ISSN 0002-306X. Изв. НАН РА и ГИУА. Сер. ТН. 2007. Т. LX, № 2.

ረSጉ 621.762:621.78:620.22

ՆՅՈւԹԱԳԻՏՈւԹՅՈւՆ

Ս.Գ. ԱՂԲԱԼՑԱՆ, Ա.Ա. ՊԵՏՐՈՍՑԱՆ, Ա.Ս. ԱՂԲԱԼՑԱՆ, Վ.Լ. ԿԱՍՑԱՆ, Ա.Ն. ՂԱԶԱՐՑԱՆ, Ա.Մ. ՀՈՎՀԱՆՆԻՍՑԱՆ

Fe2O3-NiO-CoO-MoO3 OՔՍԻԴԱՅԻՆ ՀԱՄԱԿԱՐԳԻՑ ԲԱՐԴ OՔՍԻԴՆԵՐԻ ՍԻՆԹԵԶՄԱՆ ՋԵՐՄԱԾԱՆՐԱՉԱՓԱԿԱՆ ԵՎ ՄԵՏԱՂԱԳԻՏԱԿԱՆ ՀԵՏԱԶՈՏՈւՄԸ

Ջերմածանրաչափական մեթոդով բացահայտվել է Fe₂O₃, NiO, CoO և MoO₃ օքսիդներից հալոգենային միջավայրում բարդ օքսիդների սինթեզման մեխանիզմը, կինետիկան և նյութատեղափոխության թերմոդինամիկան։ Հաշվարկված 68,5%Fe₂O₃ +16,4%NiO + 9,7%CoO + 5,4%MoO₃ +2%NH₄Cl համակարգի համար ընտրվել է սինթեզման և ֆերիտների ստացման լավարկված ռեժիմներ՝ տաքացման ջերմաստիճանը՝ 1100^{±25}°C, պահման տևողությունը՝ 3,5...4,0 *ժամ*։

Առանցքային բառեր. օքսիդ, սինթեզ, ֆերիտ, բաղադրամաս, էնտրոպիա, փոխակերպություն, քլորացում, դերիվատոգրամ, ֆազ, ֆերիտացման աստիձան։

Վերջին տարիներին մեծ տարածում է ստացել բարդ օքսիդային համակարգերի սինթեզումը պարզ օքսիդներից և հետագա նրանց վերականգնումը մինչև մետաղական վի՜ակ, որը հնարավորություն է տալիս ստանալ տրված հատկություններով գերմաքուր կոմպոզիցիոն նյութեր, այդ թվում նաև մարտենսիտային ծերացող պողպատներ։

Այս մեթոդը կարելի է կիրառել պահանջվող քիմիական բաղադրությամբ և հատկություններով փոշեպողպատների ստացման համար։ Ելային օքսիդների սինթեզը համարվում է որոշող գործողություն, որովհետև օքսիդների մեխանիկական խառնուրդի դեպքում վերականգնումը կատարվում է ընտրողաբար, այսինքն` առանց համաձուլվածքի առաջացման։ Հենց նշվածով է որոշվում և լուծվում այն տեխնոլոգիական խնդիրը, որն անհրաժեշտ է մարտենսիտային ծերացող պողպատների համար։

Աշխատանքի նպատակն է՝ ջերմածանրաչափական մեթոդով բացահայտել ելանյութերի օքսիդներից՝ հալոգենային միջավայրում, բարդ օքսիդների սինթեզի մեխանիզմը, կինետիկան և նյութատեղափոխության թերմոդինամիկան, Ճշգրտել ֆերիտառաջացման ռեժիմները և ընտրել լավարկված բաղադրություն։

Նշված նպատակին հասնելու համար հետազոտվել են մարտենսիտային ծերացող պողպատների համակարգերը, հատկապես Fe-Ni-Co–Mo և որպես ելանյութեր ընտրվել են նշված մետաղների օքսիդները։ Որպեսզի խառնուրդների պարունակությունը հասցվի նվազագույնի, օքսիդները ընտրվել են քիմիապես մաքուր (մ.վ.հ.), որն ընդունված է ֆերիտների արտադրությունում։ Ֆերիտացման գործընթացի արագացման նպատակով բովախառնուրդի մեջ ավելացվել է NH4Cl, որը հնարավորություն է տալիս օքսիդներից ստանալ օքսիքլորիդներ, այսինքն՝ ավելի ակտիվ քիմիական միացություններ։ Վերոհիշյալից բացի, NH4Cl առկայությամբ օքսիդների սինթեզը կատարվում է ինչպես պինդ, այնպես էլ գազային ֆազում։ Սա հնարավորություն է տալիս սինթեզել ինչպես թթվային, այնպես էլ հիմնային օքսիդներ, որը շատ կարևոր է ֆերիտացման ժամանակ։ Ինչ մնում է լեգիրող տարրերին, ինչպիսիք են Ti և Al, ապա դրանց քանակությունը մարտենսիտային ծերացող պողպատներում չի գերազանցում 0,2%Ті և 0,1%Аl: Այդ իսկ պատՃառով այս տարրերը բովախառնուրդի մեջ կարելի է ավելացնել մեխանիկական խառնմամբ։ Մյուս կողմից, Ті և Al այս պողպատներում ավելացվում են որպես թթվածնազտիչներ (Al) և ածխածնից մաքրող բաղադրատարրեր (Ti)։ Երկրորդը, օքսիդային տեխնոլոգիայի ժամանակ ցանկալի չէ ընտրել դժվար վերականգնվող օքսիդներ (TiO₂, Al₂O₃, SiO₂, Cr₂O₃ և այլն), քանի որ դրանց առկայությամբ տեղի է ունենում բարդ օքսիդային համակարգերի քայքայում և, հետևապես, ընտրողական վերականգնում։ Fe₂O₃ – NiO – CoO – MoO₃ բաղադրատարրերով բարդ օքսիդների

