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For general number of spatial dimensions we investigate the cosmological dynamics driven by
a cosmological constant and by a source with barotropic equation of state. It is assumed that for
both those sources the energy density can be either positive or negative. Exact solutions of the
cosmological equations are provided for flat models. For models with curved space and with zero
cosmological constant the general solutions are expressed in terms of the hypergeometric function.
The qualitative evolution is described for all values of the equation of state parameter. We specify
the values of that parameter and the combinations of the signs for the cosmological constant and
matter energy density for which the cosmological dynamics is nonsingular. An example is considered
with positive cosmological constant and negative matter energy density induced by the polarization
of the hyperbolic vacuum.
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1. Introduction. The investigation of cosmological dynamics is carried out

mainly within the framework of homogeneous and isotropic models described by

Friedmann-Robertson-Walker (FRW) line element. In particular, the models

containing a positive cosmological constant in addition to the matter and radiation

sources of the expansion have been actively studied. This theoretical activity is

motivated by the observational evidence [1,2] for accelerated expansion of the

universe in recent epoch driven by a source (dark energy) with properties close

to a positive cosmological constant. The cosmological model with a positive

cosmological constant and cold dark matter (CDM) in addition to the usual matter

( CDM  model) is in good agreement with observational data on the large scale

structure and dynamics of the universe. Recently a problem appeared that is related

to the value of the Hubble parameter H
0
 at present determined by two different

ways. The first one is based on direct low redshift observations [3-6] and gives

the value 730 H  km/s Mpc. The second way combines the Planck data on

temperature anisotropies of the cosmic microwave background radiation [7] with

the CDM  model and gives the result 670 H  km/s/ Mpc. A number of models

have been discussed in the literature to address this problem, also called Hubble

tension (for a review see [8]). In particular, they include the models with negative

cosmological constant (see [9-13]). The maximally symmetric solution of the
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Einstein field equations with a negative cosmological constant as the only source

of the gravitation is given by anti-de Sitter (AdS) spacetime. This geometry appears

as a ground state in string theories and in supergravity. It plays an important role

in braneworld models with large extra dimensions and in holographic duality

models relating two theories living in different numbers of spatial dimensions. An

example of the latter is the AdS/CFT correspondence (see, for example, [14])

establishing the duality between supergravity and string theories on the AdS bulk

and conformal field theory on the AdS boundary.

Another example for a gravitational source with the negative energy density,

that can play an important role in the expansion of the early universe, is provided

by the vacuum polarization. The vacuum expectation value of the energy-

momentum tensor for quantum fields may break the energy conditions of the

singularity theorems in general relativity (see, e.g., [15]). This can serve as the

key for solving the singularity problems in the cosmological dynamics. Here we

consider the cosmological dynamics for both cases of positive and negative energy

densities. Various combinations of cosmological constant and of a source with

barotropic equation of state will be studied. Having in mind possible applications

in higher-dimensional models, in particular, motivated by string theories, the

discussion is presented for a general number of spatial dimensions. The qualitative

evolution in cosmological models with scalar fields having negative potentials has

been considered in [16-19]. Various cases of exact solutions to Friedmann

equations in general number of spatial dimensions were discussed in [20] by using

Chebyshev' theorem. Cosmological solutions in (3+1)-dimensional spacetime with

a single positive and negative energy component in a flat universe and for a

negative energy component in a curved universe have been described in [21].

The present paper is organized as follows. In the next section we present the

cosmological equations and some qualitative features. The solutions for flat model

with a cosmological constant and barotropic matter are given in section 3. They

serve as past or future attractors for models with curved space and include various

special cases previously considered in the literature. In section 4 we discuss models

with curved space. First, the general solutions are presented in terms of the

hypergeometric function for models with zero cosmological constant. Various

special cases where the time-dependence of the scale factor is expressed in terms

of elementary functions were discussed in the literature. Then we describe the

qualitative evolution in models with curved space driven by a cosmological constant

and barotropic matter source.

