УДК 621.317 РАДИОЭЛЕКТРОНИКА

В.Г. АВЕТИСЯН, М.В. МАРКОСЯН, А.А. ОГАНЕСЯН, С.Г. ЭЙРАМДЖЯН

ТЕСТИРОВАНИЕ МОДУЛЕЙ АКТИВНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ

Сообщение 1. Методика тестирования

Предлагается методика тестирования модулей активной фазированной антенной решетки (АФАР). Модуль состоит из четырех элементарных приемо-передающих ячеек, каждая из которых содержит электронноуправляемые аттенюатор и фазовращатель, усилители мощности, малошумящие усилители и излучатель, параметры которых достаточно просто тестируются по предлагаемой методике.

Ключевые слова: активная фазированная антенная решетка, приемо-передающая ячейка, методика тестирования.

В настоящее время в СВЧ радиотехнических системах различного рода широко применяются АФАР. Несомненным преимуществом АФАР является обеспечение ее высокой направленности вместе с возможностью оперативного управления параметрами АФАР в различных режимах работы радиотехнической системы [1]. Особенностью АФАР является наличие активных элементов в ее приемопередающих ячейках, а именно: усилителей мощности в режиме передачи, малошумящих усилителей для режима приема, аттенюаторов, фазовращателей и т.д.

Цель настоящей работы - рассмотреть вопрос тестирования параметров приемопередающих модулей AФAP.

В нашем случае модуль $A\Phi AP$ состоит из четырех элементарных приемопередающих ячеек, каждая из которых включает в себя узлы согласно приведенной на рис.1 блок-схеме.

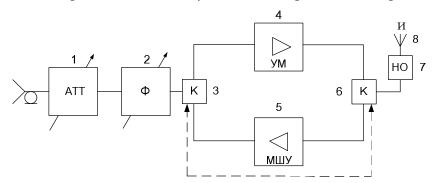


Рис.1. Блок-схема приемопередающей ячейки: 1 - электронно-управляемый дискретный аттенюатор, 2 - электронно-управляемый дискретный фазовращатель, 3, 6 - синхронно-работающие коммутаторы, 4 - цепочка усилителей мощности, 5 - цепочка малошумящих усилителей, 7 - направленный ответвитель, 8 - излучатель

Ослабление аттенюатора 1 управляется в определенном интервале и с определенным дискретом. Управляемый фазовращатель 2 осуществляет изменение фазы в определенном интервале углов и с определенным дискретом угла. В режиме излучения сигнал усиливается цепочкой балансных микрополосковых усилителей мощности 4. В режиме приема работает цепочка малошумящих усилителей (МШУ) 5. Переключение каналов приема и передачи осуществляется синхронно работающими коммутаторами 3 и 6. Направленный ответвитель 7 в виде моста Ланге [2] следует за коммутатором 6. Мост обеспечивает квадратурные сигналы для получения волны правой круговой поляризации, излучаемый квадратным микрополосковым излучателем 11 размерами $\lambda/2 \cdot \lambda/2$.

Методика тестирования включает проверку работоспособности вышеперечисленных узлов и соответствия их основных параметров техническому заданию (ТЗ) и паспортным данным. Параметры аттенюатора 1, фазовращателя 2, цепочки усилителей мощности 4 и излучателя 8 тестируются посредством определения амплитуд E_y , E_x и фаз ϕ_y , ϕ_x вертикальной \dot{E}_y и горизонтальной \dot{E}_x комплексных составляющих электрического поля \dot{E} ($\dot{E}=\vec{x}\dot{E}_x+\vec{y}\dot{E}_y$) в дальней зоне излучателя 8 тестируемого модуля. Блок-схема тестирования E_y , E_x , ϕ_y , ϕ_x приведена на рис. 2.

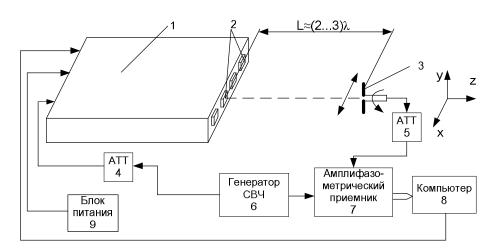


Рис. 2. Блок-схема тестирования модуля $A\Phi AP$: 1 - модуль $A\Phi AP$, 2 - микрополосковый квадратный излучатель элементарной приемопередающей ячейки, 3 - измерительная антенна (полуволновой вибратор), 4, 5 - калибрующие аттенюаторы, 6 - CBY генератор, 7 - амплифазометрический приемник, 8 - компьютер, 9 - блок питания

