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AN APPROACH FOR AUTOMATED ASSERTION GENERATION IN TEMPLATE-

BASED RTL COMPILERS 
 

An approach for assertion generation which can be used for functional verification of RTL 
instances generated by a template-based RTL compiler is presented. The suggested approach 
provides automatic generation of assertions during a RTL compiler development and maintenance. An 
application of the approach for specific RTL compilers for illustrating the effectiveness of the approach 
is presented. 

Keywords:  RTL compiler’s output verification, formal verification, symbolic simulation, 
functional verification, model checking, hardware verification. 

1.  Introduction. An approach for automated generation of assertions to be used in 
functional verification of Register Transfer Level (RTL) instances [1] is presented for the 
case when these instances are generated by a RTL compiler [2-4]. A subset of RTL 
compilers - template based RTL compilers are considered. They usually consist of 
templates that describe a parameterized hierarchy of modules and interfaces 
(interconnections) between them and a generation engine. A typical example of a RTL 
generating template in Tcl is shown in Fig 1. The template input is a vector of input 
parameter values which defines features and a structure of design instances to be 
generated, and the output of the template is a RTL description with functionality 
corresponding to the given input.  

Input parameters can be categorized by the following three types:  
•  Functional (PFunc

i in Fig. 1) 
These parameters control optional features/options of design. They affect the design 

structure by means of inclusion or exclusion of certain design components in the output 
RTL. 

•  External interface  (PExIf
i in Fig. 1) 

They parameterize HDL identifiers (module/wire/reg/instance) in a RTL description for 
customization of the generated RTL design to an external interface. 

•  Scalability (PScal
i in Fig. 1). 

These parameters affect the design structure by increase or decrease of certain 
design characteristics including but not limiting the register bit-width, number of words (in 
memories), number of cores (e.g. in SoCs), etc. 

It is difficult to perform the separation of parameters formally. Meantime a compiler 
developer without extra efforts can perform that during the compiler design.  

To accelerate the separation, a special tool, which parses the templates of a RTL 
compiler, then extracts and roughly pre-categorizes all template parameters via analysis of 
templates logic and RTL fragments, has been developed. Further, this categorization can be 
revised by a compiler developer to provide more accurate separation. This can be 
considered as a step in the design process, and we assume further that such a separation 
already exists. 

Actually, these parameters are the basis on which the set of compiler templates is 
built. Control of the design hierarchy and the design features from a template space  
is performed via them. 
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The process of functional verification for the built compiler outputs comprises two 
steps: 

•  RTL instances generation, 
•  RTL instances functional verification. 
A big number of output RTL instances for all possible input vector values and, 

correspondingly, unacceptable total time of functional verification for generated instances 
(either via simulation or formal verification) brings a real challenge to reach a 100% 
coverage of functional verification for compiler outputs within a reasonable verification time. 

The paper considers a possible solution of the problem focusing on two issues: 
reduce of the number of generated instances and a common input for both simulation and 
formal verification methods during the functional verification step.  

The list of input parameters for a given RTL compiler contains parameters which do 
not influence directly on the functionality of the generated instance. A way is discussed 
below how to exclude them from consideration during the functional verification of a RTL 
compiler outputs. 

Simultaneously, the key factor at the functional verification step of a given RTL 
instance is a choice of a verification method. 

Usually, it is a simulation of the generated instance. This approach is time consuming 
and can take weeks to complete the verification [5, 6]. Besides, the traditional simulation 
can explore only a small percentage of the reachable design state space due to the fact that 
the number of values of input vectors required for exhaustive state coverage rises 
exponentially with the number of input bits and state bits in the design [7]. 

The other used method is a formal verification [7]. It does not rely on traditional logic 
simulation or test vectors and utilizes a symbolic simulation and symbolic values instead of 
the logic zero and one values used by traditional logic simulators [8, 10] for increasing the 
considered state coverage of the design [9, 11].  

Meantime, the formal verification also has time and resource consuming steps, 
specifically, assertion formulation and, finally, does not replace simulation – it rather 
complements it.  

The suggested input in a form of automatically generated assertions can be used 
both in simulation and formal verification and, thus, it will mutually reduce time consuming 
steps as well as will stimulate usage of any flexible combination for these verification 
methods. 

