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Introduction. Traditionally, proof theory has been concerned with formal 

representations of the notion of proof as it occurs in mathematics or other 

intellectual activities, but the rapid development of computer science has 

brought about a dramatic change of attitude. Efficiency has become a primary 

concern and this fact has given rise to a whole new area of research in which the 

considerations of complexity playing a major role. Open questions of theoretical 

computer science like P =?NP and NP =?co-NP have tight connection with the 

proof complexities in the field of propositional logic [1]. 

Deep inference is a relatively new methodology in proof theory, consisting 

in dealing with proof systems whose inference rules are applicable at any depth 

inside formulae [2-4]. While the inference rules of well known sequent calculus 

or natural deductions decompose formulas along their main connectives, deep 

inference rules are allowed to do arbitrary rewriting inside formulas. The main 

interesting results about the proof complexity of deep inference are 1) some 

deep-inference proof systems (SKS) is as powerful as Frege ones; 2) there is 

deep-inference proof systems (KS) that exhibit an exponential speed-up over 

cut-free Gentzen proof systems; 3) Frege systems and some deep-inference 

system eKS polynomially simulate the system KS. The reverse relations are 

pointed in [2] as open problems. It is proved here that a Frege system and the 

system eKS have an exponential speed-up over the system KS. 

2. Preliminaries. To prove our main result, we recall some notions and 

notations from [1-4]. We will use the current concepts of the unit Boolean cube 

(  ), a propositional formula, a tautology, a proof system for propositional logic 

and proof complexities. The language of considered systems contains the 
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propositional variables, logical connectives       and parentheses (,). Note 

that some parentheses can be omitted in generally accepted cases. For the sake 

of simplicity, we consider only formulas in negation normal form. More 

precisely, formulas are generated from a countable set of propositional variables 

and their negations via the binary connectives & and ∨.  
2.1. Considered proof systems and proof complexities. The inference 

rules of system KS (original CoS – calculus of structures) are 
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where A, B, C, and D must be seen as formula variables, and a is a pro-

positional variable or its negation and F{E} means that E is some sub-

formula in F. These rules are called (atomic) identity, switch, weakening, 

(atomic) contraction, and medial, respectively. The rules in (1) are written 

in the style of inference rule schemes in proof theory but they behave as 

rewrite rules in term rewriting, i.e., they can be applied deep inside any 

(positive) formula context. 

In order to obtain proofs without hypotheses, we need an axiom, which is 

in our case just a variant of the rule ai↓: 

   
 

  ∨  
. 

A proof in KS uses the axiom exactly once. 

The system eKS (sKS) is obtained from the system KS by adding the 

specific extension (substitution) inference rule [3].  

A Frege system 𝓕 uses a denumerable set of propositional variables, a 

finite, complete set of propositional connectives; 𝓕 has a finite set of inference 

rules defined by a figure of the form 
B

AAA m21
 (the rules of inference with 

zero hypotheses are the axioms schemes); 𝓕 must be sound and complete, i.e., 

for each rule of inference 
B

AAA m21
 every truth-value assignment, satisfying 

mAAA 21 , also satisfies B , and 𝓕 must prove every tautology. 

In the theory of proof complexity two main characteristics of the proof are: 

l-complexity to be the size of a proof (= the sum of all formulae sizes) and t- 

complexity to be its length (= the total number of lines). The minimal l- 

complexity (t-complexity) of a formula   in a proof system   we denote by 

l
Ф

( ) (t
Ф

( )). 

Let Ф1 and Ф2 be two different proof systems. 
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Definition 2.1.1. The system Ф1 p-l-simulates (p-t-simulates) the system 

Ф2 if there exist the polynomial p() such, that for each formula   provable both 

in the systems Ф1 and Ф2, we have 

   
Ф             

Ф           
Ф               

Ф       . 
Definition 2.1.2. The systems Ф1 and Ф2 are p-l-equivalent (p-t-

equivalent), if systems Ф1 and Ф2  p-l-simulate (p-t-simulate) each other. 

It is well-known that any two Frege systems are p-l-equivalent (p-t-

equivalent) [1]. 

It is proved in [3] that  

 Frege systems p-l-simulate (p-t-simulate) the system KS, 

 the system eKS p-l-simulates (p-t-simulates) both the systems KS and 

sKS.  

Definition 2.1.3. If for some sequence of formulas     in the two systems 

   and    for sufficiently large n  is valid             
        (        

    
       ), then we say that the system    has exponential sped-up by lines 

(by sizes) over the system   .  

2.2. Determinative size of formulas. Following the usual terminology we 

call the variables and negated variables literals. The conjunct K (clause) can be 

represented simply as a set of literals (no conjunct contains a variable and its 

negation simultaneously). In [5] the following notions were introduced.  

We call a replacement-rule each of the following trivial identities for a 

propositional formula ψ:                      

0&ψ = 0, ψ&0 = 0, 1&ψ = ψ, ψ&1 = ψ, ψ&ψ = ψ, ψ&¬ψ
 
= 0, ¬ψ&ψ = 0, 

0 ∨ ψ = ψ, ψ ∨ 0 = ψ, 1 ∨ ψ = 1, ψ ∨ 1 = 1, ψ ∨ ψ = ψ, ψ ∨¬ ψ = 1, ¬ψ ∨ ψ = 1,                    

¬0 = 1, ¬1 = 0, ¬¬ψ
 
= ψ. 

Application of a replacement-rule to some word consists in replacing some 

its subwords, having the form of the left-hand side of one of the above identities 

by the corresponding right-hand side. 

Let   be a propositional formula, let P = {p1,p2,...,pn} be the set of the 

variables of  , and let ) be some subset of 

P. 