Управление подачей рабочих напряжений от блока питания на приемо-передающие ячейки осуществляется компьютером через модуль. Расстояние $L\approx(2...3)\lambda$ между плоскостью расположения излучателей элементарных ячеек 2 модуля 1 и плоскостью, в которой перемещается измерительная антенна 3 в виде полуволнового вибратора, обеспечивает дальнюю зону излучателя ячейки [3]. Продольная ось Z измерительной антенны 3 совмещается с нормалью, проведенной через центр симметрии излучателя тестируемой ячейки. При этом остальные ячейки обесточены. Для определения составляющих \dot{E}_y и \dot{E}_x измерительная антенна 3 имеет возможность дискретного поворота вокруг продольной оси Z на 90°. Выходными сигналами амплифазометрического приемника 7 [4] являются амплифазные ортогональные компоненты U_{1y}, U_{2y} составляющей \dot{E}_y :

$$\dot{E}_{y} = U_{1y} + jU_{2y} = E_{y}\cos\phi_{y} + jE_{y}\sin\phi_{y} = E_{y}e^{j\phi_{y}}$$
 (1)

или амплифазные компоненты $U_{1x},\,U_{2x}$ составляющей \dot{E}_{x} :

$$\dot{E}_x = U_{1x} + jU_{2x} = E_x \cos\varphi_x + jE_x \sin\varphi_x = E_x e^{j\varphi_x}$$
 (2)

в зависимости от ориентации полуволнового вибратора измерительной антенны 3. Причем амплитуды E_y , E_x и фазы ϕ_y , ϕ_x соответственно составляющих \dot{E}_y и \dot{E}_x поля $\dot{\bar{E}}$ вычисляются компьютером 8 по измеренным амплифазным компонентам посредством очевидных выражений

$$E_x = \sqrt{U_{1x}^2 + U_{2x}^2}$$
; $E_y = \sqrt{U_{1y}^2 + U_{2y}^2}$, (3)

$$\phi_{x} = \operatorname{arctg} \frac{U_{2x}}{U_{1x}} ; \phi_{y} = \operatorname{arctg} \frac{U_{2y}}{U_{1y}}.$$
 (4)

Прежде чем описать методику тестирования параметров вышеотмеченных узлов, отметим, что важным из тестируемых параметров является заданный в ТЗ уровень излучаемой мощности $P^0_{\text{мод}}$ на входе излучателя 8 тестируемой ячейки. Он обеспечивается опять же заданными в ТЗ уровнем мощности $P^0_{\text{вх}}$ на входе ячейки и коэффициентом усиления $K^0_{\text{ум}}$ по мощности ячейки. Поэтому в процессе тестирования необходимо обеспечение заданных $P^0_{\text{вх}}$ и $P^0_{\text{мод}}$.

Уровень P^{0}_{BX} калибруется показанием калибрующего аттенюатора 4 блок-схемы 2 путем измерения его выходной мощности. Предположим, что показанию ослабления G^{0}_{4} ($Z\!\!B$) аттенюатора 4 соответствует P^{0}_{BX} .

Для обеспечения $P^0_{\text{мод}}$ производится следующая начальная калибровка. Выход аттенюатора 4 подсоединяется к входу коаксиально-волноводного перехода (КВП), который располагается перед измерительной антенной 3 так, чтобы их продольные оси симметрии совмещались, а расстояние от плоскости волноводного фланца КВП до измерительной антенны равнялось L. Затем измерителем мощности и вторым КВП, подсоединенным к первому КВП, ручкой аттенюатора 4 устанавливается

уровень мощности $P^0_{\text{мод}}/2$ на выходе фланца первого КВП. После этого второй КВП убирается, аттенюатор 5 выводится из закрытого состояния, ручкой аттенюатора 5 устанавливается ослабление $G^0_5(\mathcal{AB})$, необходимое для нормальной работы амплифазометрического приемника, и фиксируется вычисляемая компьютером 8 амплитуда E_{y0} , соответствующая вертикальной составляющей поля в точке расположения измерительной антенны 3, ориентированной вдоль оси Y. Ясно, что при тестировании элементарной ячейки модуля по блок-схеме, изображенной на рис.2, величина E_{y0} с учетом круговой поляризации волны, излучаемой излучателем ячейки, будет фиксироваться при входной мощности излучателя, равной $P^0_{\text{мод}}$, и показании 0 G5 аттенюатора 5, равном

$${}^{0}G_{5} = G^{0}_{5} + (G_{\text{изл}} - G_{\text{KB}\Pi}),$$
 (5)

где $G_{\text{изл}} = G_{\text{изл}}(\mathcal{A}\mathcal{B})$ - коэффициент усиления излучателя, а $G_{\text{КВП}} = G_{\text{КВП}}(\mathcal{A}\mathcal{B})$ - коэффициент усиления открытого конца КВП.

