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For general number of spatial dimensions we investigate the cosmological dynamics driven by
a cosmological constant and by a source with barotropic equation of state. It is assumed that for
both those sources the energy density can be either positive or negative. Exact solutions of the
cosmological equations are provided for flat models. For models with curved space and with zero
cosmological constant the general solutions are expressed in terms of the hypergeometric function.
The qualitative evolution is described for all values of the equation of state parameter. We specify
the values of that parameter and the combinations of the signs for the cosmological constant and
matter energy density for which the cosmological dynamics is nonsingular. An example is considered
with positive cosmological constant and negative matter energy density induced by the polarization
of the hyperbolic vacuum.
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1. Introduction. The investigation of cosmological dynamics is carried out
mainly within the framework of homogeneous and isotropic models described by
Friedmann-Robertson-Walker (FRW) line element. In particular, the models
containing a positive cosmological constant in addition to the matter and radiation
sources of the expansion have been actively studied. This theoretical activity is
motivated by the observational evidence [1,2] for accelerated expansion of the
universe in recent epoch driven by a source (dark energy) with properties close
to a positive cosmological constant. The cosmological model with a positive
cosmological constant and cold dark matter (CDM) in addition to the usual matter
(ACDM model) is in good agreement with observational data on the large scale
structure and dynamics of the universe. Recently a problem appeared that is related
to the value of the Hubble parameter H; at present determined by two different
ways. The first one is based on direct low redshift observations [3-6] and gives
the value H,~73 km/s Mpc. The second way combines the Planck data on
temperature anisotropies of the cosmic microwave background radiation [7] with
the ACDM model and gives the result H, =67 km/s/ Mpc. A number of models
have been discussed in the literature to address this problem, also called Hubble
tension (for a review see [8]). In particular, they include the models with negative
cosmological constant (see [9-13]). The maximally symmetric solution of the
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Einstein field equations with a negative cosmological constant as the only source
of the gravitation is given by anti-de Sitter (AdS) spacetime. This geometry appears
as a ground state in string theories and in supergravity. It plays an important role
in braneworld models with large extra dimensions and in holographic duality
models relating two theories living in different numbers of spatial dimensions. An
example of the latter is the AdS/CFT correspondence (see, for example, [14])
establishing the duality between supergravity and string theories on the AdS bulk
and conformal field theory on the AdS boundary.

Another example for a gravitational source with the negative energy density,
that can play an important role in the expansion of the early universe, is provided
by the vacuum polarization. The vacuum expectation value of the energy-
momentum tensor for quantum fields may break the energy conditions of the
singularity theorems in general relativity (see, e.g., [15]). This can serve as the
key for solving the singularity problems in the cosmological dynamics. Here we
consider the cosmological dynamics for both cases of positive and negative energy
densities. Various combinations of cosmological constant and of a source with
barotropic equation of state will be studied. Having in mind possible applications
in higher-dimensional models, in particular, motivated by string theories, the
discussion is presented for a general number of spatial dimensions. The qualitative
evolution in cosmological models with scalar fields having negative potentials has
been considered in [16-19]. Various cases of exact solutions to Friedmann
equations in general number of spatial dimensions were discussed in [20] by using
Chebyshev' theorem. Cosmological solutions in (3+1)-dimensional spacetime with
a single positive and negative energy component in a flat universe and for a
negative energy component in a curved universe have been described in [21].

The present paper is organized as follows. In the next section we present the
cosmological equations and some qualitative features. The solutions for flat model
with a cosmological constant and barotropic matter are given in section 3. They
serve as past or future attractors for models with curved space and include various
special cases previously considered in the literature. In section 4 we discuss models
with curved space. First, the general solutions are presented in terms of the
hypergeometric function for models with zero cosmological constant. Various
special cases where the time-dependence of the scale factor is expressed in terms
of elementary functions were discussed in the literature. Then we describe the
qualitative evolution in models with curved space driven by a cosmological constant
and barotropic matter source.

