АСТРОФИЗИКА

TOM 65

МАЙ, 2022

ВЫПУСК 2

DOI: 10.54503/0571-7132-2022.65.2-83

ДРОБНЫЙ ЗАКОН ПУАССОНА В СТАТИСТИКЕ ВСПЫХИВАЮЩИХ ОБЪЕКТОВ. І. ОПИСАНИЕ МЕТОДА

А.А.АКОПЯН

Поступила 5 апреля 2022

Обсуждается возможность привлечения дробного распределения Пуассона (дробный пуассоновский процесс) в статистических исследованиях вспыхивающих объектов.

Ключевые слова: дробный закон Пуассона: вспыхивающие объекты

1. Введение. Функция распределения частоты вспышек вспыхивающих звезд впервые была определена в работе Амбарцумяна [1] на основе статистики первых регистрированных вспышек звезд или в терминах математической статистики, времени ожидания первого события (в данном случае вспышки). В дальнейшем были предложены еще два метода [2,3]. В работе [2] тоже используется статистика времени ожидания первой вспышки, но в отличие от [1], метод применим в тех случаях, когда известно общее число вспыхивающих объектов, но при этом эффективные времена наблюдений за отдельными объектами существенно отличаются. В работе [3] основной статистикой является количество вспышек отдельных звезд.

Во всех трех методах базовым является предположение о пуассоновском характере вспышек. В частности, в первых двух методах это проявляется в предположении о том, что время ожидания первой вспышки имеет экспоненциальное распределение, что свойственно пуассоновскому процессу. Пуассоновский процесс предполагает случайность и независимость последовательности событий, что в хорошем приближении имело место для вспыхивающих звезд в ранних работах по статистике вспыхивающих звезд, в значительной мере "благодаря" характеристикам использованных наблюдательных данных (высокая "скважность" данных, низкая фотометрическая точность и временное разрешение, большая неоднородность использованных данных и т.д.). Современные данные, полученные, в частности космическими телескопами "Кеплер" и TESS, дают существенно новые возможности исследования связи вспышек звезд с активными областями звезд и другими характеристиками звезд. Эти данные косвенно указывают на большую

вероятность коррелированности вспышек, по крайней мере для вспышек, локализованных во времени и пространстве.

Коррелированность вспышек других звездных объектов, таких как новые звезды, катаклизмические переменные, не позволяют привлечь пуассоновский процесс для изучения последовательности наблюдаемых вспышек, несмотря на то, что случайный характер вспышек у этих звезд имеет место.

Вышесказанное приводит к необходимости новых подходов и методов для статистики вспышек звездных объектов. В данной статье предлагается для этих целей использовать дробный закон Пуассона (дробный пуассоновский процесс). Дробный процесс Пуассона определен в работе Репина, Саичева [4], где был рассмотрен пуассоновский процесс со случайной интенсивностью, распределение интервалов между скачками которого описывается уравнением с дробными производными и был получен явный вид распределения случайной интенсивности этого процесса. В отличие от стандартного процесса Пуассона дробный пуассоновский процесс обладает "памятью", что выражается в корреляциях между событиями в непересекающихся временных интервалах. Ниже приводится краткое описание дробного закона Пуассона, следуя, в основном, работам [4-6].

2. Дробный закон Пуасссона. Как отмечено выше, плотность распределения случайных интервалов между последовательными событиями в пуассоновском процессе имеет вид

$$f(t) = e^{-t} ,$$

где преобразование Лапласа равно

$$\varphi(u) = \int_0^\infty f(t) e^{-ut} dt = \frac{1}{1+u}.$$

Авторы [4] рассмотрели обобщение пуассоновского процесса, для которого преобразование Лапласа распределения случайных интервалов имеет вид

$$\varphi(u) = \frac{1}{1+u^{\alpha}}, \quad \alpha < 1$$

и получили

$$f(t) = e^{-t} f(t) + \frac{1}{\Gamma(\alpha)} \int_0^t (t - \tau)^{\alpha - 1} f(\tau) d\tau = \frac{t^{\alpha - 1}}{\Gamma(\alpha)}.$$
 (1)

Согласно [4], уравнение равносильно уравнению в дробных производных

$$\frac{d^{\alpha}f}{dt^{\alpha}} + f = \delta(t), \tag{2}$$

где

$$\frac{d^{\alpha}f}{dt^{\alpha}} = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dt} \int_{0}^{t} \frac{f(\tau)d\tau}{(t-\tau)^{1-\tau}}$$
(3)

