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Introduction. Traditionally, proof theory has been concerned with formal
representations of the notion of proof as it occurs in mathematics or other
intellectual activities, but the rapid development of computer science has
brought about a dramatic change of attitude. Efficiency has become a primary
concern and this fact has given rise to a whole new area of research in which the
considerations of complexity playing a major role. Open questions of theoretical
computer science like P =?NP and NP =?co-NP have tight connection with the
proof complexities in the field of propositional logic [1].

Deep inference is a relatively new methodology in proof theory, consisting
in dealing with proof systems whose inference rules are applicable at any depth
inside formulae [2-4]. While the inference rules of well known sequent calculus
or natural deductions decompose formulas along their main connectives, deep
inference rules are allowed to do arbitrary rewriting inside formulas. The main
interesting results about the proof complexity of deep inference are 1) some
deep-inference proof systems (SKS) is as powerful as Frege ones; 2) there is
deep-inference proof systems (KS) that exhibit an exponential speed-up over
cut-free Gentzen proof systems; 3) Frege systems and some deep-inference
system eKS polynomially simulate the system KS. The reverse relations are
pointed in [2] as open problems. It is proved here that a Frege system and the
system eKS have an exponential speed-up over the system KS.

2. Preliminaries. To prove our main result, we recall some notions and
notations from [1-4]. We will use the current concepts of the unit Boolean cube
(E™), a propositional formula, a tautology, a proof system for propositional logic
and proof complexities. The language of considered systems contains the
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propositional variables, logical connectives —,&, v and parentheses (,). Note
that some parentheses can be omitted in generally accepted cases. For the sake
of simplicity, we consider only formulas in negation normal form. More
precisely, formulas are generated from a countable set of propositional variables
and their negations via the binary connectives & and V.

2.1. Considered proof systems and proof complexities. The inference
rules of system KS (original CoS — calculus of structures) are

. F{B} F{A&[BVC]} F{B} F{ava}
ai | F{B&[-aval} F{(A&B)VC} F{BVA} ac | F{a}
F{(A&B)V(C&D)} 1)
F{[AVC]&[BVD]} '

where A, B, C, and D must be seen as formula variables, and a is a pro-
positional variable or its negation and F{E} means that E is some sub-
formula in F. These rules are called (atomic) identity, switch, weakening,
(atomic) contraction, and medial, respectively. The rules in (1) are written
in the style of inference rule schemes in proof theory but they behave as
rewrite rules in term rewriting, i.e., they can be applied deep inside any
(positive) formula context.

In order to obtain proofs without hypotheses, we need an axiom, which is
in our case just a variant of the rule ai:

ail .
aVva
A proof in KS uses the axiom exactly once.
The system eKS (sKS) is obtained from the system KS by adding the
specific extension (substitution) inference rule [3].
A Frege system F uses a denumerable set of propositional variables, a
finite, complete set of propositional connectives; F has a finite set of inference

AA, .. A,
B

rules defined by a figure of the form (the rules of inference with

zero hypotheses are the axioms schemes); F must be sound and complete, i.e.,

AA, .. A,
B

for each rule of inference every truth-value assignment, satisfying

AA, ... A, , also satisfies B, and F must prove every tautology.

In the theory of proof complexity two main characteristics of the proof are:
I-complexity to be the size of a proof (= the sum of all formulae sizes) and t-
complexity to be its length (= the total number of lines). The minimal I-
complexity (t-complexity) of a formula ¢ in a proof system ® we denote by

1”() (t*())-
Let @, and @, be two different proof systems.
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Definition 2.1.1. The system ®; p-I-simulates (p-t-simulates) the system
@, if there exist the polynomial p() such, that for each formula ¢ provable both
in the systems ®; and ®,, we have

P2 (@) < p(1%%(p)) (t*' t(p) < p(t™(9)))-

Definition 2.1.2. The systems @; and @, are p-l-equivalent (p-t-
equivalent), if systems @, and @, p-I-simulate (p-t-simulate) each other.

It is well-known that any two Frege systems are p-l-equivalent (p-t-
equivalent) [1].