2. Cosmological equations. We consider (D+1)-dimensional background

spacetime described by the FRW line element
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1Dd  is the line element on a unit sphere 1DS  and k = 0; ±1. The

choices N(t) = 1 and N(t) = a(t) correspond to the synchronous and conformal time

coordinates, respectively. Depending on the equation of state the first or the second

choice of the time coordinate is convenient to present the cosmological solutions

in simpler form. Assuming that the dynamics is governed by General Relativity

in (D+1)-dimensional spacetime, the set of cosmological equations takes the form
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where the dot stands for the derivative with respect to t, G
D
 is the gravitational

constant in (D+1)-dimensional spacetime,   is the energy density and p is the

pressure for the sources driving the cosmological evolution. The latter two

quantities obey the equation    0 paaD   which is obtained from the

covariant conservation equation for the energy-momentum tensor. This relation

can also be obtained from (2). For the second derivative of the scale factor we

get
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From this relation it follows that the accelerated expansion in terms of the

synchronous time coordinate (N(t) = 1) is obtained under the condition

  DDp  2 . The latter condition is satisfied by the positive cosmological

constant   with the energy density  DG 8  and pressure  p .

In the discussion below we assume that the matter source contains two parts

with m   and mppp   . Here, the part with the equation of state

 p  corresponds to the cosmological constant   with the constant energy

density   and the second contribution has an equation of state mm wp   with

w = const. The condition   DDp  2  for the second source is reduced to

12  Dww c  for 0m  and to cww   for 0m . From the covariant

conservation equation we get

  , 00
 aamm

(4)

with the notation

 . 1 wD  (5)

We will assume that the cosmological constant   and the constant 
0

0 aamm 

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can be either positive or negative. Note that from the second equation in (2) it

follows that one needs to have the condition   2116  kaDDGD  and the total

energy density   should be nonnegative in models with k = 0, 1.

Let us consider the qualitative features of the evolution in terms of the

synchronous time. Taking N(t) = 1, the second equation in (2) is rewritten as
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where aaH   is the Hubble function. From here it follows that for w > -1 and

for a positive cosmological constant the late time evolution (large values of the

scale factor) is dominated by the first term in the right hand side. In this case

the de Sitter solution   tHeta  , with

 1

2




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DD
H (7)

(here we consider the case 0 , the notation H  for 0  is used below),

is the future attractor for the general solution. For a negative cosmological constant,

0 , and for w > -1, from (6) we see that with increasing a at some moment

t = t
m
 the Hubble function becomes zero. The corresponding value for the scale

factor a = a
m
 is determined from (6) putting H = 0. At that moment from the first

equation (2) we get
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For k = 0, 1 and w > w
c
 the right-hand side is negative and for t > t

m
 one obtains

H < 0 and the initial expansion is followed by the contraction. The same is the

case for k = -1 and -1 < w < w
c
. For 2  and 00 m , the early expansion,

corresponding to small values of the scale factor, is dominated by the matter source

and the solutions with flat space serve as attractors for models with k = ±1.

3. Cosmological solutions in flat model. Simple exact solutions of the

cosmological equations can be found in the case of flat model, k = 0. In the

absence of the matter source the equation (6) has solutions only for 0 . For

positive cosmological constant the de Sitter solution,   tHeta  , is obtained. To

see the influence of the matter source, first we consider the case of positive

cosmological constant and positive matter density, corresponding to 0m , 0 .

In the synchronous time coordinate, for the Hubble function we get
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1

0

0




















 mmm

a

a

a

a
HH (9)

with   defined by (5). The integration of this equation leads to the following

expressions for the Hubble function and the scale factor:
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For w > -1 the solution (10) for the scale factor coincides with that found in [20].

In that case and for expansion models one has  t0  with the upper sign in

the expression for the Hubble function. At late times, 1 t , one has an

approximately de Sitter expansion with   tHeta  . Near the singularity point

t = 0 we obtain   


2
tta . The case w < -1 corresponds to the phantom phase

(for the effective phantom phase generated by different types of sources see [22]).