2. Methodology. Paths in a given compiler template which do not affect directly 
functionality of output RTL instances are redundant for considerations connected with 
functional verification of these instances and can be eliminated from the consideration, e.g., 
by assigning fixed values to parameters which activate these paths. 
Specifically, per the characterization above, the whole set PExIf

i of external interface 
parameters is redundant and can be eliminated from the template logic by assigning fixed 
values to them.  This can be considered as a first step of our approach. The elimination 
means an assignment of constant values from their value set to all external interface 
parameters. The step is illustrated in Fig 2 via assigning the constant value MemWrapper to 
the parameter wrapper_name.  

The second step is unrolling loops related to scalability parameters from the PScal
i 

list in the template logic. 
Each of these parameters has its own value set which is specific for a given compiler. 

During the unrolling an assignment of the list of possible values to the considered parameter 
is performed replacing the corresponding loop. An example of a loop unrolling for the 
parameter wr_read_portid_list is adduced in Fig 2.  

Both two steps can be completely automated. 
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Fig. 1. A compiler template in Tcl 
 

The third step is a separation of the RTL description fragments from the template 
logic. This process results in RTL fragments which become a subject of verification for the 
compiler developers and a “pure” template logic which does not contain RTL descriptions. It 
is not difficult to automate the mentioned separation too. 

The fourth step is the development of assertions for RTL fragments obtained at the 
previous step. This process is manual and should be performed by the compiler developers. 
This is not difficult because these fragments are usually self-developed, small and, thus, it is 
easy to formulate the corresponding assertions for mentioned fragments. These assertions 
also can be obtained independently from separate items of initial requirements for the 
considered compiler.  
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Fig. 2. Assigning constant values and unrolling loops in the template  

  
The next step is the construction of a Multidirectional Decision Diagram (MDD) for 

description of the template logic. The MDD nodes corresponding to variables controlling the 
template logic and the edges originating from such a node correspond to the value set for 
the corresponding variable.  

The implementation in a form of a MDD leads to an automatic generation of input 
vectors covering all paths of the template. This can be used to provide 100% path coverage 
of the template. Each path in MDD starting from the root to one of the MDD end nodes 
corresponds to an input vector for a given RTL template and an output RTL instance. The 
MDD for the input template in Fig. 1 is adduced in Fig. 3. 

 

 
Fig. 3. A MDD for building an assertion generation template 
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At the last step a new template should be developed per already built assertions for 
RTL fragments and the built MDD. This template provides generation of complete assertions 
for RTL output instances generated by the compiler. The generation of an assertion occurs 
simultaneously with the generation of a RTL instance. 

Main steps of the proposed solution are summarized in Fig. 4. 

 

Fig. 4. A flow of the approach 

In order to double check the correctness of hand-written basic assertions the following 
way can be used. A verification of a RTL design should ensure that a built RTL instance 
behaves according to a set of requirements (a specification) which contains a set of specific 
properties to be satisfied. These specific properties correspond to assertions for fragments 
outputs. Thus the double check can be in comparison of constructed basic assertions with 
mentioned properties described in the specification.  

There are several languages for assertion description, which are supported by 
various tools. The CTL language was chosen in our case for the implementation of the 
approach due to many advantages [7, 13, 15]. The construction of CTL assertions is usually 
a major part of efforts in the formal verification of RTL instances [12]. The suggested 
approach avoids time consuming process of assertion construction for every design 
instance due to the assertion generation template described above. 

3.  A model for effectiveness estimation. As it was mentioned in the introduction, a 
functional verification of outputs of a RTL compiler is a verification of all instances generated by 
a RTL compiler. This is time consuming process and it requests essentially both computer and 
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human resources because generated instances should be verified using a formal verification tool 
on manually written verification assertions or simulation on multiple input vectors. The number of 
output instances is usually close to thousands.  

A total verification time can be expressed by the formula: 
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where: Ti is a verification time for the instance i, N is number of all instances generated by a 
RTL compiler. It is clear that N has an exponential dependence on the number of input 
parameters and the resulting verification time is unacceptable for verification of RTL 
compilers.   