It is proved in [3] that

o Frege systems p-I-simulate (p-t-simulate) the system KS,

e the system eKS p-I-simulates (p-t-simulates) both the systems KS and

sKS.
Definition 2.1.3. If for some sequence of formulas ¢,, in the two systems

¢, and ¢, for sufficiently large n is valid t%1(¢,) = Q(2t*2(@n)) (191(¢,) =

Q(Zld’z(‘f’n))), then we say that the system ¢, has exponential sped-up by lines
(by sizes) over the system ¢, .

2.2. Determinative size of formulas. Following the usual terminology we
call the variables and negated variables literals. The conjunct K (clause) can be
represented simply as a set of literals (no conjunct contains a variable and its
negation simultaneously). In [5] the following notions were introduced.

We call a replacement-rule each of the following trivial identities for a
propositional formula y:

0&y =0, y&0 =0, 1&y =y, y&1 =y, y&y =y, y&y =0, ~y&y =0,
Ovy=y,yvO0=y,lVvy=1LyVvi=LyVy=y,yVvoy=1yvy=1,
—0=1,~"1=0, —y=y.

Application of a replacement-rule to some word consists in replacing some
its subwords, having the form of the left-hand side of one of the above identities
by the corresponding right-hand side.

Let ¢ be a propositional formula, let P = {p;,p,,....pn} be the set of the

variables of ¢, and let P = {Pi1sPiss -, P, } (1 < m < 1) be some subset of
P.
Definition 2.2.1. Given ¢ = {o1,...om} € E", the conjunct
T __ a] O nTm 11 . . . . . .
K7 = {p.07 00 1) is called @-determinative  if  assigning

oj (1 < j < m) to each py and successively using replacement-rules we
obtain the value of ¢ (0 or 1) independently of the values of the remaining
variables.

Definition 2.2.2. We call the minimal possible number of variables in a ¢-
1-determinative conjunct the determinative size of ¢ and denote it by ds(¢).

A tautology is called minimal if it can not be obtained by some substitution
in a shorter tautology.

It is proved in [5] that

1) if for some minimal tautology ¢ ds(e)=m, then the number of ¢-1-
determinative conjuncts is at least 2™;
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2) if for some minimal tautology ¢ there is such m that every conjunct
with m literals is ¢-1-determinative, then the number of ¢-1-determinative
conjuncts is no more than 2™,

Note that every subformula is formula ones, hence above definitions are
applicable to subformulas as well.

By |@| we denote the size of a formula ¢, defined as the number of all
propositional variables entries in it. If formula is given in negative normal form,
then it is obvious that the full size of a formula, which is understood to be the
number of all symbols is bounded by some linear function in |¢ |.

3. Main formulas. Before we shall prove the main theorems, we must give
some auxiliary results.

3.1. In some papers in area of propositional proof complexity for classical
logic the following tautologies (Topsy-Turvy Matrix) play key role

TI™M, , =V

mo " pdi > <m<2"
(o-l,...,an)eEn &j:l \/I:l plj (1’1_ 17 1 _1’1’1_2 1)

For all fixed n > 1 and m in above indicated intervals every formula of
this kind expresses the following true statement: given a 0,1- matrix of order
n X m we can “topsy-turvy” some strings (writing 0 instead of 1 and 1 instead
of 0) so that each column will contain at least one 1.

For the below given Theorem 1. the main tautologies of our consideration
are @,=TTM; 2" -1 .

It is not difficult to see that |¢@,|=n(2"-1)2", ds(¢,)=2"-1 and number of
different ¢,, — 1 — determinative conjncts is 22" .

3.2. Balanced formulas. A formula A is balanced if every propositional
variable occurring in A occurs exactly twice, once positive and once negated.
For the below given Theorem 2. the main tautologies of our consideration are

the balanced tautologies QHQ,= V<<, &1ijn[\/1gksi Qijk V Vicksn Qiji+1]
(n=1). Put  Qij = Vieksi Gijk V VickenGkjir1 (=1, 0<i<n,
1 <j<n), then QHQ, = Vo<icn (Q:1&Qi2 & ... &Q;j& ... &Qi(n-1)&Qn ) and
hence ds(QHQ,)=n, therefore the number of QHQ,, -1-determinative conjuncts
is at least 2™. It is also not difficult to see, that | QHQ, |= ELEGLE R

2
4.Main results.
Theorem 1. Every Frege system has exponential speed-up over the system

KS.