Таким образом, после начальных калибровок тестирование итогового коэффициента усиления K_{ym} по мощности ячейки модуля в режиме передачи сводится к следующему: а) ручка аттенюатора 5 устанавливается на показание ослабления 0G_5 ; б) ручка аттенюатора 4 устанавливается на показание ослабления в районе величины G^0_4 ; в) определяется отклонение Δ $K_{ym}(\mathcal{A}\mathcal{B})$ коэффициента усиления по мощности от величины K^0_{ym} , заданной в Т3, согласно выражению

$$\Delta K_{ym}(AB) = K_{ym}(AB) - K_{ym}(AB) = G_4 - G_4,$$
 (6)

где G_4 (\mathcal{AB}) - показания аттенюатора 4, при котором компьютер 8 выдает величину E_{y0} , которая свидетельствует о наличии на входе излучателя тестируемой ячейки уровня мощности $P^0_{\text{мод}}$. Очевидно, что результаты вычислений фаз ϕ_y при такой процедуре тестирования ячеек определяют разброс фазовых передаточных характеристик ячеек в режиме излучения.

После вышеупомянутых процедур (величин K^0_{yM} и ϕ_y) процедура тестирования фазовращателя 2 и аттенюатора 1 (рис.1) тестируемой ячейки сводится к следующему. На электронно-управляемый аттенюатор 1 подается управляющее напряжение, и при неизменном значении E_{y0} путем отсчета разности показаний (G_5 - 0G_5) аттенюатора 5 определяются вводимые аттенюатором 1 дискрет и интервал ослабления. Тестирование же электронно-управляемого фазовращателя 2 осуществляется путем отсчета изменения фазы ϕ_y , вычисляемой компьютером 8.

Следующими тестируемыми параметрами в режиме излучения являются поляризационные характеристики волны, излучаемой излучателем. Для их тестирования измерительная антенна 3 поворачивается на угол 90° вокруг своей продольной оси Z, и при показаниях G4 и °G5 соответственно калибрующих аттенюаторов 4 и 5 компьютером 8 вычисляется амплитуда E_{x0} и фаза ϕ_x горизонтальной составляющей поля \dot{E} . Затем компьютер 8

последовательно вычисляет угол наклона α поляризационного эллипса излучаемой волны [5]:

$$\alpha = \operatorname{arctg} \frac{2(E_{xo}/E_{y0})\cos(\varphi_{y} - \varphi_{x})}{(E_{xo}/E_{y0})^{2} - 1},$$
(7)

коэффициент эллиптичности т этой волны:

$$m = \frac{\sqrt{1 - (E_{xo}/E_{y0})^2 tg^2 \alpha}}{\sqrt{(E_{xo}/E_{y0})^2 - tg^2 \alpha}}$$
(8)

и, наконец, уровень кросс-поляризации $\Delta_{\rm k}$ волны паразитной круговой левой поляризации:

$$\Delta_{k}(\partial E) = 20 \lg \frac{E_{\pi}}{E_{\pi}} = 20 \lg \frac{1-m}{1+m},$$
(9)

где Ел и Еп- амплитуды волн соответственно левой и правой круговых поляризаций волны.

Тестирование заданного в Т3 итогового коэффициента усиления $K^0_{\text{мшу}}$ цепочки малошумящих усилителей выполняется в приемном режиме элементарной ячейки модуля. Для этого опять применяется блок-схема рис.2, но в ней модуль 1 и измерительная антенна 3 переставляются местами.

