УДК 629.113

МАШИНОСТРОЕНИЕ

Г.В. МУСАЕЛЯН, Л.О. ЗАКАРЯН

ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ ВЗАИМОДЕЙСТВИЯ РАМЫ И НАДРАМНИКА АВТОМОБИЛЯ-САМОСВАЛА

Разработана расчетная модель, учитывающая особенности взаимодействия рамы, надрамника грузового автомобиля-самосвала и их составляющих частей. Проведен анализ напряж, нно-деформированного состояния взаимодействия контактируемых поверхностей двух швеллеров.

Ключевые слова: рама, надрамник грузового автомобиля-самосвала, конечно-элементная модель несущей системы, закл почные и сварные соединения.

Данная работа посвящена моделированию особенностей взаимодействия рамы, надрамника и составляющих частей грузовых автомобилей-самосвалов. Как известно, надрамник получил широкое применение в несущих системах автомобилей-самосвалов [1]. Его наличие обусловлено появлением больших ускорений в вертикальной плоскости при эксплуатации автомобиля-самосвала в тяжелых дорожных условиях. В этом случае надрамник придает дополнительную твердость и жесткость.

При нагрузке в тяжелых эксплуатационных режимах граничные условия взаимодействия надрамника с рамой изменяются. При сжатии друг на друга составных частей рамы и надрамника относительное перемещение по направлению нормали контактируемых поверхностей исчезает.

В случае, когда относительные перемещения по нормали имеют положительный знак, контактируемые поверхности становятся независимыми друг от друга. В этом случае в указанных участках связь обеспечивается только с помощью соединений (конструкции могут быть разными) [2]. Вышеуказанные особенности выявляются на конкретном примере.

Рассматриваются особенности взаимодействия контактируемых поверхностей двух швеллеров на участках контактов. Длина 1-го швеллера – 400 мм, ширина – 20 мм, высота – 40 мм. Размеры 2-го швеллера 200х20х20 мм. Толщина швеллеров – 8 мм. Швеллеры 1 и 2 на участке А приварены друг к другу, а участок В представляет собой неподвижную опору (рис. 1). Приложенная нагрузка (800 кг) представлена в виде распределенной нагрузки, которая действует на верхнюю полку 2-го швеллера. В применяемой программе ANSYS 8.0 тонкостенные стержни смоделированы с помощью конечного элемента типа SHELL 63 [3].

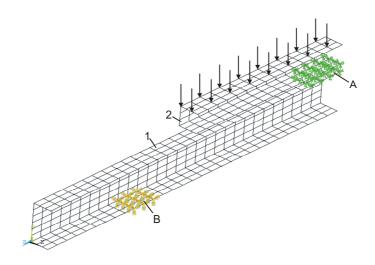


Рис. 1. Расчетная модель для исследования взаимодействия контактных поверхностей двух швеллеров, находящихся под воздействием вертикальной нагрузки

В результате решения задачи становится очевидным, что срединная линия нижней полки 2-го швеллера на переднем конечном участке переместилась вниз на 0.13..0.15 мм, а срединная линия верхней полки 1-го швеллера на том же участке — на 0.025..0.046 мм (рис. 2), что свидетельствует о наличии так называемого явления "врезывания" [4].

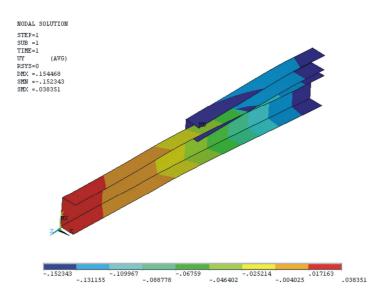


Рис. 2. Контактируемые поверхности, врезанные друг в друга

Для предотвращения этого явления были применены конечные элементы контактного типа. При решении задачи в качестве контактируемых элементов из библиотеки конечных элементов программного пакета были выбраны элементы типов СОNТА 173 и TARGE 170. СОNТА 173 представляет собой пространственный контактный элемент, который определяется с помощью четырех узлов и характеризует контактную поверхность (на рис. 3 обозначено буквой С), а основная особенность TARGE 170 (на рис. 3 обозначено буквой Т) – характеристика ответной поверхности [5].

В расчетной модели, применив по два элемента контактного и ответного типов (рис. 3) и решив задачу для вышеуказанных граничных условий и действия нагруженности той же величины, получаем результат, представленный на рис. 4.

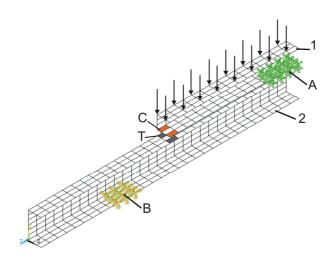


Рис. 3. Расчетная модель с применением конечных элементов CONTA173 и TARGE170

Как видно из рис. 4, здесь отсутствует явление врезывания поверхностей друг в друга, и в вышеуказанном "участке врезывания" поверхности двух швеллеров переместились вниз на 0,025..0,046 *мм*.

