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Abstract. Multiple Factorization A = ΠDΠT is proposed for real skew-symmetric matrix
A ̸= 0 of order n ≥ 3. The block-diagonal factor D contains skew-symmetric invertible blocks of
order 2 and the zero block of order n − rank A, if rank A < n. The matrix Π is an alternate
product of Permutation matrices and Unit Lower triangular matrices with two columns. The
applied approach is economical and contributes to the computational stability. The number of
arithmetic operations ∼ 1

3
n3. The inverse matrix A−1 and the skeletal decomposition of A are

presented in factorized form without additional calculations.
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1. Introduction

For a skew-symmetric (SS) matrix A the LDLT factorization is well known(see

[1]):

(1.1) PAPT = LDLT .

Here P is a permutation matrix, L is unit lower triangular, D is block diagonal with

SS blocks of order 2 or 1. LT is the matrix transposed to L.

One modification of the LDLT factorization is presented in this paper. It will

be shown that a nonzero SS matrix A ∈ Rn×n of order n ≥ 3 admits ΠDΠT

factorization:

(1.2) A = ΠDΠT .

The block-diagonal factor D consists of invertible blocks of order 2 and one zero

block of order n − rank A (if A is non-invertible). The matrix Π is the alternate

product of permutation matrices and unit lower triangular matrices with two columns.

The proposed method for constructing ΠDΠT factorization is economical and

contributes to the computational stability. The number of arithmetic operations

∼ 1
3n

3 (half the cost of LU factorization). The inverse matrix A−1 and the skeletal

decomposition are presented in multiple factorized form without additional calculations.
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Factorization ΠDΠT has some similarity with multiple factorization of convolution

https: //meet.google.com/syd-jmcc-ttg integral operators (see [2]).

Notations. We will consider real skew-symmetric (SS) matrices of fixed order

n ≥ 3:

(1.3) A = (akm)
n
k,m=1 ̸= 0, amk = −akm, n ≥ 3,

and their same submatrices. Sizes of matrices will be noted as appropriate.

- The index k in Wk means that the given square matrix has an order k.

- Es is the unit matrix of order s. The notation E is used for En.

- Zero matrix of any size is denoted by 0.

- Λ2 {W} is the leading principal submatrix of order 2 of W .

2. Preparatory factorization

Consider the following SS matrix C (s) of order n− 2s+ 2 ≥ 3:

(2.1) C (s) = (ckm (s))
n
k,m=2s−1 ̸= 0, cmk (s) = −ckm (s) ,

where:

(2.2) 2 ≤ 2s ≤ n− 1, J (s) := Λ2 {C (s)} ≠ 0.

We have:

(2.3) J (s) =

(
0 λ(s)

−λ(s) 0

)
, λ (s) := c2s−1,2s (s) ̸= 0,

∃ J−1 (s) =

(
0 − [λ (s)]

−1

[λ (s)]
−1

0

)
.

Let’s represent C (s) in the form

(2.4) C (s) =

(
J (s) UT (s)
−U (s) G (s)

)
.

Here U(s) is a (n− 2s)× 2 matrix.

The following factorization holds (see [1]):

(2.5) C (s) =

(
E2 0

Ṽ (s) En−2s

)(
J (s) 0
0 W (s)

)(
E2 Ṽ T (s)
0 En−2s

)
.

Here

(2.6) Ṽ (s) = U (s) J−1 (s) ,

the SS matrix W (s) of order n− 2s is the Schur complement of the block J (s):

(2.7) W (s) = G (s) + U (s) J−1 (s)UT (s) .
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Permutation of rows and columns. Let B (s) be nonzero SS matrix of order

n− 2s+ 2 ≥ 3:

(2.8) B (s) = (bkm (s))
n
k,m=2s−1 ̸= 0, bmk (s) = −bkm (s) , 2 ≤ 2s ≤ n− 1.

Unlike C (s), invertibility of block Λ2 {B (s)} is not assumed.

Consider the application of such a permutation P̃ (s), that the SS matrix

(2.9) C (s) = P̃ (s)B (s) P̃T (s)

satisfies condition (2.2) and promotes computational stability (when constructing

(2.5)).

We will assume that the rows and columns of the permutation matrices are

numbered in the same way as B (s): from 2s− 1 to n.

Let bij (s) be any nonzero element of the matrix B (s). By virtue of skew-

symmetry of B (s), one can take i > j:

(2.10) bij (s) ̸= 0, i > j.