- производная дробного порядка α. Решение уравнения (2) было названо авторами [4] дробным законом Пуассона. Используя функции Миттаг-Лефлера, авторам удалось получить это решение в виде интеграла

$$f_{\alpha}(t) = \frac{\sin(\pi\alpha)}{\pi} \int_{0}^{\infty} \frac{e^{-tx} dx}{x^{\alpha} + x^{-\alpha} + 2\cos(\pi\alpha)}$$
(4)

с асимптотиками

$$f_{\alpha}(t) \approx \begin{cases} \frac{t^{\alpha-1}}{\Gamma(\alpha)}, & t \to 0\\ \frac{t^{-\alpha-1}}{\alpha\Gamma(1-\alpha)}, & t \to 0. \end{cases}$$
(5)

Уравнение (4) можно представить в виде

$$f_{\alpha}(t) = \int_{0}^{\infty} \xi e^{-t\xi} p_{\alpha}(\xi) d\xi, \qquad (6)$$

где

$$p_{\alpha}(\xi) = \frac{\sin(\pi\alpha)}{\pi\xi \left[\xi^{\alpha} + \xi^{-\alpha} + 2\cos(\pi\alpha)\right]}.$$
(7)

Представление решения в виде (6) позволяет интерпретировать дробный закон Пуассона как распределение интервала между скачками пуассоновского процесса со случайной мерой интенсивности ξt , где ξ неотрицательная случайная величина с плотностью распределения $p_{\alpha}(\xi)$. В общем случае, когда $\varphi(u) = \frac{\mu}{\mu + u^{\alpha}}$, $\alpha < 1$ решение представимо в виде [6]

$$\widetilde{f}_{\alpha}(t) = \frac{1}{t} \int_{0}^{\infty} e^{-x} \widetilde{p}_{\alpha}\left(\frac{\mu t}{x}\right) dx, \qquad (8)$$

где $\widetilde{p}_{\alpha}(\xi)$ имеет вид отличающийся от (7)

$$\widetilde{p}_{\alpha}(\xi) = \frac{\sin(\pi\alpha)}{\pi \left[\xi^{\alpha} + \xi^{-\alpha} + 2\cos(\pi\alpha)\right]}.$$
(9)

В статистике случайно вспыхивающих звездных объектов $p_{\alpha}(\xi)$ соответствует плотности распределения частоты вспышек. Уравнения (6) и (8) связаны соотношением $\tilde{f}_{\alpha}(t) = f_{\alpha}(\mu t)$.

Графики функции $p_{\alpha}(\xi)$ для разных значений параметра а приводятся на рис.1, где можно проследить как $p_{\alpha}(\xi)$ от монотонно убивающей функции превращается в колоколообразную. Такое разнообразие указывает на доста-

точную гибкость представленного метода, сущность которого состоит в определении параметров α , μ через наблюдаемое распределение интервала между последовательными событиями $\tilde{f}_{\alpha}(t)$, $f_{\alpha}(t)$ с последующим определением распределений (7), (9).

Рис.1. Функция плотности распределения $p_{\alpha}(\xi)$ при значениях $\alpha = (0.25, 0.5, 0.75, 0.85, 0.9)$.

В работе [7] получены следующие оценки искомых параметров

$$\overline{\alpha} = \frac{\pi}{\sqrt{3(\overline{\sigma}_{\ln t}^2 + \pi^2/6)}},$$
(10)

$$\overline{\mu} = \exp\left(-\overline{\alpha}\left(\overline{\mathrm{Eln}(t)} + \gamma\right)\right), \quad \gamma \simeq 0.577 \,, \tag{11}$$

где γ - постоянная Эйлера, $\overline{\sigma}_{\ln t}^2$, $\overline{E\ln(t)}$ - оценки дисперсии и математического ожидания $\ln(t)$. За неимением лучшего, в качестве последних неизбежно принимаются их эмпирические значения, которые в подавляющем большинстве случаев являются единственными.