Verification time for the instance i can be expressed as: 
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Possible ways of reducing the verification time are the following: 
a decrease of the number of considered paths in templates; 
a decrease of the number of manually written assertions. 
Per considerations in the methodology section the decrease of the number of paths 
depends on a power of the PDescr  set. Similarly the decrease of the number of manually 
written assertions depends on a power of the PScal  set.  

Some applications of the suggested methodology to specific RTL compilers are 
adduced in the next section. They illustrate an essential decrease of the verification time for 
the considered cases.  

Meantime it is clear that a representation of a compiler for a given design in a form of 
compiler hierarchy could also reduce the verification time of the compiler. The issues 
connected with it will be considered in our further publications. 
 

4. Application for specific RTL compilers. A software system which provides a 
development and integration flow for a critical component of systems-on-chip (SoC) 
implemented as hierarchical silicon aware IP is described below.   

The case is a multi-layer Embedded Memory Test and Repair Infrastructure 
(EMTRI) based on a special standardized knowledge model covering:  

•  memory functionality, its structure, fault and repair models; 
•  adaptation of test and repair algorithms to customer specific peculiarities; 
•  basic operations and operations pipeline for test and repair, implemented in a 
form of processors for specific memories; 

•  mechanisms of building a network in the case of different processors;  
•  system testing of the built network; 
•  mechanisms of the infrastructure insertion in an existing RTL level functional 
design and its effectiveness evaluation; 

•  silicon debug, yield analysis and yield estimation for the infrastructure within the 
considered SoC. 

Implementation of the infrastructure is done in a form of a hierarchy of RTL 
compilers and software tools exploring the database generated by the hierarchy. Each 



specific instance of the infrastructure is defined via assignment specific values to 
parameters of compilers and generates of components and subcomponents for e
The hierarchy has both hardware and software levels. Hardware levels will be considered 
further. They include wrapper, processor and server levels.

The Wrapper Compiler for memory component operates as an interface between 
processor and memory i
related actions. Server compiler is assigned to build the top
utilizing the generated low level processor, wrapper, and memory modules [13,14].

This brings additionally a scalability and parameterization of the approach. The 
standardization of the knowledge leads to utilization of the approach for a broad range of 
memories satisfying the appropriate requirements. 

A special process flow
infrastructure with a possibility of independent development of separate components. 
Corresponding verification and characterization steps of the flow will be adduced too to 
demonstrate technology

4.1 EMT&RI verification
processor level will be considered below. 

For formal verification of the Processor we have to generate a se
its instructions and then to justify that a given assertion holds for any value of parameters.

Assertion generation process via the template built according to the methodology 
above and further verification of the obtained assertion
the Processor instructions: BIST_RUN which tests the memory array for faults. This 
instruction does not have operands and its binary code is 001010. A CTL assertion for 
verification of the functional behavior of Process
should be connected with a status register of the Processor which holds information about 
the current state. Specifically, it should be connected with values of bits 
status register, reflecting the
detected faults in the memory array. 
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specific instance of the infrastructure is defined via assignment specific values to 
parameters of compilers and generates of components and subcomponents for e
The hierarchy has both hardware and software levels. Hardware levels will be considered 
further. They include wrapper, processor and server levels. 

The Wrapper Compiler for memory component operates as an interface between 
processor and memory instance. Processor is aimed to perform different BIRA/BIST and 
related actions. Server compiler is assigned to build the top-level design infrastructure 
utilizing the generated low level processor, wrapper, and memory modules [13,14].

 

Fig. 5. EMT&RI infrastructure 

This brings additionally a scalability and parameterization of the approach. The 
standardization of the knowledge leads to utilization of the approach for a broad range of 
memories satisfying the appropriate requirements.  