В этом случае также производятся начальные калибровки. Однако, прежде чем описать выполнение калибровок, отметим следующее. При блок-схеме рис.2 в режиме приема элементарной ячейки модуля мощность $P_{\text{вк}}^{\text{мшу}}$ на входе цепочки МШУ 5 (см рис.1), с учетом деления мощности пополам мостом Ланге, определится, согласно [6], соотношением

$$P_{\text{bx}}^{\text{MIIIV}} = 0.5 \times P_0^{\text{MA}} G_{\text{MA}} G_{\text{M3D}} \left(\frac{\lambda}{4\pi L} \right)^2 G_6, \qquad (10)$$

где $P_0^{\text{иA}}$ – мощность на входе измерительной антенны 3; $G_{\text{иA}}$ - коэффициент усиления измерительной антенны 3; G_6 - коэффициент передачи коммутатора 6; λ - длина рабочей СВЧ волны.

Мощность на выходе ячейки $P^{0}_{\text{вых}}$ (на входном разъеме аттенюатора 1 рис.1) определяется выражением

$$P_{\text{вых}}^{0} = P_{\text{вх}}^{\text{MIIIV}} K_{\text{MIIIV}}^{0} G_{3} G_{2} G_{1} = 0.5 \times P_{0}^{\text{MA}} G_{\text{ИА}} G_{\text{ИЗЛ}} \left(\frac{\lambda}{4\pi L}\right)^{2} K_{\text{MIIIV}}^{0} G_{6} G_{3} G_{2} G_{1}, (11)$$

где G_1 и G_2 - коэффициенты передачи соответственно обесточенных аттенюатора 1 и фазовращателя 2 схемы рис.1; G_3 - коэффициент передачи коммутатора 3.

Если принять $G_{\text{иа}}G_{_{\text{изл}}}G_{_{6}}G_{_{3}}G_{_{2}}G_{_{1}}\approx 1$ ($G_{_{\text{изл}}}\leq 6\partial B$, $G_{_{\text{иА}}}\approx 2\partial B$), усиление цепочки усилителей $K_{_{\text{МШУ}}}^{_{0}}\approx 30\partial B$, $L\approx (2...3)\lambda$ и $P^{_{0}}_{_{\text{вых}}}\approx 10 MBr\approx 0.1P_{_{\text{нас}}}$, где $P_{_{\text{нас}}}-$ выходная мощность насыщения МШУ, из (11) получим $P_{_{0}}^{_{_{\text{изл}}}}\approx 10...26 MBr$. Выберем $P_{_{0}}^{_{_{\text{из}}}}=10$ мBr и при конкретных величинах, входящих в (11), рассчитаем величину $P_{_{0}}^{_{_{\text{вых}}}}$.

Далее производим первую начальную калибровку. Она заключается в калибровке уровня выбранной мощности P_0^{UA} на входе измерительной антенны 3. Для этого выход аттенюатора 4 подсоединяется к измерителю мощности, и ручкой аттенюатора 4 устанавливается ослабление, соответствующее выбранному уровню $P_0^{\text{UA}} = 10 \, \text{MBT}$. Предположим, что показание ослабления G_4^{01} аттенюатора 4 соответствует этому уровню.

Вторая начальная калибровка заключается в следующем. К выходу аттенюатора 4 (рис.2) подключается измеритель мощности, и ручкой аттенюатора 4 на его выходе устанавливается расчетный уровень мощности $P^0_{\text{вых}}$. Измеритель мощности убирается, и к выходу аттенюатора 4 подключается вход закрытого аттенюатора 5. Ручкой аттенюатора 5 устанавливается показание ослабления G_5^{01} , обеспечивающее нормальную работу амплифазометрического приемника 7, и фиксируется величина E^{01} , вычисляемая компьютером 8 при установленных ослаблениях аттенюаторов 4 и 5. На этом процесс второй начальной калибровки завершается.

После выполнения описанных калибровок производится тестирование итогового коэффициента усиления $K_{\text{мшу}}$ ячейки модуля в режиме приема по блок-схеме рис.2. Для этого: а) ручкой аттенюатора 4 устанавливается показание ослабления G_4^{01} ; б) аттенюатор 5 выводится из закрытого состояния, его ручкой устанавливается показание ослабления в районе величины G_5^{01} ; в) определяется отклонение $\Delta K_{\text{мшу}}$ (дБ) коэффициента усиления $K_{\text{мшу}}$ цепочки малошумящих усилителей ячейки от заданного в ТЗ значения $K_{\text{мшу}}$ по выражению

$$\Delta \text{ Kmiiy } (\not a \not B) = \text{Kmiiy } (\not a \not B) - \text{K}^0 \text{miiy } (\not a \not B) = G_5 (\not a \not B) - G_5^{01} (\not a \not B), \tag{12}$$

где $G_5(\mathcal{AB})$ - показание ослабления аттенюатора 5, при котором значение вычисляемой компьютером 8 величины амплитуды равно E^{01} .