2. Cosmological equations. We consider (D+1)-dimensional background
spacetime described by the FRW line element
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ds* :N2(z)dt2—a2(t)(lf’;€r2 +r2d9%1], (1)
where d QZD_I is the line element on a unit sphere S and k=0; 1. The
choices N(f)=1 and N(¢) =a(?) correspond to the synchronous and conformal time
coordinates, respectively. Depending on the equation of state the first or the second
choice of the time coordinate is convenient to present the cosmological solutions
in simpler form. Assuming that the dynamics is governed by General Relativity
in (D+1)-dimensional spacetime, the set of cosmological equations takes the form

d (£]+£(Dﬁ_%J+(D—1)NZL=MN2(8—19),

E a a a a> D-1
(ajz N’ 167G, 2
2| + = =—2 N7,
a a’> D(D-1)

where the dot stands for the derivative with respect to 7, G, is the gravitational
constant in (D+1)-dimensional spacetime, ¢ is the energy density and p is the
pressure for the sources driving the cosmological evolution. The latter two
quantities obey the equation &+ D(d/a)(e+ p)=0 which is obtained from the
covariant conservation equation for the energy-momentum tensor. This relation
can also be obtained from (2). For the second derivative of the scale factor we
get

a Na 8nGp o D-2
a Na D—lN(er D 8]' 3)
From this relation it follows that the accelerated expansion in terms of the
synchronous time coordinate (N(f) = 1) is obtained under the condition
p<(2—D)8/D. The latter condition is satisfied by the positive cosmological
constant A with the energy density e, =A/(8nG,) and pressure p, =—¢, .

In the discussion below we assume that the matter source contains two parts
with e=¢, +¢, and p=p,+p,. Here, the part with the equation of state
pa =—¢, corresponds to the cosmological constant A with the constant energy
density ¢, and the second contribution has an equation of state p, =we, with
w=const. The condition p<(2-D)e/D for the second source is reduced to
w<w,=2/D-1 for ¢,>0 and to w>w, for g, <0. From the covariant
conservation equation we get

8m = 8m() (a/aO )_OL s (4)
with the notation
o= D(l + w). (5)

We will assume that the cosmological constant A and the constant €,, =¢

Mla=a,
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can be either positive or negative. Note that from the second equation in (2) it
follows that one needs to have the condition 161G, &> D(D—1)ka™ and the total
energy density & should be nonnegative in models with k=0, 1.

Let us consider the qualitative features of the evolution in terms of the
synchronous time. Taking N(f) =1, the second equation in (2) is rewritten as

kK 2A 16nGpe,,

P2 D(D-1) " D(D-1)(a/a, ) ’ ©
where H =a/a is the Hubble function. From here it follows that for w>-1 and
for a positive cosmological constant the late time evolution (large values of the

scale factor) is dominated by the first term in the right hand side. In this case
the de Sitter solution a()oc s, with

R ED 7
*\p(p-1) @

(here we consider the case A >0, the notation H, for A<O0 is used below),
is the future attractor for the general solution. For a negative cosmological constant,
A <0, and for w> -1, from (6) we see that with increasing a at some moment
t=1 the Hubble function becomes zero. The corresponding value for the scale
factor a=a, is determined from (6) putting /=0. At that moment from the first
equation (2) we get

H*+

w—w. 1+w
TP ®)
For k=0, 1 and w>w_ the right-hand side is negative and for 7> ¢ one obtains
H<0 and the initial expansion is followed by the contraction. The same is the
case for k=-1 and -1<w<w_. For a>2 and ¢,,>0, the early expansion,
corresponding to small values of the scale factor, is dominated by the matter source
and the solutions with flat space serve as attractors for models with k= *1.

H

3. Cosmological solutions in flat model. Simple exact solutions of the
cosmological equations can be found in the case of flat model, k=0. In the
absence of the matter source the equation (6) has solutions only for A>0. For
positive cosmological constant the de Sitter solution, a(t)oc e s obtained. To
see the influence of the matter source, first we consider the case of positive
cosmological constant and positive matter density, corresponding to €,,,, €, >0.
In the synchronous time coordinate, for the Hubble function we get
1/a.