A special process flow will be described briefly to illustrate building of the mentioned 
infrastructure with a possibility of independent development of separate components. 
Corresponding verification and characterization steps of the flow will be adduced too to 

hnology-wise advantages of the approach reducing time-
1 EMT&RI verification example. A verification of one level of the hierarchy, the 

processor level will be considered below.  
For formal verification of the Processor we have to generate a set of assertions for all 

its instructions and then to justify that a given assertion holds for any value of parameters.
Assertion generation process via the template built according to the methodology 

above and further verification of the obtained assertion will be considered below for one of 
the Processor instructions: BIST_RUN which tests the memory array for faults. This 
instruction does not have operands and its binary code is 001010. A CTL assertion for 
verification of the functional behavior of Processor during interpretation of BIST_RUN 
should be connected with a status register of the Processor which holds information about 
the current state. Specifically, it should be connected with values of bits fail
status register, reflecting the following. Fail indicates that BIST_RUN instruction has 
detected faults in the memory array. Ready indicates that the Processor has finished the 

specific instance of the infrastructure is defined via assignment specific values to 
parameters of compilers and generates of components and subcomponents for each level. 
The hierarchy has both hardware and software levels. Hardware levels will be considered 

The Wrapper Compiler for memory component operates as an interface between 
nstance. Processor is aimed to perform different BIRA/BIST and 

level design infrastructure 
utilizing the generated low level processor, wrapper, and memory modules [13,14]. 

This brings additionally a scalability and parameterization of the approach. The 
standardization of the knowledge leads to utilization of the approach for a broad range of 

will be described briefly to illustrate building of the mentioned 
infrastructure with a possibility of independent development of separate components. 
Corresponding verification and characterization steps of the flow will be adduced too to 

-to-market. 
A verification of one level of the hierarchy, the 

t of assertions for all 
its instructions and then to justify that a given assertion holds for any value of parameters. 

Assertion generation process via the template built according to the methodology 
will be considered below for one of 

the Processor instructions: BIST_RUN which tests the memory array for faults. This 
instruction does not have operands and its binary code is 001010. A CTL assertion for 

or during interpretation of BIST_RUN 
should be connected with a status register of the Processor which holds information about 

fail and ready of the 
indicates that BIST_RUN instruction has 

indicates that the Processor has finished the 
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execution of the last instruction and is ready to execute the next instruction. A part of 
assertion generation template relating to the generation of the assertion for BIST_RUN 
instruction is adduced in Fig. 1 and the resulting assertion is adduced in Fig. 5. 

 

Fig. 6.  Generated assertion 

Generated CTL assertion in Fig. 6 can be read as: it is always the case that if 
BIST_RUN instruction is loaded into Instruction Register, then for all computation paths 
there should be state, where ready is true (test always is finite, all FSM paths starting from 
current state should lead to the ready state) then eventually fail will be false (memory array 
should be fault-free). We need two verification models for this test case, one with fault 
injected memory model, and the other for fault-free memory model. For correct functioning 
design we must get false with fault injected memory model and, true for fault-free memory 
model. 

All assertions targeted to functional verification of output RTLs should be 
implemented in the same way and according flow presented in Fig. 4 combine in a single 
template. 

The application results for the EMTRI are presented in Table.  

Table 

ER&R application results 

Total 
Number of 

RTL 
Instances 

T (assertion formulation)  

(Hours) 
 

T (verification) 

(~5 min per 
instance) 

T (analysis) Total (Hours) 

Ratio  
% Before 

(~1.5 per 
instance) 

Our 
Approac

h 

Before (~6 
min per 

instance) 

Our 
Approach 

(~3 min per 
instance) 

Before Our 
Approach 

16 24 80 1.44 1.6 0.8 27 82.24 304  
32 48 80 2.88 3.2 1.6 54 84.48 156  
64 96 80 5.76 6.4 3.2 108 88.96 82  

128 192 80 11.52 12.8 6.4 216 97.92 45  
256 384 80 23.04 25.6 12.8 432 115.84 27  
512 768 90 46.08 51.2 25.6 865 161.68 19  

1024 1536 90 92.16 102.4 51.2 1730 233.36 13  
2048 3072 100 184.32 204.8 102.4 3461 386.72 11  

 
Note: Assertion generation time is not considered in the Table because it is too 

small (1,2 seconds) related to other time periods. 
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To improve analyzing cost of obtained results, a special tool which reads symbolic 
simulation trace files, checks results for predefined constraints and results displays in user 
friendly way has been  developed.  

5.  Conclusion. The presented approach can be used not only for assertion based 
verification, but also for simulation based verification: instead of verification assertions 
parameterized verification tasks with input vectors will be used. 