Поэтому крайне важным представляется проведение численных экспериментов (симуляций), в частности, с вычисленными параметрами $\overline{\alpha}$, $\overline{\mu}$ (10), (11) для заданного объема выборки наблюдаемых данных. Это позволит хотя бы качественно определить рамки возможного применения метода, оценить его чувствительность к исходным данным и возможные ошибки. Для этого необходимо генерировать значения случайных интервалов между последовательными событиями для дробного пуассоновского процесса. Согласно [7], таким интервалом является

$$\widetilde{t} = \frac{\left|\ln(U_1)\right|^{1/\alpha}}{\mu^{1/\alpha}} \frac{\sin(\alpha \pi U_2) \left[\sin((1-\alpha)\pi U_2)\right]^{1/\alpha-1}}{\sin(\pi U_2)^{1/\alpha} \left|\ln(U_3)\right|^{1/\alpha-1}},$$
(12)

где U_i - равномерно распределенная в (0,1) величина.

Для иллюстрации на рис.2а показано "восстановление" распределения интервалов между событиями в результате одной симуляции с заданными значениями m = 100, $\alpha = 0.85$, $\mu = 3$, где m - объем выборки данных. Оценки параметров для данной генерированной выборки получились $\overline{\alpha} = 0.869$, $\overline{\mu} = 2.792$. На рис.2а приведены следующие распределения логарифмов интервалов между событиями:

Рис.2. а) распределения логарифмов интервалов между событиями, b) заданная плотность распределения $\tilde{p}_{\alpha}(\xi)$ (точки) и его "восстановление" (сплошная линия).

- теоретическое (бары) с заданными начальными параметрами, $\alpha = 0.85$, $\mu = 3$

- генерированное (точки) с оценками полученных параметров $\overline{\alpha}=0.869$, $\overline{\mu}=2.792$

- "восстановленное" (линия) с полученными оценками $\overline{\alpha}=0.869\,,\ \overline{\mu}=2.792$.

На рис.2b приведены заданная плотность распределения $\tilde{p}_{\alpha}(\xi)$ (точки) и его "восстановление" (сплошная линия). Как видно, наблюдается хорошее соответствие, которое становится более значимым при увеличении объема выборки данных.

3. Возможные применения метода в статистике вспыхивающих объектов. Применение описанного метода дает дополнительные возможности для статистического изучения вспыхивающих объектов:

 Расширяется круг изучаемых объектов. Ранее предложенные методы были предназначены для исследований вспыхивающих звезд, а в последнее время применялись также и для супервспыхивающих звезд типа Солнца. Привлечение дробного пуассоновского процесса позволяет дополнить круг изучаемых объектов вспыхивающими объектами с физической "памятью" (новые звезды, катаклизмические и эруптивные переменные, а также системы и выборки из перечисленных объектов).

- В случае вспыхивающих и супервспыхивающих звезд появляется возможность рассмотреть вспышечную активность отдельно взятой звезды как суммарный вклад отдельных вспышечно активных областей звезды и получить искомые статистические характеристики этих областей.

- По аналогии со сказанным в предыдущем пункте, рассмотрев систему/ выборку вспыхивающих объектов как единый вспыхивающий объект, можно получить характеристики вспышечной активности входящих в его состав объектов.

Необходимо отметить, что при использовании дробного пуассоновского процесса надо быть крайне осторожным, поскольку несмотря на идентичность выражения (6) с аналогичным выражением обыкновенного пуассоновского процесса, дробный пуассоновский процесс отличается от обыкновенного, что может привести к разным интерпретациям полученных результатов. Например, если в ранних работах по определению функции распределения частоты вспыхивающих звезд принималось, что за каждой звездой "прикреплена" некая средняя частота вспышек, то в случае применения дробного пуассоновского процесса для определения аналогичной функции это предположение представляется некорректным.

Ниже приводится пример применения дробного распределения Пуассона в качестве иллюстрации.

3.1. Определение плотности распределения частоты вспышек для выборки Новых звезд нашей Галактики. В работе Шафтера [8], где автор оценил частоту вспышек Новых звезд в нашей Галактике, приводится список 256 вспышек Новых звезд за период 1900-2015гг. с $m \le 10$. Список, естественно, сильно подвержен селекционным эффектам из-за резкого роста количества наблюдательных данных в течение указанного периода. Поэтому в данной работе были исследованы две выборки - полная за 1900-2015гг. (выборка I) и "современная" за 2000-2015гг. (выборка II), как возможно наименее подверженная эффектам селекции.

Рис.3. Выборка I. а) наблюдаемые (кружки) и вычисленные (квадраты) распределения интервалов между событиями, b) плотность распределения $\tilde{p}_{a}(\xi)$ и ее возможный разброс.