Proof is founded on the two following propositions:

1) Frege-proofs of tautologies ¢, (n=1) are t-polynomially (I-
polynomially) bounded ( this statement is proved in [6]);

2) for sufficiently large n and sequence of formulas ¢, the following
holds: X5 (¢,,) = Q(22"), therefore IXS(p,) = Q(22") as well.
The proof of second statement follows from the values of determinative
sizes of ¢,, and number of different ¢, — 1 — determinative conjuncts,
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as well from possible changes of determinative sizes by applications of
inference rules of KS:
ds(maVva)=1, ds(B&[-aV a])<ds(B)+1,
ds([(A&B) v C]) <ds((A&[BV C]), ds(BV A)<ds(B),
ds(a) =ds(a Vv a), ds([Av C] &[B V D]) <ds(A&B V C&D),

and some important condition of rule s.

Theorem 2. The system eKS has exponential speed-up over the system KS.

Proof is founded on the following propositions:

1) sKS-proofs of of tautologies QHQ,, (n= 1) are t-polynomially (I-
polynomially) bounded ( this statement is proved in [3]);

2) the system eKS p-I-simulates (p-t-simulates) the system sKS [3].

3) for sufficiently large n and sequence of formulas QHQ,, the following
holds: tXS(QHQ,,) = Q(2™), therefore IXS(QHQ,,) = Q(2") as well.

The proof of last statement follows from the values of determinative sizes
of QHQ,, and number of different QHQ,, -1-determinative conjuncts.

Remark. Both theorems can proved only on the base of formulas
QHQ,, because it is proved that they have t-polynomially (I-polynomially)
bounded Frege-proofs (this statement is proved in one of my previous paper,
which is now in the process of publication).

Conclusion. L. Strasburger’s conjectures that KS does not p-simulate
Frege systems and eKS system are proved.
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Using the determinative sizes for tautologies of some sequences, it is proved in this
paper that a Frege system and deep-inference proof system eKS exhibit an exponential
speed-up over the deep-inference proof systems KS both by lines and size of proofs.

U. U. 2nipupui

Upunwbdmdubph pupympmiuutph hwpwpkpnipniutpp Spkqth
hudwljunpqgtph, pnppuyht wpusdwh ubinbubpny
KS 1 eKS hwiuwljupqgtnh vhol

Oquiugnpstiny npnowlh hwonpuljunipniitph tnybwpwinipniiubph npn-
ohs Epupmpynitikpp wuyugnigyly k np $pghh hwdwlwpgpp b junppught wpunw-
Suwh Juwunubpny eKS hwdwlwnpgp gnigupkpnid Eu Epuynibuighw)] wipuqugnid unp-
pughll wpunwstwh Juinbitpny KS hudwlupgh dundwdp’ U pun wpnwsnidibph
puykiph, b pun npuitg kplupnipymakph:
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A. A. UyGapsin

OTHolIeHNe MeKAY CJI0KHOCTSIMH BBIBOAOB B cucremMax ®pere
H cHCTeMax IIyOMHHBIX NpaBuJ BbIBoA0B KS u eKS

HCHOHLSyﬂ BEJIMINHBI ONPEACIAIOINX UINH TaBTOJIOTHI HEKOTOPBIX IIOCIEHO0-
BaTeHBHOCTeﬁ, JOKa3aHO, YTO CUCTCMbI (Dpere " CUCTEMA FHy6I/IHHLIX IIpaBUJI BBIBOJOB
eKS MPOSABJIAOT 3KCHOHCHIUAJIBHOC YCKOPEHUE OTHOCUTCIBHO CUCTECMBI FJ'IyGI/IHHI)IX
IIpaBUJI BBIBOJOB KS kak o miaraM, Tak 4 1o JJMHaM BbIBOJOB.
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