Let’s translate the element bij (s) into the position (2s+ 2, 2s+ 1) using the following

two elementary permutation matrices Q (s) and F (s). The matrix Q (s) permutes

rows or columns 2s−1 and i, the matrix F (s) permutes positions 2s and j. Consider

transform (2.9), where

(2.11) P̃ (s) = F (s)Q (s) , P̃T (s) = Q (s)F (s) .

The matrix C (s) determined by (2.9) is skew-symmetric, hence ckk(s) = 0, 2s−1 ≤
k ≤ n.

The Block J (s) = Λ2 {C (s)} has the form (2.3), where

(2.12) λ (s) = bij (s) ̸= 0.

Hence the decomposition (2.5) takes place.

We have:

(2.13) B (s) = P̃T (s)C (s) P̃ (s) .

The following lemma holds.

Lemma 2.1. Skew-symmetric matrix B (s) of the form (2.8) admits factorization

(2.14)

B (s) = P̃T (s)

(
E2 0

Ṽ (s) En−2s

)(
J (s) 0
0 W (s)

)(
E2 Ṽ T (s)
0 En−2s

)
P̃ (s) ,

The permutation matrix P̃ (s) is given by (2.11). Matrices V (s) and W (s) are

determined by (2.6) and (2.7) respectively.

Selected element bij (s) will be called the Pivot element of factorization (2.14).
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Choice of a pivot element. To facilitate the computational stability of constructing

factorization (2.14), one can take as a pivot element bij(s) (any) largest modulus

element of the matrix B(s).

In the framework of pivoting strategy of Bunch (see [1]), the pivot element is

the largest modulus element of the first column (if this column is nonzero). Then

P̃ (s) = Q (s).

The following version of the Bunch strategy can be used. Let the first column

(and first row) of the matrix B (s) be zero or consist of elements small in modulus,

and sometime any element bi,2s (s) of the second column is ‘’sufficiently large”

in modulus. Then J (s) can be formed by translating bi,2s (s) into the position

(2s− 1, 2s), and element b2s,i (s) = −bi,2s (s) into the position (2s, 2s− 1). Then

only one elementary permutation matrix is used, as in the case of the Bunch

strategy. However, the degree of computational stability may be significantly higher.

3. One step of multiple factorization

Consider the following SS matrices A (s) of order n:

(3.1) A (1) = B (1) , A (s) =

(
D (s) 0
0 B (s)

)
, s ≥ 2, 2s ≤ n− 1.

Here B (s) ̸= 0 is a matrix of the form (2.9); D (s) is SS matrix of order 2s− 2.

Factorization (2.14) of B (s) generates the following factorization for A (s), s ≥ 2:

(3.2)

A (s) =

(
E2s 0

0 P̃ (s)

) E2s 0 0
0 E2 0

0 Ṽ (s) En−2s−2

×

×

 D (s) 0 0
0 J (s) 0
0 0 W (s)

 E2s 0 0

0 E2 Ṽ T (s)
0 0 En−2s−2

(
E2s 0

0 P̃T (s)

)
, s ≥ 2.

Let V (s) and P (s) are the following continuations of Ṽ (s) and P̃ (s), up to n-order

matrices:

(3.3) V (s) =

(
0 0

Ṽ (s) 0

)
, P (s) =

(
E2s−2 0

0 P̃ (s)

)
.

Denote also

(3.4) D (s+ 1) =

(
D (s) 0
0 J (s)

)
, B (s+ 1) = W (s) ;

A (s+ 1) =

(
D (s+ 1) 0

0 B (s+ 1)

)
.
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In the new notation equality (3.3) takes the following recursive form at s ≥ 2,

2s ≤ n− 1:

(3.5) A (s) = P (s) (E + V (s))A (s+ 1)
(
E + V T (s)

)
PT (s) .

Equality (3.6) for s = 1 follows from (2.14) in which

(3.6) D (2) = J (1) = Λ2 {C (1)} ≠ 0.

The following lemma holds.

Lemma 3.1. The matrix A (s), s ≥ 1, given by (3.1), admits factorization (3.5),

where V (s), P (s), A (s+ 1) are determined by relations (3.3),(3.4).

Thus, defining matrices Ṽ (s) and W (s) by (2.6) and (2.7), decomposition (2.5)

is constructed, which leads to (3.5).

The matrices V (s) and V T (s) that appear in (3.5) are nilpotent with index 2.

Therefore

(3.7) (E + V (s))
−1

= E − V (s) ,
(
E + V T (s)

)−1
= E − V T .

4. Multiple Factorization

Let the matrix A = A (1) have the form (1.3). Consider the question of recursive

constructing of the following multiple factorizations

(4.1) A = P (1) (E + V (1)) · · ·P (k) (E + V (k)) ·

·A (k + 1)
(
E + V T (k)

)
PT (k) · · ·

(
E + V T (1)

)
PT (1) ,

with suitable values of k ≥ 1, using recurrent relations (3.6).