; )

€mo

o
H=+H, 1+(“—'"j , o
a a,

€A
with o defined by (5). The integration of this equation leads to the following
expressions for the Hubble function and the scale factor:
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H(t)=+H, coth (|3|t|), a(t)=a,, sinh?® <B|t ), (10)
where
1 D|A
B=lolHy =[1+v] 2(D|_|1)- (11)

For w> -1 the solution (10) for the scale factor coincides with that found in [20].
In that case and for expansion models one has 0 <7 <o with the upper sign in
the expression for the Hubble function. At late times, Pz>>1, one has an
approximately de Sitter expansion with a(t)oceHA’. Near the singularity point
t=0 we obtain a(t)oc|t|2/ *. The case w<-1 corresponds to the phantom phase
(for the effective phantom phase generated by different types of sources see [22]).
In this case a <0 and for the expansion models we have —o <¢<0. The point
t=0 corresponds to the Big Rip singularity. The universe starts with de Sitter
expansion a(t)oc el | [3|t| >>1, in the infinite past and ends the evolution at Big
Rip singularity at =0 with the behavior a(¢)ec|{ /. In Fig.1 we have plotted
the ratio a/a, versus H,t for D=3. The full and dashed curves correspond to
the values w=0 (dust matter), w=-2/3 and w=-3/2 (phantom matter). Note
that under certain conditions (see [23]) the energy density for the axion field scales
as €,yion ~ 1/ @’ and the corresponding dynamics is described by the curve with
w=0 in Fig.1 (the cosmological dynamics with the axion field and holographic
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Fig.1. The time dependence of the scale factor in the model with ¢  , &, >0 for D=3 and
w=0, -2/3, -3/2.
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dark energy has been recently discussed in [24]). For expanding models we have
0<t<+oo for sources with w>-1 and -0 <t<0 for w<-1. The singular point
t=0 corresponds to the Big Bang in the first case and to the Big Rip in the
second case. For w>w_and w<-1 one has d|t=0 = and for -1<w<w_we get
d|t=0 =0. We see that for ¢,,, €, >0 all the flat models contain singularities.

Next we consider the case g, <0<g,,. For the Hubble function we find

H=+H,(a,/a)* -1. (12)

The time dependences for the Hubble function and for the scale factor read

H(t)=+H, tan(|3|t|), at)=a, cosz/“(B|t), (13)
with —n/2B <7< m/2B. For w> -1 this solution coincides with that presented in
[20]. The authors of [20] emphasize that the solution (13) gives rise to a periodic
universe. However, it should be noted that, though the function a(?) in (13) is
periodic with the period 7, =n/B, the periods are separated by singular points
|t| :n(Z+ 1)/[3, [=0, 1, 2, ..., and the evolution pieces separated by those points
present the copies of the same universe with a finite lifetime 7, (for discussion
of various types of singularities in the cosmological context see, for example,
[25-27]). The dependence of the scale factor on the synchronous time coordinate,
described by (13), is depicted in Fig.2 for D=3 and w=0, -2/3, -3/2. In models
with w>-1 the expansion phase with —r/2B <7< 0 is followed by the contraction
one for 0<¢<m/2f. The maximal value of the scale factor is determined by (9).

4 -

Fig.2. The same as in Fig.1 for the model with &, <0<¢, .
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For sources with w< -1 the same relation determines the minimal value of the
scale factor. Similar to the previous case, the flat models contain singularities for
all values of the parameters.

Now we turn to the case ¢,, <0<¢,. The Hubble function is expressed as

H=%H,\1-(a, /a)", (14)

where a, is the minimal (maximal) value of the scale factor for w>-1 (w<-1).
The time dependence is given by the formulas

H=+H, tanh(ﬁ|t|), a=a, cosh?* (B|t|), (15)

with —oo <t <+ . The time dependence of the scale factor given by (15) is plotted
in Fig.3 for the values of the parameters D=3 and w=1/3, 0, -2/3,
-3/2. The models in this case have no singularities. The value a=a, determines
the minimum/maximum value of the scale factor. Note that flat cosmological
models with ¢,,, €, <0 are not allowed by the equation (6). The corresponding
models with curved space will be discussed in the next section.

5 -

a/a_

Fig.3. The scale factor versus the time coordinate in the model with ¢ <0<g, for D=3
and w=1/3, 0, -2/3, -3/2.