Применение приведенных конечных элементов дает возможность учитывать также трение между этими поверхностями при разработке расчетной модели автомобиля-самосвала. Для решения задачи важное значение имеет правильное определение конечных элементов на участках контактируемых поверхностей, имеющих меняющиеся граничные условия при деформации несущей системы автомобиля, на которых предопределено применение CONTA 173 и TARGE 170. Конечные элементы типа CONTA 173 и TARGE 170 применимы также на поверхностях объемного конечного элемента SOLID 45.

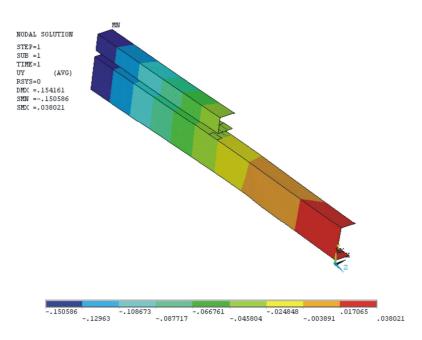


Рис. 4. Контактируемые поверхности без врезывания

Моделирование особенностей процесса взаимодействия контактируемых поверхностей швеллеров, приведенных в данной статье, было применено при разработке расчетной модели рамы и надрамника грузового автомобиля-самосвала КамАЗ-5511 (рис. 5).

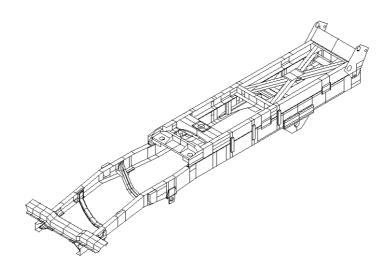


Рис. 5. Расчетная модель несущей системы автомобиля-самосвала КамАЗ-5511

Составляющие тонкостенные части рамы и надрамника грузового автомобиля смоделированы с помощью конечного элемента типа SHELL 63, а объемные детали – SOLID 45. Связи между составляющими частями элементов рамы смоделированы согласно конструкции (заклепочное соединение или сварка).

Разработанная расчетная модель дает возможность определить деформированное состояние несущей системы, распределение напряжений и деформаций, оценить ее жесткость, установить места и число точек креплений рамы с надрамником, усовершенствовать связывающие и конструкционные элементы несущей системы.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Белокуров В.Н., Гладков О.В., Захаров А.А., Мелик-Саркисьянц А.С.** Автомобили-самосвалы. М.: Машиностроение, 1987. 216с.
- 2. **Барун В.Н.** Автомобили КамА3: Техническое описание и инструкция по эксплуатации. М.: Машиностроение, 1978. 328 с.
- 3. **Մուսայելյան Գ.Վ.** Ավտոմոբիլների կրող համակարգեր։ Ուսումնական ձեռնարկ. Երևան։ Ճարտարագետ, 2007. -180 էջ։
- 4. **Мусаелян Г.В., Закарян Л.О.** Исследование изгиба рамы грузового автомобиля в вертикальной плоскости методом конечных элементов // Известия НАН РА и ГИУА. Сер. ТН. 2006. Том 59, N 3. C. 465 471.
- 5. **Басов К.А.** ANSYS: Справочник пользователя. М.: ДМК Пресс, 2005. 640 с.

ГИУА. Материал поступил в редакцию 14.06.2008.

Գ.Վ. ՄՈՒՍԱՅԵԼՅԱՆ, Լ.Հ. ԶԱՔԱՐՅԱՆ ԱՎՏՈՄՈԲԻԼ-ԻՆՔՆԱԹԱՓԻ ՀԻՄՆԱԿԱՆ ԵՎ ՕԺԱՆԴԱԿ ՇՐՋԱՆԱԿՆԵՐԻ ՓՈԽԱԶԴԵՑՈՒԹՅՈՒՆՆԵՐԻ ԱՌԱՆՁՆԱՀԱՏԿՈՒԹՅՈՒՆՆԵՐԻ ՀԵՏԱԶՈՏՈՒՄ

Մշակվել է բեռնատար ավտոմոբիլ-ինքնաթափի հիմնական և օժանդակ շրջանակների ու դրանց բաղկացուցիչների փոխազդեցությունների առանձնահատկությունները հաշվի առնող հաշվարկային մոդել։ Կատարվում է երկու շվելերների հպվող մակերեսների փոխազդեցության լարվածադեֆորմացիոն վիճակի ուսումնասիրություն։

Առանցքային բառեր. շրջանակ, բեռնատար ավտոմոբիլ-ինքնաթափի օժանդակ շրջանակ, կրող համակարգի մոդել՝ վերջավոր տարրերի բաժանված վիձակում, գամային և եռակցված միացություններ։

G.V. MUSAYELYAN, L.H. ZAKARYAN TRUCK FRAME AND TIPPER FRAME SUPPLEMENT INTERACTION PARTICULARITY INVESTIGATION

The calculation model that analysis takes account of tipper frame interaction particularity, supplement frame and components is worked out. A deflected model analysis of contacting surfaces of two channel bars is given

Keywords: frame and tipper frame, finite-element model of the system, riveted and welded coupling.