Ясно, что результаты вычисления компьютером ϕ_y или ϕ_x (в зависимости от ориентации измерительной антенны) при этой процедуре тестирования ячеек определяют разброс фазовых передаточных характеристик ячеек в режиме приема.

В результате предлагаемая методика позволяет просто осуществить проверку работоспособности узлов, входящих в элементарные приемо-передающие ячейки модуля АФАР, и тестирование на соответствие с ТЗ и с паспортными данными следующих параметров входящих узлов:

- дискреты и интервалы ослаблений, вводимых электронно-управляемыми аттенюаторами;
- дискреты и интервалы фазовых сдвигов, вводимых электронно-управляемыми фазовращателями;
- разбросы комплексных передаточных характеристик ячеек как в режиме передачи сигнала, так и в режиме его приема;

• поляризационные характеристики волн, излучаемых элементарными ячейками.

Предметное описание стенда тестирования, анализ погрешностей и экспериментальные результаты тестирования модулей АФАР будут приведены в Сообщении 2 данной статьи.

СПИСОК ЛИТЕРАТУРЫ

- 1. Антенно-фидерные устройства и распространение радиоволн / Под ред. **Г.А.Ерохина.** М.: Радио и связь, 1996.-352 с.
- 2. Edwards T.C., Steer M.B. Foundations of interconnect and microstrip design, Third edition, Hardcower, 2000.
- 3. Фрадин А.З., Рыжков Е.В. Измерения параметров антенно-фидерных устройств. М.: Связь, 1972.-352с.
- 4. **Эйрамджян С.Г., Отанесян А.А., Саакян Г.Б.** Разработка и испытание миниатюрных амплифазометров для измерительных систем // Труды 5-й Международной конференции по компьютерным наукам и информационным технологиям (CSIT-2005).- Ереван: Изд. НАН РА, 2005. С. 624 627.
- 5. Драбкин А.Л., Зузенко В.Л., Кислов А.Г. Антенно-фидерные устройства. М.: Сов.радио, 1974. 536 с.
- 6. Методы измерения характеристик антенн СВЧ / Под ред. **Н.М. Цейтлина.** М.: Радио и связь, 1985. 368с.

АОЗТ "ЕрНИИСС". Материал поступил в редакцию 27.09.2006.

Վ.Հ. ԱՎԵՏԻՍՑԱՆ, Մ.Վ. ՄԱՐԿՈՍՑԱՆ, Ա.Ա. ՀՈՎՀԱՆՆԻՍՑԱՆ, Ս.Գ. ԷՑՐԱՄՋՑԱՆ ԱԿՏԻՎ ՓՈՒԼԱՎՈՐՎԱԾ ԱՆՏԵՆԱՑԻՆ ՑԱՆՑԻ ՄՈԴՈՒԼՆԵՐԻ ԹԵՍԹԱՎՈՐՈՒՄԸ

Հաղորդում 1. Թեսթավորման եղանակ

Առաջարկվում է ակտիվ փուլավորված անտենային ցանցի (ԱՓԱՑ) մոդուլների թեսթավորման եղանակ։ Մոդուլը բաղկացած է չորս տարրական ընդունող-հաղորդող բջիջներից, որոնցից յուրաքանչյուրը պարունակում է էլեկտրոնային ղեկավարվող մարիչ և փուլաշրջիչ, հզորության ուժեղարարներ, սակավաղմկող ուժեղարարներ և ձառագայթիչ, որոնց պարամետրերը բավականին պարզ թեսթավորվում են առաջարկվող եղանակով։

Առանցքային բառեր. ակտիվ փուլավորված անտենային ցանց, ընունող-հաղորդող բջիջ, թեսթավորման եղանակ։

V.H. AVETISSYAN, M.V. MARKOSYAN, A.A. HOVHANNISYAN, S.G. EYRAMJYAN ACTIVE PHASED ARRAY MODULE TESTING Report 1. Testing methodology

The methodology of active phased array module testing is suggested. The module consists of four elementary receiving-transmitting cells, each of which contains an electronically controlled attenuator and phase shifter, power amplifiers, low-noise amplifiers and radiator, parameters of which are tested sufficiently simply by the suggested methodology.

Keywords: active phased array, receiving-transmitting cell, testing methodology.