ISSN 0002-306X. Wss. HAH PA u TV A. Cep. TH. 2009. T. LXII, Ne 2.

UDC 530.15: 004.032.26 COMPUTER SCIENCE AND INFORMATICS
PAVLUSH S. MARGARIAN

AN APPROACH FOR AUTOMATED ASSERTION GENERATION IN TEMPLATE-
BASED RTL COMPILERS

An approach for assertion generation which can be used for functional verification of RTL
instances generated by a template-based RTL compiler is presented. The suggested approach
provides automatic generation of assertions during a RTL compiler development and maintenance. An
application of the approach for specific RTL compilers for illustrating the effectiveness of the approach
is presented.

Keywords: RTL compiler's output verification, formal verification, symbolic simulation,
functional verification, model checking, hardware verification.

1. Introduction. An approach for automated generation of assertions to be used in
functional verification of Register Transfer Level (RTL) instances [1] is presented for the
case when these instances are generated by a RTL compiler [2-4]. A subset of RTL
compilers - template based RTL compilers are considered. They usually consist of
templates that describe a parameterized hierarchy of modules and interfaces
(interconnections) between them and a generation engine. A typical example of a RTL
generating template in Tcl is shown in Fig 1. The template input is a vector of input
parameter values which defines features and a structure of design instances to be
generated, and the output of the template is a RTL description with functionality
corresponding to the given input.

Input parameters can be categorized by the following three types:

* Functional (Pg,.. in Fig. 1)

These parameters control optional features/options of design. They affect the design
structure by means of inclusion or exclusion of certain design components in the output
RTL.

+ External interface (Pgy; in Fig. 1)

They parameterize HDL identifiers (module/wire/reg/instance) in a RTL description for
customization of the generated RTL design to an external interface.

+ Scalability (Psc, in Fig. 1).

These parameters affect the design structure by increase or decrease of certain
design characteristics including but not limiting the register bit-width, number of words (in
memories), number of cores (e.g. in SoCs), etc.

It is difficult to perform the separation of parameters formally. Meantime a compiler
developer without extra efforts can perform that during the compiler design.

To accelerate the separation, a special tool, which parses the templates of a RTL
compiler, then extracts and roughly pre-categorizes all template parameters via analysis of
templates logic and RTL fragments, has been developed. Further, this categorization can be
revised by a compiler developer to provide more accurate separation. This can be
considered as a step in the design process, and we assume further that such a separation
already exists.

Actually, these parameters are the basis on which the set of compiler templates is
built. Control of the design hierarchy and the design features from a template space
is performed via them.

208

The process of functional verification for the built compiler outputs comprises two
steps:

* RTL instances generation,

» RTL instances functional verification.

A big number of output RTL instances for all possible input vector values and,
correspondingly, unacceptable total time of functional verification for generated instances
(either via simulation or formal verification) brings a real challenge to reach a 100%
coverage of functional verification for compiler outputs within a reasonable verification time.

The paper considers a possible solution of the problem focusing on two issues:
reduce of the number of generated instances and a common input for both simulation and
formal verification methods during the functional verification step.

The list of input parameters for a given RTL compiler contains parameters which do
not influence directly on the functionality of the generated instance. A way is discussed
below how to exclude them from consideration during the functional verification of a RTL
compiler outputs.

Simultaneously, the key factor at the functional verification step of a given RTL
instance is a choice of a verification method.

Usually, it is a simulation of the generated instance. This approach is time consuming
and can take weeks to complete the verification [5, 6]. Besides, the traditional simulation
can explore only a small percentage of the reachable design state space due to the fact that
the number of values of input vectors required for exhaustive state coverage rises
exponentially with the number of input bits and state bits in the design [7].

The other used method is a formal verification [7]. It does not rely on traditional logic
simulation or test vectors and utilizes a symbolic simulation and symbolic values instead of
the logic zero and one values used by traditional logic simulators [8, 10] for increasing the
considered state coverage of the design [9, 11].

Meantime, the formal verification also has time and resource consuming steps,
specifically, assertion formulation and, finally, does not replace simulation — it rather
complements it.