In this case 0  and for the expansion models we have 0 t . The point

t = 0 corresponds to the Big Rip singularity. The universe starts with de Sitter

expansion   tHeta  , 1 t , in the infinite past and ends the evolution at Big

Rip singularity at t = 0 with the behavior   


2
tta . In Fig.1 we have plotted

the ratio a/a
m
 versus tH  for D = 3. The full and dashed curves correspond to

the values w = 0 (dust matter), w = -2/3 and w = -3/2 (phantom matter). Note

that under certain conditions (see [23]) the energy density for the axion field scales

as 3
axion 1 a~  and the corresponding dynamics is described by the curve with

w = 0 in Fig.1 (the cosmological dynamics with the axion field and holographic

Fig.1. The time dependence of the scale factor in the model with 
0m

 , 0


 for D = 3 and
w = 0, -2/3, -3/2.
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dark energy has been recently discussed in [24]). For expanding models we have

 t0  for sources with w > -1 and 0 t  for w < -1. The singular point

t = 0 corresponds to the Big Bang in the first case and to the Big Rip in the

second case. For w > w
c
 and w < -1 one has 

0t
a  and for -1 < w < w

c
 we get

0
0


t
a . We see that for 0m , 0  all the flat models contain singularities.

Next we consider the case 00 m . For the Hubble function we find

  . 1


 aaHH m
(12)

The time dependences for the Hubble function and for the scale factor read

       , cos, tan 2 tatatHtH m  
 (13)

with  22 t . For w > -1 this solution coincides with that presented in

[20]. The authors of [20] emphasize that the solution (13) gives rise to a periodic

universe. However, it should be noted that, though the function a(t) in (13) is

periodic with the period Lt , the periods are separated by singular points

   1lt , l = 0, 1, 2, ..., and the evolution pieces separated by those points

present the copies of the same universe with a finite lifetime t
L
 (for discussion

of various types of singularities in the cosmological context see, for example,

[25-27]). The dependence of the scale factor on the synchronous time coordinate,

described by (13), is depicted in Fig.2 for D = 3 and w = 0, -2/3, -3/2. In models

with w > -1 the expansion phase with 02  t  is followed by the contraction

one for  20 t . The maximal value of the scale factor is determined by (9).

Fig.2. The same as in Fig.1 for the model with 
0

0
m


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For sources with w < -1 the same relation determines the minimal value of the

scale factor. Similar to the previous case, the flat models contain singularities for

all values of the parameters.

Now we turn to the case  00m . The Hubble function is expressed as

  , 1


  aaHH m
(14)

where a
m
 is the minimal (maximal) value of the scale factor for w > -1 (w < -1).

The time dependence is given by the formulas

   , cosh, tanh 2 taatHH m  
 (15)

with  t . The time dependence of the scale factor given by (15) is plotted

in Fig.3 for the values of the parameters D = 3 and w = 1/3, 0, -2/3,

-3/2. The models in this case have no singularities. The value a = a
m
 determines

the minimum/maximum value of the scale factor. Note that flat cosmological

models with 0m , 0  are not allowed by the equation (6). The corresponding

models with curved space will be discussed in the next section.

In [28,29] it has been shown that in de Sitter spacetime the vacuum

expectation value of the energy-momentum tensor for a conformally coupled

massless scalar field in the hyperbolic vacuum has the form

Fig.3. The scale factor versus the time coordinate in the model with 


 0
0m

 for D = 3
and w = 1/3, 0, -2/3, -3/2.
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where the first term in the right-hand side corresponds to a cosmological constant

and the constant C
D
 is negative. The second term can be identified with the source

we have considered above having the equation of state Dp mm  . Hence, for

this source one gets w = 1/D and 00 m . The corresponding cosmological solution

is given by (15) with 1 D  and   21  HD . The time dependence of

the scale factor for D = 3 is presented in Fig.3 by the curve with w = 1/3. The

corresponding models are nonsingular.

4. Cosmological dynamics in models with curved space. Passing to

the models with curved space, first let us recall the well-known solutions in the

absence of matter sources. The models with k = 1 are allowed only in the case

0  and the corresponding solution for the scale factor is given by

   HtHa cosh . For k = -1 and 0  the solution reads    HtHa sinh .