На рис.3 (выборка I) и рис.4 (выборка II), приведены наблюдаемые и вычисленные распределения интервалов между событиями (рис.3а, 4а), а также вычисленные по формуле (9) плотности распределения $\tilde{p}_{\alpha}(\xi)$ (рис.3b, 4b), где сплошными линиями показаны кривые плотности распределения, соответствующие оценкам $\bar{\alpha}$, $\bar{\mu}$, а штрих-линиями - кривые, соответствующие квартильным значениям этих оценок, полученные в результате симуляций. При этом использовались оценки параметров $\bar{\alpha}$, $\bar{\mu}$, полученные из наблюдаемого распределения интервалов. За единицу времени принималась общая

Рис.4. Выборка II а) наблюдаемые (кружки) и вычисленные (квадраты) распределения интервалов между событиями, b) плотность распределения $\tilde{p}_{\alpha}(\xi)$ и ее возможный разброс.

Таблица 1

ЗНАЧЕНИЯ ПАРАМЕТРОВ ИСПОЛЬЗОВАННЫХ ПРИ ВЫЧИСЛЕНИЯХ

Выборка	Единица времени, сут.	Кол. вспышек	$\overline{\alpha}$	$\overline{\mu}$
1900-2015	42029	256	0.897	174
2000-2015	5328	75	0.924	59

Таблица 2

Величина	Выборка II		Выборка І	
	α	μ	α	μ
Среднее	0.92074	60.67606	0.89844	176.46384
Медиана	0.923	62.3575	0.904	178.3345
Стандартное отклонение	0.047011	11.39275	0.04115	35.651241
Минимум	0.808	40.613	0.811	115.696
Максимум	1.011	85.606	0.968	255.371
Нижняя квартиль	0.889	51.296	0.868	145.772
Верхняя квартиль	0.945	67.755	0.933	205.487

РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ СИМУЛЯЦИЙ

продолжительность наблюдений, 115 и 15 лет, соответственно. Значения использованных параметров приведены в табл.1, основные статистические характеристики распределений оценок $\overline{\alpha}$, $\overline{\mu}$, полученные в результате симуляций (по 50 для каждой выборки), приведены в табл.2. Данные табл.2 позволяют оценить возможный разброс полученных решений. В данной работе этот разброс представлен в виде функций с квартильными значениями $\overline{\alpha}$, $\overline{\mu}$, как показано на рис.3b, 4b.

4. Заключение. Дробный пуассоновский процесс постепенно находит применение во многих отраслях науки. В данной работе обсуждена возможность его применения в статистике вспыхивающих объектов. Очень интересным представляется возможность изучения вспышечных процессов, обладающих физической "памятью". В работе представлена лишь малая часть свойств и средств дробного пуассоновского процесса, которые могут найти применение в статистических исследованиях вспыхивающих объектов. В последующих работах планируется дополнить этот пробел, а также применить описанный метод к конкретным астрофизическим задачам.

Бюраканская астрофизическая обсерватория им. В.А.Амбарцумяна, Армения, e-mail: aakopian57@gmail.com

FRACTIONAL POISSON LAW IN THE STATISTICS OF FLASHING OBJECTS. I. DESCRIPTION OF THE METHOD

A.A.AKOPIAN

The possibility of using the fractional Poisson law (fractional poissonian process) in statistical studies of flaring objects is discussed.

Keywords: fractional Poisson law: flashing objects

ЛИТЕРАТУРА

- 1. В.Амбарцумян, Астрофизика, 14, 367, 1978, (Astrophysics, 14, 209, 1978).
- 2. А.Акопян, Астрофизика, 39, 561, 1996, (Astrophysics, 39, 331, 1996).
- 3. А.Акопян, Астрофизика, 46, 75, 2003, (Astrophysics, 46, 58, 2003).
- 4. О.Репин, А.Саичев, Известия вузов, Радиофизика, 43, 823, 2000.
- 5. *V.Uchaikin*, *D.Cahoy*, *R.Sibatob*, International Journal of Bifurcation and Chaos, **18**, 2717, 2008.
- 6. *W.A.Woyczycski*, Diffusion Processes, Jump Processes, and Stochastic Differential Equations, Boca Raton: CRC Press, 2022, p.126.
- 7. D. Cahoy, V. Uchaikin, W. Woyczynski, Journal of Statistical Planning and Inference, 140, 3106, 2010.
- 8. A.Shafter, Astrophys. J., 834, 196, 2017.