Definition 2.2.1. Given σ = {σ1,...,σm} ∈ E
m
, the conjunct 

 is called  -determinative if assigning 

) to each pij and successively using replacement-rules we 

obtain the value of   (0 or 1) independently of the values of the remaining 

variables. 

Definition 2.2.2. We call the minimal possible number of variables in a  -

1-determinative conjunct the determinative size of   and denote it by ds( ). 

A tautology is called minimal if it can not be obtained by some substitution 

in a shorter tautology. 

It is proved in [5] that  

1) if for some minimal tautology   ds( )=m, then the number of  -1-

determinative conjuncts is at least   ;  
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2) if for some minimal tautology   there is such   that every conjunct 

with   literals is  -1-determinative, then the number of  -1-determinative 

conjuncts is no more than   . 

Note that every subformula is formula ones, hence above definitions are 

applicable to subformulas as well.  

By | | we denote the size of a formula  , defined as the number of all 

propositional variables entries in it. If formula is given in negative normal form, 

then it is obvious that the full size of a formula, which is understood to be the 

number of all symbols is bounded by some linear function in |  |. 

3. Main formulas. Before we shall prove the main theorems, we must give 

some auxiliary results.  

3.1. In some papers in area of propositional proof complexity for classical 

logic the following tautologies (Topsy-Turvy Matrix) play key role  

 

  i
ij

n

i

m

jnE
n

mn pTTM


 1=1=),,
1

(, &= 


  
(n ≥ 1, 1 ≤ m ≤ 2

n
-1). 

 

For all fixed     and   in above indicated intervals every formula of 

this kind expresses the following true statement: given a 0,1- matrix of order 

    we can “topsy-turvy” some strings (writing 0 instead of 1 and 1 instead 

of 0) so that each column will contain at least one 1. 

For the below given Theorem 1. the main tautologies of our consideration 

are   =TTMn,  
     .  

It is not difficult to see that |  |=n(2
n
-1)2

n
, ds(  )=2

n
-1 and number of 

different                    conjncts is   
 -1

 .  

3.2. Balanced formulas. A formula A is balanced if every propositional 

variable  occurring in A occurs exactly twice, once positive and once negated. 

For the below given Theorem 2. the main tautologies of our consideration are  

the balanced tautologies QHQn= ∨0≤i≤n &1≤j≤n[⋁  ̅     ∨ ⋁                    ] 

(n   ). Put              ⋁  ̅     ∨ ⋁                     (n   ,         

     ), then       ⋁ (                             )       and 

hence ds(QHQn)=n, therefore the number of       -1-determinative conjuncts 

is at least   . It is also not difficult to see, that | QHQn |= 
        

 
  . 

4.Main results. 

Theorem 1. Every Frege system has exponential speed-up over the system 

KS. 

Proof is founded on the two following propositions: 

1) Frege-proofs of tautologies    (n   ) are t-polynomially (l-

polynomially) bounded ( this statement is proved in [6]); 

2) for sufficiently large  n and sequence of formulas    the following 

holds:             
 
 , therefore             

 
  as well. 

The proof of second statement follows from the values of determinative 

sizes of    and number of different                    conjuncts, 
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as well from possible changes of determinative sizes by applications of  

inference rules of KS: 

ds(  ∨  )=1,      ds(  [  ∨  ]) ≤ ds(B)+1, 

ds([     ∨  ]) ≤ ds((A&[B ∨  ] ,      ds( ∨  ) ≤ ds(B), 

ds( ) = ds( ∨  ),      ds([A∨  ]  [ ∨  ]) ≤ ds(   ∨    ), 

and some important condition of rule s. 

Theorem 2. The system eKS has exponential speed-up over the system KS. 

Proof is founded on the following propositions: 

1) sKS-proofs of of tautologies      (n   ) are t-polynomially (l-

polynomially) bounded ( this statement is proved in [3]); 

2) the system eKS p-l-simulates (p-t-simulates) the system sKS [3]. 

3) for sufficiently large  n and sequence of formulas      the following 

holds:                , therefore                 as well. 

The proof of last statement follows from the values of determinative sizes 

of       and number of different      -1-determinative conjuncts. 

Remark. Both theorems can proved only on the base of formulas 

     because it is proved that they have t-polynomially (l-polynomially) 

bounded Frege-proofs (this statement is proved in one of  my previous paper, 

which is now in the process of publication). 
Conclusion. L. Strasburger’s conjectures that KS does not p-simulate 

Frege systems and eKS system are proved. 
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Ա. Ա. Չուբարյան 

 

Արտածումների բարդությունների հարաբերությունները Ֆրեգեի 

համակարգերի, խորքային արտածման կանոններով  

КS և еКS  համակարգերի միջև  

 
Օգտագործելով որոշակի հաջորդականությունների նույնաբանությունների որո-

շիչ երկարությունները՝ ապացուցվել է, որ Ֆրեգեի համակարգերը և խորքային արտա-

ծման կանոններով еКS համակարգը ցուցաբերում են էքսպոնենցիալ արագացում խոր-

քային արտածման կանոններով КS համակարգի նկատմամբ՝ և՛ ըստ արտածումների 

քայլերի, և՛ ըստ դրանց երկարությունների: 

mailto:achubaryan@ysu.am
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А. А. Чубарян 

 

 Отношение между сложностями выводов в системах Фреге  

и системах глубинных правил выводов КS и еКS 

 
Используя величины определяющих длин тавтологий некоторых последо-

вательностей, доказано, что системы Фреге и система глубинных правил выводов 

еКS проявляют экспоненциальное ускорение относительно системы глубинных 

правил выводов КS как по шагам, так и по длинам выводов. 
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