For k  = -1 and negative cosmological constant we have the solution

   HtHa sinh . Note that in models with k = -1 and 1 tH  the evolution

is approximated by linear scale factor   tta  . The latter describes a flat spacetime

and corresponds to the Milne universe.

Another special case corresponds to the absence of cosmological constant.

From the equation (6) we get
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Separating the variables, the integrals in (17) can be expressed in terms of the

incomplete beta function  v ,uBz . Presenting the latter through the hypergeomet-

ric function  zcbaF  ; ; ,  (see, for example, [30]), for the models with k = -1 we

find
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In a similar way, for the models with k = 1 the integration gives
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The various special cases of these general formulas have been considered in the
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literature. In particular, the examples when for general number of spatial dimen-

sion the solutions are expressed in terms of elementary functions have been

discussed in [20].

Now we turn to the general case of models with curved space in the presence

of a cosmological constant and barotropic matter. The equation (6) is rewritten

as

, 2 kbxxsH
dt
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Simple solutions are found for the special case of the source with w = w
c
. For

0  and 00  k  the solution has the form  tHkx  sinh0 . In the

case 0  and 00  k , the solution reads  tHkx  cosh0 . For 0

one needs to have 00  k  and the corresponding solution is given by

 tHkx  sinh0 ,  Ht0 . For 00   the first two solutions are

reduced to the de Sitter solutions.

We will denote by x = x
m

 > 0 the value of the function x(t) at its possible

extremum, 0
 mxx

dtdx . The extrema are zeros of the expression under the

square root in (21). Taking the corresponding value of the time coordinate as

t = 0 and expanding near the extremum we get
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where  Hxa mm . The nature of the extremum (minimum or maximum) is

determined by the sign of the expression in the square brackets. Note that for

the extremum we have 
  sxkbx mm

2 . In the definition of the constant b we

have taken a
0

 = a(t
0
) and  00 tmm   for a fixed time t = t

0
. Taking t

0
 = t

m
, where

t
m
 corresponds to the extremal value x

m
, x(t

m
) = x

m
, from (6) we get the following

relation
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1
2






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m
m
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x (25)

where    mm t  is the matter energy density at the extremum point. Note that,

assuming the presence of the extremum x = x
m
, the equation (21) is written as
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      , 112 

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
 yysH

dt
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with y = x/x
m

 = a/a
m
.

Let us consider different combinations of the signs for the energy densities. For

0m , 0  and w > w
c
, the early dynamics, corresponding to small values of x,

is dominated by the source with the energy density m  and the expansion law is

close to the one for the flat model. At late times, corresponding to x >> 1, the

expansion is dominated by the cosmological constant and, again, the curvature term

is subdominant. The solution corresponding to the flat model is the future attractor

for models with curved space. The dependence of the scale factor on time coordinate

is qualitatively similar to that depicted in Fig.1 for w = 0.

For 0m , 0 , w < w
c
, and k = -1, the early dynamics (x << 1) for expanding

models is dominated by the curvature term and   tta  , 0t . As it has been

mentioned above, the spacetime with k = -1 and a(t) = t is flat and corresponds

to the Milne universe. The matter energy density behaves as  xm  and for

w > -1 it diverges at t = 0 like  t~m . In the model with 0m , 0 ,

w < w
c
, and k = 1 the scale factor has a minimal value that corresponds to the

zero x = x
m
 of the expression in the right-hand side of (21). At this point the

Hubble function becomes zero. The time-dependence of the scale factor near the

minimum, 1tH , is given by (24) with 1s  and a
m

 = a
min

. At late times

of the expansion, x >> 1, the curvature term in (21) can be ignored and the

cosmological dynamics is well approximated by the solutions for flat model (see

the graphs with w = -2/3, -3/2 in Fig.1). We conclude that the models with 0m ,

0 , w < w
c
, and k = 1 are nonsingular.