The suggested input in a form of automatically generated assertions can be used
both in simulation and formal verification and, thus, it will mutually reduce time consuming
steps as well as will stimulate usage of any flexible combination for these verification
methods.

2. Methodology. Paths in a given compiler template which do not affect directly
functionality of output RTL instances are redundant for considerations connected with
functional verification of these instances and can be eliminated from the consideration, e.g.,
by assigning fixed values to parameters which activate these paths.

Specifically, per the characterization above, the whole set Pg of external interface
parameters is redundant and can be eliminated from the template logic by assigning fixed
values to them. This can be considered as a first step of our approach. The elimination
means an assignment of constant values from their value set to all external interface
parameters. The step is illustrated in Fig 2 via assigning the constant value MemWrapper to
the parameter wrapper_name. _

The second step is unrolling loops related to scalability parameters from the Pgg,/
list in the template logic.

Each of these parameters has its own value set which is specific for a given compiler.
During the unrolling an assignment of the list of possible values to the considered parameter
is performed replacing the corresponding loop. An example of a loop unrolling for the
parameter wr_read_portid_listis adduced in Fig 2.

Both two steps can be completely automated.

209

Functional parameters
if {Swr_memory_type == "SRAM" } { (Prunc)

module $wrapper_name [gen_port_list "wr" "module_dec"]
#it if {$bist_enable } {

gen_port_list "wr_bira" "wires"
}

enerates verilog
wire declaeration for mi

udule

gen_port_list"wr_int_wrapper" "wires"
if {(Jecc == 1) || ($ecc ==2)} {
foreach ecc_write_portid $wr_write_portid.

External Interface parameters
(PExlfl)

set wr_ecc_mem_di_name $di_naj
gen_port_list "wr_ecc_write" "wires”

o)
if {$bist_enable }{

/’ ${wrapper_name}_bist U_${wrapper_name}_bist [gen_port_list "wr_bist" "inst_dec"]
)

${wrapper_name}_int U_${wrapper_name}_int [gen_port_list "wr_int_wrapper" "inst_dec"]

#it if {($ecc == 1) || ($ecc == 2)} {

#i# foreach ecc_write_portid $wr_wdte_portid_list {

set wr_ecc_mem_di_name $di_name($ecc_write_portid)

${wrapper_name}_ecc_write U_${wrapper_name}_ecc_write_$ecc_write_portid [gen_port_list
"wr_ecc_write" "inst_dec"]

Y

-

]
wy ”
Endmodule Scalaibtltty parameters J
##} else { (Psca')
#)
@ proc ::Assertios::Generate::BIST {} \
#H upvar WIR, Status, SMSInstance, STPName
Check_BIST: SPEC AG ((
foreach {CurrWIRbit} $WIR(bits) {
if {[GetLevel $CurrWIRbit]}
${SMSInstance}\.U_${STPName}.${WIRbit} &
#H# 1 else {
\!$ {SMSInstance}\.U_${STPName}.$ {WIRbit} &
)
)
AG (${SMSInstance}\.${Status(ready)} =>!${SMSInstance}\.$ { Status(fail)});
#H
\##) J

Fig. 1. A compiler template in Tcl

The third step is a separation of the RTL description fragments from the template
logic. This process results in RTL fragments which become a subject of verification for the
compiler developers and a “pure” template logic which does not contain RTL descriptions. It

is not difficult to automate the mentioned separation too.

The fourth step is the development of assertions for RTL fragments obtained at the
previous step. This process is manual and should be performed by the compiler developers.
This is not difficult because these fragments are usually self-developed, small and, thus, it is
easy to formulate the corresponding assertions for mentioned fragments. These assertions
also can be obtained independently from separate items of initial requirements for the

considered compiler.