In [28,29] it has been shown that in de Sitter spacetime the vacuum
expectation value of the energy-momentum tensor for a conformally coupled
massless scalar field in the hyperbolic vacuum has the form
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1

. Cp .. 1
<Tl_k> = sAd1ag(1,1,...,1)+aTlildlag[1,—B,...,—Bj, (16)

where the first term in the right-hand side corresponds to a cosmological constant
and the constant C) is negative. The second term can be identified with the source
we have considered above having the equation of state p,, =¢,,/D. Hence, for
this source one gets w=1/D and ¢,, <0. The corresponding cosmological solution
is given by (15) with o =D+1 and B=(D+1)HA/2. The time dependence of
the scale factor for D=3 is presented in Fig.3 by the curve with w=1/3. The
corresponding models are nonsingular.

4. Cosmological dynamics in models with curved space. Passing to
the models with curved space, first let us recall the well-known solutions in the
absence of matter sources. The models with k=1 are allowed only in the case
A>0 and the corresponding solution for the scale factor is given by
a=cosh(H ,t)/H, . For k=-1and A >0 the solution reads a = sinh(HA |1,‘|)/HA .
For k= -1 and negative cosmological constant we have the solution
a= sinh(H A |t|)/H A - Note that in models with k=-1 and H A|z‘| <<1 the evolution
is approximated by linear scale factor a(t): |t| . The latter describes a flat spacetime
and corresponds to the Milne universe.

Another special case corresponds to the absence of cosmological constant.
From the equation (6) we get

dy
=ty y'-k, (17)

d(t/ay)
with the notations
a 16nGp e, a;
— —_— = :D L .
e R (w,—w) (18)

Separating the variables, the integrals in (17) can be expressed in terms of the
incomplete beta function B, (u, v). Presenting the latter through the hypergeomet-
ric function F (a,b; c;z) (see, for example, [30]), for the models with k=-1 we
find

,
e Lyl vy (19)
Jroyi+1 T v+l

In a similar way, for the models with k=1 the integration gives

12
2 1 11 1 1
t= ‘11/0 [1— J F[—,—+—;i,1- J (20)
o' L Yo' 22 v 2 vy

The various special cases of these general formulas have been considered in the
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literature. In particular, the examples when for general number of spatial dimen-
sion the solutions are expressed in terms of elementary functions have been
discussed in [20].

Now we turn to the general case of models with curved space in the presence
of a cosmological constant and barotropic matter. The equation (6) is rewritten

as
%:iHM/sAx%be—k, 1)
where
x=H,a, s, =sgn(A), (22)
and

_lénGpe,, a;

~ D(D-1)
Simple solutions are found for the special case of the source with w=w_. For
A>0 and y,-k>0 the solution has the form x=,/y, —ksinh(HA|t|). In the
case A>0 and y,-k<0, the solution reads x=./k—y,cosh(H,¢). For A<0
one needs to have y,—-k>0 and the corresponding solution is given by
X =4/Yo —ksinh (HAt), O<t<m/H,. For y,=0 the first two solutions are
reduced to the de Sitter solutions.

We will denote by x=x_ >0 the value of the function x(7) at its possible
extremum, dx/dz|x=m =0. The extrema are zeros of the expression under the
square root in (21). Taking the corresponding value of the time coordinate as
t=0 and expanding near the extremum we get

@z1+§{slx(l+w)+ Wczwk}(HAt)za (24)

a, X

(Hpay)' - (23)

where a, =x,/H, . The nature of the extremum (minimum or maximum) is
determined by the sign of the expression in the square brackets. Note that for
the extremum we have bx," =k/ x2 —s,. In the definition of the constant b we
have taken a,=a(f) and ¢,, = g, (t,) for a fixed time = t,. Taking #,=1¢ , where
¢t corresponds to the extremal value x , x(¢ ) =x,, from (6) we get the following
relation

sk
R L —
1+ &(m) / €5
where E(m) = s(tm) is the matter energy density at the extremum point. Note that,
assuming the presence of the extremum x=Xx , the equation (21) is written as

(25)
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€
%:“’A \/SA<y2—1)+ﬁ(yV—l)s (26)
with y=x/x =a/a, .

Let us consider different combinations of the signs for the energy densities. For
€,0> €5 >0 and w>w, the early dynamics, corresponding to small values of x,
is dominated by the source with the energy density ¢,, and the expansion law is
close to the one for the flat model. At late times, corresponding to x>>1, the
expansion is dominated by the cosmological constant and, again, the curvature term
is subdominant. The solution corresponding to the flat model is the future attractor
for models with curved space. The dependence of the scale factor on time coordinate
is qualitatively similar to that depicted in Fig.1 for w=0.