Let us turn to the models with 00 m . For w > w
c
 the maximum allowed

value for x is determined by the zero x = x
m
 of the right-hand side in (21). The

asymptotic behavior near the maximum is described by (24) with 1s  and

a
m

 = a
max

. For x << 1, in the right-hand side of (21) we can omit the curvature

term and 2x . The scale factor is approximated by the solution for the flat model

and near the Big Bang, corresponding to t = -t
1
, t

1
 > 0, one has      2

1ttta .

The model has finite lifetime 2t
1
 and the corresponding time-dependence of the

scale factor is qualitatively similar to that for the flat model presented by the graph

with w = 0 in Fig.2.

For 00 m  and -1 < w < w
c
 the function x(t) has a maximal allowed value

x = x
m
 determined by the zero of the right-hand side in (21). Taking x(0) = x

m
,

near the maximum point we have the approximation (24) with 1s  and

a
m

 = a
max

. For k = -1, the models start the expansion at t = -t
1
 with the scale factor

  1ttta   and the behavior of the scale factor is close to the one for the Milne

universe. The expansion is stopped at t = 0 and for t > 0 the model enters the
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contraction phase. The latter is ended at t = t
1
 with   ttta  1 . Hence, the

k = -1 models have lifetime 2t
1
 and the Milne universe is the past and future

attractor for the corresponding dynamics. Note that, though the first derivative of

the scale factor is finite at the points 1tt   ( 1
1


 tt
a ), the matter energy density

diverges at those points as 
 wD

m tt~



1

11 . The models with k = 1 start the

expansion from the finite value of the scale factor a
min

 at t = -t
min

. At that point

  0 minta . At t = 0 the scale factor takes its maximal value  Hxa mmax  and

then it enters into the contraction phase. Near the maximum we have the

approximation (24). The evolution is ended at t = t
min

 with a = a
min

 and   0minta .

Hence, in this case we have nonsingular evolution for minmin ttt  . Joining the

evolutionary pieces with duration 2t
min

, we obtain a model with periodically

oscillating scale factor in the limits maxmin aaa   for  t .

In models with 00 m , w < -1, and for large values of x the expansion

law is close to the one for the flat model and the corresponding behavior is

qualitatively close to the one given by the curve with w = -3/2 in Fig.2. For small

values of x and for models with k = -1 the expansion/contraction law is approxi-

mated by   tta  . At t = 0 the matter energy density vanishes as 
 wD

m t~



1

.

In models with k = 1 the scale factor has a minimum value a = a
min

 determined

by the zero of the right-hand side in (21) and the evolution for all values of

minxx   is qualitatively similar to that described by the curve with w = -3/2 in

Fig.2. The expansion models have Big Rip singularity.

Now let us consider models with the energy densities in the range  00m .

For w > w
c
 the scale factor has a minimal value a = a

min
 which is determined by

the zero of the righthand side in (21). Taking t = 0 for the corresponding value

of the time coordinate, near the minimum one has the approximation (24) with

a
m

 = a
min

 and x
m

 = x
min

. For w > w
c
 and for large values of x the evolution is

approximated by de Sitter spacetime with the Hubble constant H . The behavior

of the scale factor is qualitatively similar to that depicted in Fig.3 by the curves

with w = 0, 1/3 and the corresponding models have no singularities. An example

with positive cosmological constant, negative matter energy density and the

equation of state parameter w = 1/D > w
c
 is provided by (16). In the range

-1 < w < w
c
 and for large values of x the evolution is again dominated by the

cosmological constant with de Sitter spacetime being the past or future attractor.

In the same range for w and for k = -1 one gets the approximate solution   tta 

for 1 tH , corresponding to the Milne universe. The matter energy density

diverges at t = 0. For -1 < w < w
c
 and k = 1 the scale factor has a minimal value

determined by the zero of the right-hand side of (21). Near that minimum the

scale factor is approximated by (24) and the model is nonsingular. In the range

w < -1 the scale factor has the maximal value a
max

 which is given by the zero
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of the right-hand side in (21). For models with k = -1 the expansion starts at

t = -t
1
 with the asymptotic   1ttta   (curvature dominated expansion) and ends

at t = 0 with the asymptotic given by (24). The expansion phase is followed by

the contraction for 0 < t < t
1
 with   ttta  1  near t = t

1
. For models with k = 1

the scale factor varies between two nonzero values  maxmin aaa0 . The

corresponding models are nonsingular and can be extended for    ,t . The

qualitative dynamics is similar to that we have described above for the case k = 1,

00 m , -1 < w < w
c
.