210

Generates Level 1
submodule instantiations

wr_read_portid_list = {ReadPort_A ReadPort_B ReadPort_C ReadPort_D}

foreach ecc_read_portid $wr_read_portid_list {
${wrapper_name}_ecc_read U_${wrapper_name}_ecc_read_$ecc_read_portid [gen_port_list "wr_ecc_read" "inst_dec"]
##}

wrapper_name = MemWrapper

MemWrapper_ecc_read U_ MemWrapper_ecc_read_ReadPort_A [gen_port_list "wr_ecc_read" "inst_dec"]
MemWrapper_ecc_read U_ MemWrapper_ecc_read_ReadPort_B [gen_port_list "wr_ecc_read" "inst_dec"]
MemWrapper_ecc_read U_ MemWrapper_ecc_read_ReadPort_C [gen_port_list "wr_ecc_read" "inst_dec"]
MemWrapper_ecc_read U_ MemWrapper_ecc_read_ReadPort_D [gen_port_list "wr_ecc_read" "inst_dec"]

Fig. 2. Assigning constant values and unrolling loops in the template

The next step is the construction of a Multidirectional Decision Diagram (MDD) for
description of the template logic. The MDD nodes corresponding to variables controlling the
template logic and the edges originating from such a node correspond to the value set for
the corresponding variable.

The implementation in a form of a MDD leads to an automatic generation of input
vectors covering all paths of the template. This can be used to provide 100% path coverage
of the template. Each path in MDD starting from the root to one of the MDD end nodes
corresponds to an input vector for a given RTL template and an output RTL instance. The
MDD for the input template in Fig. 1is adduced in Fig. 3.

wr_memory_type

bist_enable

Tenplate Part for BIST 26 O'/Y ES
ecc

wr_write_portid
wr_write_portid_list)

wr_write_portid
(wr_write_portid_list)

ooo oo0o 000 000

wr_read_portid
(wr_read_portid_list)

wr_read_portid
(wr_read_portid_list)

Fig. 3. A MDD for building an assertion generation template

211

At the last step a new template should be developed per already built assertions for
RTL fragments and the built MDD. This template provides generation of complete assertions
for RTL output instances generated by the compiler. The generation of an assertion occurs
simultaneously with the generation of a RTL instance.

Main steps of the proposed solution are summarized in Fig. 4.

Separate a RTL compiler parameters according
Step 1 !
to defined types
Step 2 Unroll loops of scalability parameters
Step 3 Assign constant values to external interface
ep relating parameters
Extract RTL fragments from a given compiler
Step 4 template
Step 5 Define (basic) assertions for each fragment
Step 6 Build a MDD decribing the template logic
Step 7 Construct assertion generation template per the
ep built MDD and basic assertions

Fig. 4. A flow of the approach

In order to double check the correctness of hand-written basic assertions the following
way can be used. A verification of a RTL design should ensure that a built RTL instance
behaves according to a set of requirements (a specification) which contains a set of specific
properties to be satisfied. These specific properties correspond to assertions for fragments
outputs. Thus the double check can be in comparison of constructed basic assertions with
mentioned properties described in the specification.

There are several languages for assertion description, which are supported by
various tools. The CTL language was chosen in our case for the implementation of the
approach due to many advantages [7, 13, 15]. The construction of CTL assertions is usually
a major part of efforts in the formal verification of RTL instances [12]. The suggested
approach avoids time consuming process of assertion construction for every design
instance due to the assertion generation template described above.

3. A model for effectiveness estimation. As it was mentioned in the introduction, a
functional verification of outputs of a RTL compiler is a verification of all instances generated by
a RTL compiler. This is time consuming process and it requests essentially both computer and

212

human resources because generated instances should be verified using a formal verification tool
on manually written verification assertions or simulation on multiple input vectors. The number of
output instances is usually close to thousands.

A total verification time can be expressed by the formula:

analys)

TVer :Z(Ta(:lﬁ)er +Tv(e:r) +T(|)
i=1

where: T;is a verification time for the instance i, N is number of all instances generated by a
RTL compiler. It is clear that N has an exponential dependence on the number of input
parameters and the resulting verification time is unacceptable for verification of RTL
compilers.

Verification time for the instance i can be expressed as:

Ti :Ti(am) +Ti(Vef) +Ti(ana|y5)

N
T = 2 (T +T,0) 4 T49)
i=1

Possible ways of reducing the verification time are the following:
a decrease of the number of considered paths in templates;
a decrease of the number of manually written assertions.
Per considerations in the methodology section the decrease of the number of paths
depends on a power of the Ppes; set. Similarly the decrease of the number of manually
written assertions depends on a power of the Pg¢, set.