Results presented in the Table  show that the application of the approach to RTL 
compilers is acceptable when the total numbers of verification instances are more than 50. 
In industrial RTL compilers this number is thousands, so for most of cases the approach can 
reduce the verification period. 

It is planned to extend the suggested approach in four directions.  
First, it is to increase the range of the application of the suggested approach by applying 

it to parameters which were not engaged into the consideration in this paper. 
Second, it is to define some standard requirements to compilers which can successfully 

be passed and effectively through the suggested flow. 
Third, it is to optimize time duration of the suggested verification steps. One point of 

improvement is to increase the accuracy of the parameters consideration, i.e. do not 
consider parameters which are not in the mentioned group but meantime their changes do 
not influence the verification process. 

Fourth, it is to consider directly the impact of a hierarchy of compilers on the verification 
time. 
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ՀԻՄԱՆՀԻՄԱՆՀԻՄԱՆՀԻՄԱՆ    ՎՐԱՎՐԱՎՐԱՎՐԱ    ԿԱՌՈՒՑՎԱԾԿԱՌՈՒՑՎԱԾԿԱՌՈՒՑՎԱԾԿԱՌՈՒՑՎԱԾ    RTL RTL RTL RTL ԿՈՄՊԻԼՅԱՏՈՐՆԵՐԻԿՈՄՊԻԼՅԱՏՈՐՆԵՐԻԿՈՄՊԻԼՅԱՏՈՐՆԵՐԻԿՈՄՊԻԼՅԱՏՈՐՆԵՐԻ    ՀԱՄԱՐՀԱՄԱՐՀԱՄԱՐՀԱՄԱՐ    

 
Ներկայացված է RTL կոմպիլյատորների ելքային RTL նկարագրությունների վերիֆիկացիայի 

մի մոտեցում: Ներկայացված մոտեցումը թույլ է տալիս ավտոմատ կերպով գեներացնել տվյալ RTL 
նկարագրության վերիֆիկացիայի համար անհրաժեշտ պնդումների բազմությունը: Մոտեցման 
արդյունավետությունը լուսաբանելու համար հատուկ RTL կոմպիլյատորների համար 
ներկայացված է կիրառության օրինակ: 

ԱռանցքայինԱռանցքայինԱռանցքայինԱռանցքային    բառերբառերբառերբառեր.... RTL կոմպիլյատոր, RTL նկարագրությունների ֆունկցիոնալ վերիֆի-
կացիա, սիմվոլիկ սիմուլյացիա, ձևական վերիֆիկացիա, ձևական վերիֆիկացիայի պնդումների 
գեներացիա: 

 
 
 

ПППП. . . . СССС. . . . МАРГАРЯНМАРГАРЯНМАРГАРЯНМАРГАРЯН    
    

ПОДХОДПОДХОДПОДХОДПОДХОД    КККК    АВТОМАТИЧЕСКОЙАВТОМАТИЧЕСКОЙАВТОМАТИЧЕСКОЙАВТОМАТИЧЕСКОЙ    ГЕНЕРАЦИИГЕНЕРАЦИИГЕНЕРАЦИИГЕНЕРАЦИИ    УТВЕРЖДЕНИЙУТВЕРЖДЕНИЙУТВЕРЖДЕНИЙУТВЕРЖДЕНИЙ    ДЛЯДЛЯДЛЯДЛЯ    RTL RTL RTL RTL 
КОМПИЛЯТОРОВКОМПИЛЯТОРОВКОМПИЛЯТОРОВКОМПИЛЯТОРОВ, , , , ОСНОВАННЫХОСНОВАННЫХОСНОВАННЫХОСНОВАННЫХ    НАНАНАНА    ШАБЛОНАХШАБЛОНАХШАБЛОНАХШАБЛОНАХ    

 
Рассматривается подход к генерации утверждений, которые используются для 

функциональной верификации RTL описаний, сгенерированных RTL компилятором, основанным на 
шаблонах. Представлено применение этого подхода к специальным RTL компиляторам, 
иллюстрирующим эффективность этого метода. 
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символическая симуляция, функциональная верификация, формальная верификация. 
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