Finally, for 0m , 0 , in accordance with (6), the models with k = 0 and

k = 1 are not allowed. Let us consider the features of the cosmological dynamics

in this case for k = -1. For w > w
c
, from the condition for the positivity of the

expression under the square root in (21), we can see that the model is allowed

under the constraint

 
. 

1

2
2

















w

ww

wwD
b c

c

(27)

This condition restricts the allowed values for the negative energy density 0m .

In the range determined by (27), the right-hand side of (21) has two zeros and

they determine the minimal and maximal values for the scale factor,

  maxmin ataa 0 . At those points 0a  and H = 0. Near the extrema the scale

factor is approximated by (24) with 1s  and k = -1. From (24) it follows that

. 
1

1
max

c
min a

w

ww

H
a 








(28)

For 0m , 0 , w < w
c
 the right hand side of (21) has a single zero that

determines the maximal value of the scale factor a
max

 = a(0). Near the maximum

the scale factor behaves like (24) with 1s  and k = -1. For small values of x

the dynamics is dominated by the curvature term with the Milne universe as the

asymptotic. The expansion starts at t = -t
1
 with   1ttta   and stops at t = 0 with

the maximal value of the scale factor. The evolution for 0 < t < t
1
 corresponds to

the contraction phase with the future attractor   ttta  1 . At the points 1tt 

the matter energy density vanishes for w < -1 and diverges for -1 < w < w
c
.

5. Conclusion. We have considered the dynamics of (D + 1)-dimensional

FRW cosmological models driven by the cosmological constant and the matter

source with barotropic equation of state assuming that the energy densities for those

sources can be either positive or negative. Exact solutions are provided for models

with flat space which include various special cases previously considered in the

literature. In particular, it has been demonstrated that nonsingular solutions are

obtained only for negative energy density of the matter, regardless the sign of the
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cosmological constant. The corresponding scale factor is given by (15). Another

classes of exact solutions, expressed in terms of the hypergeometric function (see

(19) and (20)), are obtained for models with curved space in the absence of

cosmological constant. A number of special cases of those solutions, when they

are expressed in terms of elementary function, have been discussed in the literature

(see, for example, [20]). The qualitative evaluation for models with curved spaces

and with a cosmological constant and matter source has been described in the

second part of section 4 for all the values of the equation of state parameter w

and for all combinations of the signs of the energy densities. Depending on the

values of w one can have Big Bang or Big Rip type singularities. We have also

specified nonsingular models with curved space. For k = 1, nonsingular modelas

are obtained for the following combinations of conditions: (i) ( 00  m , 0 ,

w < w
c
), (ii) ( 00  m , 0 , -1 < w < w

c
), (iii) ( 00  m , 0 ). In models

(ii ) and ( 00  m , 0 , w > -1) the evolution of the scale factor, as a function

of time coordinate, is periodically oscillatory in the limits   maxmin ataa  . In

the remaining cases, the qualitative evolution of k = 1 nonsingular models is similar

to that depicted in Fig.3 for w = -2/3, 0, 1/3. For models with negative curvature

space there exists at least one point on the time axis where the scale factor

becomes zero. Near those points the evolution is dominated by the matter source

for w > w
c
 and by the curvature term for w < w

c
. In the second case the scale

factor is approximated by a linear expansion/contraction as a function of the time

coordinate. At the point with zero scale factor the matter energy density diverges

for -1 < w < w
c
 and vanishes for w < -1.