Some applications of the suggested methodology to specific RTL compilers are
adduced in the next section. They illustrate an essential decrease of the verification time for
the considered cases.

Meantime it is clear that a representation of a compiler for a given design in a form of
compiler hierarchy could also reduce the verification time of the compiler. The issues
connected with it will be considered in our further publications.

4. Application for specific RTL compilers. A software system which provides a
development and integration flow for a critical component of systems-on-chip (SoC)
implemented as hierarchical silicon aware IP is described below.

The case is a multi-layer Embedded Memory Test and Repair Infrastructure
(EMTRI) based on a special standardized knowledge model covering:
« memory functionality, its structure, fault and repair models;
« adaptation of test and repair algorithms to customer specific peculiarities;
« basic operations and operations pipeline for test and repair, implemented in a
form of processors for specific memories;
* mechanisms of building a network in the case of different processors;
» system testing of the built network;
* mechanisms of the infrastructure insertion in an existing RTL level functional
design and its effectiveness evaluation;
« silicon debug, yield analysis and yield estimation for the infrastructure within the
considered SoC.
Implementation of the infrastructure is done in a form of a hierarchy of RTL
compilers and software tools exploring the database generated by the hierarchy. Each
213

specific instance of the infrastructure is defined via assignment specific values to
parameters of compilers and generates of components and subcomponents for each level.
The hierarchy has both hardware and software levels. Hardware levels will be considered
further. They include wrapper, processor and server levels.

The Wrapper Compiler for memory component operates as an interface between
processor and memory instance. Processor is aimed to perform different BIRA/BIST and
related actions. Server compiler is assigned to build the top-level design infrastructure
utilizing the generated low level processor, wrapper, and memory modules [13,14].

AT T] " T010]

|_ Flemori [ALATTE= | FRmor —l
ke kv kv
|: T Vhapp Vhappe :l
O : PO
|: Prosezod | s FoEIOZ :l
O [— i O
|: E--— werer |Lam] Rrpar boo r.kl;?é :|
E_ Vkagipe]

RN RN

Fig. 5. EMT&RI infrastructure

This brings additionally a scalability and parameterization of the approach. The
standardization of the knowledge leads to utilization of the approach for a broad range of
memories satisfying the appropriate requirements.

A special process flow will be described briefly to illustrate building of the mentioned
infrastructure with a possibility of independent development of separate components.
Corresponding verification and characterization steps of the flow will be adduced too to
demonstrate technology-wise advantages of the approach reducing time-to-market.

4.1 EMT&RI verification example. A verification of one level of the hierarchy, the
processor level will be considered below.

For formal verification of the Processor we have to generate a set of assertions for all
its instructions and then to justify that a given assertion holds for any value of parameters.

Assertion generation process via the template built according to the methodology
above and further verification of the obtained assertion will be considered below for one of
the Processor instructions: BIST_RUN which tests the memory array for faults. This
instruction does not have operands and its binary code is 001010. A CTL assertion for
verification of the functional behavior of Processor during interpretation of BIST_RUN
should be connected with a status register of the Processor which holds information about
the current state. Specifically, it should be connected with values of bits fail and ready of the
status register, reflecting the following. Fail indicates that BIST_RUN instruction has
detected faults in the memory array. Ready indicates that the Processor has finished the

214

execution of the last instruction and is ready to execute the next instruction. A part of
assertion generation template relating to the generation of the assertion for BIST_RUN
instruction is adduced in Fig. 7 and the resulting assertion is adduced in Fig. 5.

Check_BIST: SPEC AG ((
U _SMS.U proc stp p1500.WIR 1[0] &
U _SMS.U proc stp p1500.WIR 1[1] &
U SMS.U proc stp p1500.WIR 1]2] &
'U_SMS.U proc_stp p1500.WIR r[3] &
U _SMS.U _proc_stp_p1500.WIR r[4] &
U _SMS.U proc_stp p1500.WIR r[5]=>
AG (U SMS.U proc_stp.status_reg[3] =>

U SMS.U proc_stp.status_reg[4]));

Fig. 6. Generated assertion

Generated CTL assertion in Fig. 6 can be read as: it is always the case that if
BIST_RUN instruction is loaded into Instruction Register, then for all computation paths
there should be state, where ready is true (test always is finite, all FSM paths starting from
current state should lead to the ready state) then eventually fail will be false (memory array
should be fault-free). We need two verification models for this test case, one with fault
injected memory model, and the other for fault-free memory model. For correct functioning
design we must get false with fault injected memory model and, true for fault-free memory
model.