For ¢,,, €, >0, w<w, and k=-1, the early dynamics (x<1) for expanding
models is dominated by the curvature term and a(f)~¢, t—0. As it has been
mentioned above, the spacetime with k=-1 and a(f) =t is flat and corresponds
to the Milne universe. The matter energy density behaves as ¢, «<x* and for
w> -1 it diverges at r=0 like g, ~¢*. In the model with ¢,,, €, >0,
w<w, and k=1 the scale factor has a minimal value that corresponds to the
zero x=x,_ of the expression in the right-hand side of (21). At this point the
Hubble function becomes zero. The time-dependence of the scale factor near the
minimum, H,t<<1, is given by (24) with s, =1 and a,=a, . At late times
of the expansion, x>> 1, the curvature term in (21) can be ignored and the
cosmological dynamics is well approximated by the solutions for flat model (see
the graphs with w=-2/3, -3/2 in Fig.1). We conclude that the models with ¢,,,,
g, >0, w<w, and k=1 are nonsingular.

Let us turn to the models with ¢, <0<¢,,. For w>w_the maximum allowed
value for x is determined by the zero x=x  of the right-hand side in (21). The
asymptotic behavior near the maximum is described by (24) with s, =1 and
a =a, . For x<<l1, in the right-hand side of (21) we can omit the curvature
term and x”. The scale factor is approximated by the solution for the flat model
and near the Big Bang, corresponding to 7= -¢,, #, >0, one has a(t)oc(t+ 4 )2/ *.
The model has finite lifetime 27 and the corresponding time-dependence of the
scale factor is qualitatively similar to that for the flat model presented by the graph
with w=0 in Fig.2.

For ¢, <0<eg,, and -1 <w<w_ the function x(#) has a maximal allowed value
x=x, determined by the zero of the right-hand side in (21). Taking x(0) =x ,
near the maximum point we have the approximation (24) with s, =1 and
a =a, . For k=-1, the models start the expansion at #=-f, with the scale factor
a(t)=t+1, and the behavior of the scale factor is close to the one for the Milne
universe. The expansion is stopped at =0 and for >0 the model enters the
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contraction phase. The latter is ended at 7=/ with a(t)zt,—t. Hence, the
k= -1 models have lifetime 27 and the Milne universe is the past and future
attractor for the corresponding dynamics. Note that, though the first derivative of
the scale factor is finite at the points ¢ =+¢, (|d|t: o = 1), the matter energy density

diverges at those points as g, ~1/ |ti t1|D(HW). T}lle models with k=1 start the
expansion from the finite value of the scale factor a,, at r=-¢ . At that point
a(~t,,,)=0. At t=0 the scale factor takes its maximal value a,,, = x,, /H, and
then it enters into the contraction phase. Near the maximum we have the
approximation (24). The evolution is ended at r=¢  with a=qa  and it )=0.
Hence, in this case we have nonsingular evolution for —¢,,, <t<¢,, . Joining the
evolutionary pieces with duration 27 , we obtain a model with periodically
oscillating scale factor in the limits a,,, <a<a,, for —o<ft<+o.

In models with ¢, <0<eg,,,, w<-1, and for large values of x the expansion
law is close to the one for the flat model and the corresponding behavior is
qualitatively close to the one given by the curve with w=-3/2 in Fig.2. For small
values of x and for models with k= -1 the expansion/contraction law is approxi-
mated by a(t)z|t|. At t=0 the matter energy density vanishes as ¢, ~|Z|D(1+W).
In models with k=1 the scale factor has a minimum value a=a,, determined
by the zero of the right-hand side in (21) and the evolution for all values of
x>x,,, is qualitatively similar to that described by the curve with w=-3/2 in
Fig.2. The expansion models have Big Rip singularity.