We have seen that the negative energy densities for both the cosmological

constant and matter source enlarge the possible scenarios of cosmological dynam-

ics. Bearing in mind applications in higher-dimensional models, it would be

interesting to generalize the corresponding results for models with extra compact

dimensions. The compactification leads to additional contributions to the vacuum

expectation value of the energy-momentum tensor. In general, the effective

pressures along compact dimensions differ and for massless conformally coupled

fields the topological contributions are equivalent to barotropic perfect fluid with

anisotropic pressures. In particular, the coefficients w in the respective equations

of state may have different signs. In the corresponding anisotropic cosmological

models one can have an expansion for a part of dimensions and a contraction

for the remaining ones. The analysis of different cosmological scenarios can be

done in a way similar to that we have described above. We can also use the

methods of qualitative analysis of dynamical systems to classify qualitatively

different cosmological models. The corresponding results for a toroidal

compactification will be presented elsewhere.
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ÊÎÑÌÎËÎÃÈ×ÅÑÊÀß ÝÂÎËÞÖÈß Ñ
ÎÒÐÈÖÀÒÅËÜÍÎÉ ÏËÎÒÍÎÑÒÜÞ ÝÍÅÐÃÈÈ

À.À.ÑÀÀÐßÍ1,2, Ð.Ì.ÀÂÀÊßÍ1,2, Å.Ð.ÁÅÇÅÐÐÀ ÄÅ ÌÅËËÎ3,

Â.Õ.ÊÎÒÀÍÄÆßÍ1,2, Ò.À.ÏÅÒÐÎÑßÍ1,2, Ã.Ã.ÁÀÁÓÄÆßÍ1

Äëÿ ïðîèçâîëüíîãî ÷èñëà ïðîñòðàíñòâåííûõ èçìåðåíèé èññëåäîâàíà

êîñìîëîãè÷åñêàÿ äèíàìèêà, óïðàâëÿåìàÿ êîñìîëîãè÷åñêîé ïîñòîÿííîé è

èñòî÷íèêîì ñ áàðîòðîïíûì óðàâíåíèåì ñîñòîÿíèÿ. Ïðåäïîëàãàåòñÿ, ÷òî äëÿ

îáîèõ èñòî÷íèêîâ ïëîòíîñòü ýíåðãèè ìîæåò áûòü êàê ïîëîæèòåëüíîé, òàê è

îòðèöàòåëüíîé. Äëÿ ïëîñêèõ ìîäåëåé ïðèâåäåíû òî÷íûå ðåøåíèÿ

êîñìîëîãè÷åñêèõ óðàâíåíèé. Äëÿ ìîäåëåé ñ èñêðèâëåííûì ïðîñòðàíñòâîì è

ñ íóëåâîé êîñìîëîãè÷åñêîé ïîñòîÿííîé îáùèå ðåøåíèÿ âûðàæàþòñÿ ÷åðåç

ãèïåðãåîìåòðè÷åñêóþ ôóíêöèþ. Êà÷åñòâåííàÿ ýâîëþöèÿ îïèñàíà äëÿ âñåõ

çíà÷åíèé ïàðàìåòðà óðàâíåíèÿ ñîñòîÿíèÿ. Âûäåëåíû çíà÷åíèÿ ýòîãî ïàðàìåòðà

è êîìáèíàöèè çíàêîâ äëÿ êîñìîëîãè÷åñêîé ïîñòîÿííîé è ïëîòíîñòè ýíåðãèè

ìàòåðèè, äëÿ êîòîðûõ êîñìîëîãè÷åñêàÿ äèíàìèêà íåñèíãóëÿðíà. Ðàññìîòðåí

ïðèìåð ñ ïîëîæèòåëüíîé êîñìîëîãè÷åñêîé ïîñòîÿííîé è îòðèöàòåëüíîé

ïëîòíîñòüþ ýíåðãèè âåùåñòâà, èíäóöèðîâàííîé ïîëÿðèçàöèåé ãèïåðáîëè÷åñêîãî

âàêóóìà.

Êëþ÷åâûå ñëîâà: êîñìîëîãè÷åñêàÿ ýâîëþöèÿ: êîñìîëîãè÷åñêàÿ ïîñòîÿííàÿ:

     îòðèöàòåëüíàÿ ïëîòíîñòü ýíåðãèè
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