All assertions targeted to functional verification of output RTLs should be
implemented in the same way and according flow presented in Fig. 4 combine in a single
template.

The application results for the EMTRI are presented in Table.

Table

ER&R application results

T (assertion formulation)
Total (Hours) T (@nalysis) Total (Hours)
Number of T (erification) Ratio
RTL Before Our | (~5minper| g0 (6 Our %
Instances _(~1.5 per | Approac | instance) min Approach Bef Our
per : efore
instance) h instance) (f3 min per Approach
instance)
16 24 80 1.44 1.6 0.8 27 82.24 304
32 48 80 2.88 3.2 1.6 54 84.48 156
64 96 80 5.76 6.4 3.2 108 88.96 82
128 192 80 11.52 12.8 6.4 216 97.92 45
256 384 80 23.04 25.6 12.8 432 115.84 27
512 768 90 46.08 51.2 25.6 865 161.68 19
1024 1536 90 92.16 102.4 51.2 1730 233.36 13
2048 3072 100 184.32 204.8 102.4 3461 386.72 11

Note: Assertion generation time is not considered in the Table because it is too

small (1,2 seconds) related to other time periods.

215

To improve analyzing cost of obtained results, a special tool which reads symbolic
simulation trace files, checks results for predefined constraints and results displays in user
friendly way has been developed.

5. Conclusion. The presented approach can be used not only for assertion based
verification, but also for simulation based verification: instead of verification assertions
parameterized verification tasks with input vectors will be used.

Results presented in the Table show that the application of the approach to RTL
compilers is acceptable when the total numbers of verification instances are more than 50.
In industrial RTL compilers this number is thousands, so for most of cases the approach can
reduce the verification period.

Itis planned to extend the suggested approach in four directions.

First, it is to increase the range of the application of the suggested approach by applying
it to parameters which were not engaged into the consideration in this paper.

Second, it is to define some standard requirements to compilers which can successfully
be passed and effectively through the suggested flow.

Third, it is to optimize time duration of the suggested verification steps. One point of
improvement is to increase the accuracy of the parameters consideration, i.e. do not
consider parameters which are not in the mentioned group but meantime their changes do
not influence the verification process.

Fourth, it is to consider directly the impact of a hierarchy of compilers on the verification
time.

REFERENCES

Douglas J.S. HDL Chip Design. Doone Publications 1996. ISBN 0-9651934-3-8.
. Cummings C.E. Fsm_perl: A Script to Generate RTL Code for State Machines and Synopsys
Synthesis Scripts.- SNUG, 1999.

3. Horstmannshoff J., Meyr H. Efficient Building Block Based RTL Code Generation form
Synchronous Data Flow Graphs // Annual ACM IEEE Design Automation Conference:
Proceedings of the 37th Conference on Design automation. - 2000. - P. 552 — 555.

4. Kejariwal A., Mishra P., Astrom J., Dutt N. HDL Generation Method for Configurable VLIW
processor // CECS Technical Report #03-04, Center for Embedded Computer Systems/ University
of California.- February, 2003.

5. Bening L. A Two-State Methodology for RTL Logic Simulation, Hewlett-Packard// Proceedings of the
36th ACM/IEEE conference on Design automation.- New Orleans, Louisiana, United States, 1999.- P.
672 - 677, ISBN:1-58133-109-7.

6. Evans A., Silburt A., Vrckovnik G., Brown T., Dufresne M., Hall G., Ho T., Liu Y. Functional
Verification of Large ASICs // Proceedings of the 35th annual conference on Design automation. -San
Francisco, California, United States, 1998.- P. 650 — 655, ISBN:0-89791-964-5.

7. Katoen J.-P. Concepts, Algorithms, and Tools for Model Checking, 1999.

8. Narasimhan N., Kalyanaraman R., Vemuri R. Validation of Synthesized Register Transfer Level
Designs Using Simulation and Formal Verifcation // High Level Design Validation and Test
Workshop.- 1996.