Now let us consider models with the energy densities in the range ¢,, <0<¢g, .
For w>w_ the scale factor has a minimal value a=a,  which is determined by
the zero of the righthand side in (21). Taking r=0 for the corresponding value
of the time coordinate, near the minimum one has the approximation (24) with
a =a,  and x =x . For w>w_ and for large values of x the evolution is
approximated by de Sitter spacetime with the Hubble constant H, . The behavior
of the scale factor is qualitatively similar to that depicted in Fig.3 by the curves
with w=0, 1/3 and the corresponding models have no singularities. An example
with positive cosmological constant, negative matter energy density and the
equation of state parameter w=1/D>w_is provided by (16). In the range
-1<w<w, and for large values of x the evolution is again dominated by the
cosmological constant with de Sitter spacetime being the past or future attractor.
In the same range for w and for k=-1 one gets the approximate solution a(t)z |t|
for H A|t| <<1, corresponding to the Milne universe. The matter energy density
diverges at t=0. For -1 <w<w_and k=1 the scale factor has a minimal value
determined by the zero of the right-hand side of (21). Near that minimum the
scale factor is approximated by (24) and the model is nonsingular. In the range
w<-1 the scale factor has the maximal value a, _ which is given by the zero
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of the right-hand side in (21). For models with k=-1 the expansion starts at
t=-t, with the asymptotic a(t)zt+ t, (curvature dominated expansion) and ends
at r=0 with the asymptotic given by (24). The expansion phase is followed by
the contraction for 0 <#< with a(t)~#—¢ near t=1. For models with k=1
the scale factor varies between two nonzero values 0<a,,; <a<a,, <. The
corresponding models are nonsingular and can be extended for ¢ € (— 00, + oo). The
qualitative dynamics is similar to that we have described above for the case k=1,
gp <0<g,y, -1 <w<w,.

Finally, for ¢,,, €, <0, in accordance with (6), the models with k=0 and
k=1 are not allowed. Let us consider the features of the cosmological dynamics
in this case for k=-1. For w>w, from the condition for the positivity of the
expression under the square root in (21), we can see that the model is allowed

under the constraint

o < (W_W“T/z 27
D(w—wc) w+1 ' (27)

This condition restricts the allowed values for the negative energy density ¢, .

In the range determined by (27), the right-hand side of (21) has two zeros and

they determine the minimal and maximal values for the scale factor,

0<a,, <alt)<a,,, . At those points ¢ =0 and H=0. Near the extrema the scale

factor is approximated by (24) with s, =-1 and k=-1. From (24) it follows that
I Jw—w,

a, . <—,.,——<a .
min HA l+w max (28)

For ¢,,, €, <0, w<w_ the right hand side of (21) has a single zero that
determines the maximal value of the scale factor @, = a(0). Near the maximum
the scale factor behaves like (24) with s, =—1 and k=-1. For small values of x
the dynamics is dominated by the curvature term with the Milne universe as the
asymptotic. The expansion starts at /= -7 with a(t)zt+ ¢, and stops at r=0 with
the maximal value of the scale factor. The evolution for 0 <#<7 corresponds to
the contraction phase with the future attractor a(t)~¢,—¢. At the points ¢=+¢,

the matter energy density vanishes for w<-1 and diverges for -1 <w<w.

5. Conclusion. We have considered the dynamics of (D+ 1)-dimensional
FRW cosmological models driven by the cosmological constant and the matter
source with barotropic equation of state assuming that the energy densities for those
sources can be either positive or negative. Exact solutions are provided for models
with flat space which include various special cases previously considered in the
literature. In particular, it has been demonstrated that nonsingular solutions are
obtained only for negative energy density of the matter, regardless the sign of the



COSMOLOGICAL EVOLUTION 455

cosmological constant. The corresponding scale factor is given by (15). Another
classes of exact solutions, expressed in terms of the hypergeometric function (see
(19) and (20)), are obtained for models with curved space in the absence of
cosmological constant. A number of special cases of those solutions, when they
are expressed in terms of elementary function, have been discussed in the literature
(see, for example, [20]). The qualitative evaluation for models with curved spaces
and with a cosmological constant and matter source has been described in the
second part of section 4 for all the values of the equation of state parameter w
and for all combinations of the signs of the energy densities. Depending on the
values of w one can have Big Bang or Big Rip type singularities. We have also
specified nonsingular models with curved space. For k = 1, nonsingular modelas
are obtained for the following combinations of conditions: (i) (&, >0, €, >0,
w<w), (i) (g, >0, &, <0, -1<w<w), (iii) (&, <0, &, >0). In models
(ii ) and (&g, <0, g, >0, w>-1) the evolution of the scale factor, as a function
of time coordinate, is periodically oscillatory in the limits a,,, < a(t)s A - 1IN
the remaining cases, the qualitative evolution of k=1 nonsingular models is similar
to that depicted in Fig.3 for w=-2/3, 0, 1/3. For models with negative curvature
space there exists at least one point on the time axis where the scale factor
becomes zero. Near those points the evolution is dominated by the matter source
for w>w, and by the curvature term for w<w_. In the second case the scale
factor is approximated by a linear expansion/contraction as a function of the time
coordinate. At the point with zero scale factor the matter energy density diverges
for -1 <w<w, and vanishes for w<-1.

