на электрическую корону в сетях.

4. Предлагаемые формулы приемлемы как для питающих, так и для системообразующих электрических сетей, так как последние содержат ЛЭП

СВН, в расчетах которых используются вторичные параметры ЛЭП.

5. Составленная в среде С# компьютерная программа обеспечивает высокую точность расчетов и широкие границы применения.

СПИСОК ЛИТЕРАТУРЫ

- Առաքելյան Վ.Պ., Հակոբյան Լ.Ա. Էլեկտրահաղորդման գծերի փոխարինման սխեմաների և գրառումների վերլուծություն // ՀՊՃՀ Լրաբեր – 75. - Երևան, 2008.- Մաս 1. - էջ 125-127:
- 2. Аракелян В.П. Границы применения моделей линий электропередач // Вестник Инженерной академии Армении. 2009.- Т.5, № 1.- С. 39-41.
- 3. Веников В.А., Строев В.А. Электрические системы. Электрические сети.- М.: Высш. шк., 1998.-511 с.
- Duncan Glover J., Mulukutla Sarma S., Overbye Thomas J. Power system analysis and design. 4th ed.- Thomson Australia, Brazil, Canada, Mexico, Singapore, United Kingdom, United States, 2008.-767 p.
- Xi-Fan Wang, Yonghau Song, Malcolm Irving Modern Power Systems Analysis.-Springer Science + Business Media.- New York, 2008.- 569 p.
- 6. **Առաքելյան Վ.Պ.** Էլեկտրական ցանցեր: Գործնական աշխատանքներ / ՀՊՃՀ. Երևան, 1999.- 22 էջ:
- 7. **Аракелян В.П., Оганесян О.С., Акопян Л.А., Аракелян А.В.** Программа расчета режимов линий электропередач // Изв. НАН РА и ГИУА. Сер. ТН. -2011. Т. LXIV, № 2. С. 178-182.

ГИУА (ПОЛИТЕХНИК). Материал поступил в редакцию 08.07.2011.

Վ.Պ. ԱՌԱՔԵԼՅԱՆ, Լ.Ա. ՀԱԿՈԲՅԱՆ

ԷԼԵԿՏՐԱԷՆԵՐԳԵՏԻԿԱԿԱՆ ՀԱՄԱԿԱՐԳԻ Y-ՄԱՏՐԻՑԻ ՈՐՈՇՄԱՆ ՆՈՐ ՄՈՏԵՑՈՒՄ

Ստացված են էլեկտրաէներգետիկական համակարգի փոխարինման սխեմայի հանգուցային կոմպլեքս հաղորդականությունների մատրիցի տարրերի հաշվարկման նոր բանաձևեր։ Կառուցվել է էլեկտրաէներգետիկական համակարգի պասսիվ պարամետրերի Y տեսքի մատրիցը։

Առանցքային բառեր. Էլեկտրաէներգետիկական համակարգ, փոխարինման սխեմա, հաղորդականություն, բանաձներ, մատրից։

V.P. ARAKELYAN, L.A. HAKOBYAN

A NEW APPROACH TO DEFINING ELECTRICAL POWER SYSTEM OF Y-MATRIX

Calculation element formulae of matrix nodal complex scheme conductance for equivalent circuit are obtained. The matrix passive parameters of the electric power system Y-shaped construction is realized.

Keywords: electric energy system, equivalent circuit, conductance, formulae, matrix.