9. Bavonparadon P., Chongstitvatana P. RTL Formal Verification of Embedded Processors //
Industrial Technology, 2002. IEEE ICIT '02. 2002 IEEE International Conference. ISBN: 0-7803-
7657-9. -2002. -Vol.1.- P. 667- 672.

10. Kropf T. Introduction to Formal Hardware Verification, Springer, 1999.

11. Barjaktarovic M. The State-of-the-Art in Formal Methods AFOSR Summer Research Technical
Report for Rome Research Site // Formal Methods Framework-Monthly Status Report, F30602-99-
C-0166, WetStone Technologies, 1998.

12. Nguyen H. N. Hierarchical Assertion-Based Verification, Bull S.A. — METASymbiose S.A.S. IP-

Based SoC Design Intl. Workshop, 2004.

N =

216

13. Zorian Y., Shoukourian S. Embedded-Memory test and repair: Infrastructure IP for SoC yield.
IEEE Design and Test of Computers, May-June 2003.

14. Shoukourian 8., Vardanian V., Zorian Y. SoC yield optimization via embedded-memory test and
repair infrastructure // IEEE Design and Test of Computers.- May, 2004.

15. McMillan K. Symbolic Model Checking: Ph.D. Thesis, Carnegie Mellon University.

SEUA. The material is received 15.03.2009.

M.U. uurqursuu

MUVHNPULEL @EULELUSUELNR UYSNUTUSUSYUDO UNSE3NRU CULLALLED
ZbhUUUL YU YUNRSIUO RTL UNUNPL3USNCULESP ZUUUN

Ukpuyugdué t RTL Yndwhjuinnptbph Gipughtt RTL Wjupugpmipmnitibph Jiphdhljughugh
Uh Uninbgnud: Ukpljuyugyws dninkgnidp poy) E wnnwjhu wdundwn jhpyny ghubpugul) ndju RTL
tjupugpnipjutt YEppdhjughuyh hwdwp wihpwdbon wunmdubph pwqunipniup: Unnbkgdw
wpynitwybnmpmniip jnuuwpwbknt hwdwp hwwnmly RTL Yndyhpjwwnnpitph hwdwp
ubpyuyugyuws £ jhpwenipjui ophiwl:

Unwbhgpughli punkp. RTL Unduhpwwnnp, RTL tjupugpmipmnibibph $mibighntiuy Jephdh-
gl ;turqnum uhtnughu, Abwlul Jkphphughw, Al YsphPhlughuh winnulubph
gkubkpughu:

I1. C. MAPTAPAH

TTOIXOJ K ABTOMATUYECKO TEHEPAITMY YTBEPXKIEHWIA JIJIS RTL
KOMIIWJIATOPOB, OCHOBAHHBIX HA IITABJIOHAX

PaccmaTpuBaerca mopxos K TeHEpallMM YTBEPXKAEHHUH, KOTOphIe MCIOJIB3YIOTCA I
¢dyukunonansHoit Bepudukanuu RTL onucanuii, crenepupoBannbeix RTL KoOMIMIATOpOM, OCHOBaHHBIM Ha
mab6ioHax. IIpencraBleHO IIpUMeHeHMe STOTO MOAxojza K cmenuanbHeIM RTL kommmiaaropawm,
MJUIIOCTPUPYIOIUM 3G PEeKTUBHOCTD 3TOTO METO/a.

Kmovessre croBa: RTL xomnunsarop, ¢yHKiuoHanpHasd Bepubukanus RTL onucanwmii,
CHMBOJIMYECKAsA CUMYJIAIMA, GyHKIIMOHAIbHAA BepuduKanys, popManbHad BepupUKanys.

217

	Journal N2 2009 96.pdf
	Journal N2 2009 97.pdf
	Journal N2 2009 98.pdf
	Journal N2 2009 99.pdf
	Journal N2 2009 100.pdf
	Journal N2 2009 101.pdf
	Journal N2 2009 102.pdf
	Journal N2 2009 103.pdf
	Journal N2 2009 104.pdf
	Journal N2 2009 105.pdf