We have seen that the negative energy densities for both the cosmological
constant and matter source enlarge the possible scenarios of cosmological dynam-
ics. Bearing in mind applications in higher-dimensional models, it would be
interesting to generalize the corresponding results for models with extra compact
dimensions. The compactification leads to additional contributions to the vacuum
expectation value of the energy-momentum tensor. In general, the effective
pressures along compact dimensions differ and for massless conformally coupled
fields the topological contributions are equivalent to barotropic perfect fluid with
anisotropic pressures. In particular, the coefficients w in the respective equations
of state may have different signs. In the corresponding anisotropic cosmological
models one can have an expansion for a part of dimensions and a contraction
for the remaining ones. The analysis of different cosmological scenarios can be
done in a way similar to that we have described above. We can also use the
methods of qualitative analysis of dynamical systems to classify qualitatively
different cosmological models. The corresponding results for a toroidal
compactification will be presented elsewhere.
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KOCMOJIOTUYECKAA SBOJIIOLNA C
OTPULATEJIBHOUN TINIOTHOCTbIO SHEPI'MU

A.A.CAAPAH!?, P.M.ABAKAH!?, E.P.BE3EPPA JIE MEJIJIO?,
B.X.KOTAH2KAH!2, T ATTETPOCAH!?, I'.T.bABY1XKAH!

g Tpou3BOJIBHOIO YMCJIa MPOCTPAHCTBEHHBIX M3MEPEHUI ucciaeaoBaHa
KOCMOJIOTMYecKass IUHAMUKA, YIpasisieMass KOCMOJOTMYECKOM ITOCTOSTHHOM U
WCTOYHUKOM C 0apOTpOIHBIM yYpaBHeHUEM cocTosiHus. [Ipennonaraercs, uyto mwist
000UX UCTOUHUKOB TJIOTHOCTb SHEPTUM MOXET ObITh KaK IMOJIOXUTEJIbHOM, TaK U
oTpuLaTebHOM. I8 TMIOCKMX MoZAeJel NPUBEAECHBl TOYHBIE PEIIEHUS
KOCMOJIOTUYECKUX ypaBHEHUI. I MoJeneil ¢ UCKPUBJIEHHBIM MTPOCTPAHCTBOM U
C HYJIEBOM KOCMOJIOTMUYECKOU TOCTOSTHHOM 0011I1e pellieHUs] BhIpaKaroTcs yepes
rurnepreoMeTpuyeckyto dyHkuuio. KayecTrBeHHasi 9BOJIIOIMS OINKMCaHa JUJIsT BCeX
3HAYEHMI MapameTpa YpaBHEHUS COCTOSTHYSA. BbIIeneHbl 3HaUEHNS 3TOTO MapamMeTpa
1 KOMOMHALIMU 3HAKOB JIJI1 KOCMOJIOTMYECKOM MOCTOSIHHOM U TUIOTHOCTH SHEPIUU
MaTepuu, I KOTOPBIX KOCMOJIOTMYECKask TMHAMUKa HECUHTYJIsIpHA. PaccMoTpeH
MPUMEP C MOJOXUTEIBbHOM KOCMOJOTMYECKOM MOCTOSHHOW U OTPULIATEIBHON
TJIOTHOCTBIO SHEPTUM BEILIECTBA, MHAYLIMPOBAHHOW MOJISIpU3alield TUIIepOOIMIeCKOro

BaKkyyMa.

KiroueBnie clioBa: Kocmonoeuueckas 360/AH0UUA KOCMOA02UUYECKAA NOCMOAHHAA:
ompuuamenbHas NAONHOCMb SHepeuu
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