The existence of (4.1) for k = 1 is contained in Lemma 3.1. Let (4.1) be

constructed for some k ≥ 1. Thus, all intermediate matrices J (s) have been constructed.

It follows from (3.5) that the matrix D (k + 1) of order 2k has the form

(4.2) D (k + 1) =

 J (1) 0 0

0
. . . 0

0 0 J (k)

 , 2 ≤ 2k ≤ n− 1,

with invertible SS blocks J (1) , · · · , J (k) of order 2.

To continue the decomposition (4.1), the matrix A (k + 1) must satisfy conditions

of Lemma 3.1, that is:

(4.3) B (k + 1) ̸= 0 and 2k ≤ n− 3.

These conditions will be violated for some value of k if one of the following two

situations a) and b) arises:
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a) The case of invertible matrix A. Let the number n is even: n = 2m;

k = m− 1 and the matrix B (s+ 1) of order 2 is invertible:

(4.4) 2k = n− 2, B (k + 1) ̸= 0.

Then the matrix B (k + 1) = J (k + 1) joins to the matrix D (s+ 1) as the

last diagonal block.

We obtain the factorization (1.2) where

(4.5) D =

 J (1) 0 0

0
. . . 0

0 0 J (k + 1)



(4.6) Π = P (1) (E + V (1)) · · ·P (k) (E + V (k)) .

b) The case of non-invertible matrix A. Let

(4.7) 2k ≤ n− 1 and B (k + 1) = 0.

Then we obtain the factorization (1.2) where Π is given by (4.6) and

(4.8) D =

(
D (k) 0
0 0

)
,

zero diagonal block of which has the order n− 2k + 2.

Because of invertibility of blocks J (1) , · · · , J (k) we have rank D = rank D (k) =

2k − 2. It follows from invertibility of matrices E + V (s) (see (3.7)) that

(4.9) r := rank A = 2k − 2.

Hence the previously unknown rank r of the matrix A is also determined. The

following Theorem holds.

Theorem 4.1. Any real SS matrix A ̸= 0 of order n ≥ 3 admits complete factorization

(1.2), in which Π is the product of the form (4.6). The equality (4.9) holds. In the

case (4.4) the matrix D has the form (4.5) and r = n. In the case (4.7) the matrix

D has the form (4.8).
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5. Construction of the inverse matrix A−1 and skeletal

decomposition

Construction of the inverse matrix. In the case of invertible matrix A, taking

into account (4.1), we obtain the following expression for A−1:

(5.1)

A−1 = P (1) (E − V (1)) · · ·P (k) (E − V (k))

 J−1 (1) 0 0

0
. . . 0

0 0 J−1 (k + 1)

×

×
(
E − V T (k)

)
P (k) · · ·

(
E − V T (1)

)
P (1)

Numerical construction of the inverse matrix in the form (5.1) does not imply

additional calculations compared with the direct decomposition (4.1), except for

calculating J−1 (k + 1). All other matrices involved in (5.1) were determined when

constructing a direct decomposition (4.1).

Skeletal decomposition. Let r = rank A < n. Then the factorization (4.2) leads

to the following skeletal decomposition of the matrix A:

(5.2) A =

[
Π

(
D (k + 1)

0

)]
.
[(

Er 0
)
ΠT

]
, r = 2k − 2.

Note, that the Skeletal decomposition applies to the construction of the pseudoinverse

matrix A+.

The number of arithmetic operations. The numerical construction of the

decomposition (3.5) is reduced to the calculation of the elements of the matrices

Ṽ (s) and W (s) in accordance with the formulas (2.6), (2.7). In the case of an

invertible matrix, the total number of arithmetic operations is about 1
3n

3 (half

the cost of LU factorization). In the case rank A < n, the number of arithmetic

operations may be significantly less.

After constructing the inverse matrix A−1 in the factorized form (5.2), the

following question arises: Is it necessary to expand the parentheses in the product

P (1) (E − V1) · · ·P (k) (E − Vm) and obtain a three-factor decomposition, while

performing a large amount of additional calculations? We only note that in the

question of solving the equations Ax = b there is no need for it.

Low-rank approximation. Suppose that in the recurrent construction of the

decompositions (3.5). For some all elements of the matrix B (k + 1) are small enough

(according to the chosen criterion of smallness). Then the decomposition can be

stopped, the matrix B (k + 1) is replaced by a zero matrix.
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