uhupatqu'uhu (\$tphoutph uouguuh) uthuuhqu'h u yhubas punjuujuung punjuuju uhupatqu'uhu (\$tphoutph uouguuh) uthuuhqu'h u yhubas punjuujuh puguhuuju uuhu pepuluuonhauhuujhu ohpnijph hhuhuudpuuhu huoumudul yuuoumudu pepuluouhuun ohenoinen ohenoinen

Բարդ օքսիդի սինթեզման գործընթացը ուսումնասիրումից առաջ ուսումնասիրվել են առանձին բաղադրատարրերը և դրանց փոխազդեցությունները տաքացման ժամանակ։ NH₄Cl–ի դերիվատոգրամը (նկ.1) բնութագրվում է երկու էնդոթերմիկ էֆեկտներով։ Այդ էֆեկտները երևում են DTA կորի վրա 160...215 և

260...492°C միջակայքում, որոնք 185 և 352°C ջերմաստիձաններում ունեն էքստրեմումներ: 160...215°C ջերմաստիձանային միջակայքում ի հայտ եկած խորը էնտրոպիան համապատասխանում է NH_4CI –ի $\lambda \rightarrow \beta$ փոխակերպությանը, որը հիմնավորվում է NH_4CI –ի զանգվածի հաստատունությամբ (TG կորը տվյալ տիրույթում ուղղագծային է) և գազային արգասիքների բացակայությամբ: [1] աշխատանքում նշվում է NH_4CI –ի պոլիմորֆ փոխակերպության մասին 190 °C ջերմաստիձանային միջակայքում ի հայտ եկած ուժեղ էնդոթերմիան պայմանավորված է NH_4CI քայքայմամբ՝ $NH_4CI \rightarrow NH_3 + HCI$. (1)

որի ընթացքում գործնականում տեղի է ունենում ամբողջ զանգվածի կորուստ (~ 94%): Այն գրանցվել է TG կորի վրա ` 265...445°C միջակայքում: 600°C սահմաններում ամբողջությամբ հեռանում են NH4Cl քայքայման հետևանքով առաջացած բոլոր արգասիքները (6%): Աղյուսակ 1-ում բերված է (1) ռեակցիայի
$$\Delta G^{\circ}_{T}$$
 ջերմաստիձանային

Uniniam I	1
-----------	---

NH₄Cl–ի և NH₃-ի քայքայման ռեակցիաների ΔG°_{T} – ի (կՋ/մոլ) փոփոխությունը՝

կախվածությունը։

կախված ջերմաստիձանից						
Ռեակցիա	ՋերմաստիՃան, <i>К</i>					
iruuqgjiu	298	400	500	1000	1500	
$NH_4CI \rightarrow NH_3 + HCI$	91,523	-	-	-88,601	-199,765	
$NH_3 \rightarrow 1/2 N_2 + 3/2 H_2$	16,747	6,699	-5,024	-61,965	-120,998	

Fe₂O₃, NiO, CoO և MoO₃-ի փոխազդեցությունները NH₄Cl –ի հետ ցույց է տրված նկ.2-ում և 3-ում։ Ինչպես երևում է, քլորացման գործընթացը գնում է ակտիվ, որի վկայությունն է DTA կորերի վրա էնդո- և էկզոթերմիկ էֆեկտների առկայությունը։ Fe₂O₃ - NH₄Cl համակարգում (նկ.2 ա) 130...220°C ջերմաստիձանային միջակայքում տեղի է ունենում ադաորբված խոնավության և ջրի հեռացում (TG կորի թեքություն)։ 172°C արտահայտված էքստրեմումը վերաբերում է NH₄Cl– ի $\lambda \rightarrow \beta$ փոխակերպությանը։ 220...332°C ջերմաստիձանային միջակայքում (265°C էքստրեմումով) արտահայտված էնդոթերմիկ էֆեկտը պայմանավորված է NH₄Cl–ի ջերմային տարայուծմամբ՝

$$NH_4Cl^{(p)} \leftrightarrow NH_3^{(q)} + HCl^{(q)} - 175,98 \ \mathcal{UQ}, \tag{2}$$

և մասնակիորեն ռեակցիայի հետևանքով առաջացած արգասիքների` մասնավորապես NH₃-ի ցնդմամբ։ NH₄Cl քայքայմամբ ավելի է ակտիվանում քլորացման ռեակցիայի արագությունը `

$$0,5 \operatorname{Fe_2O_3(p)} + 3\operatorname{HCl}^{(q)} \leftrightarrow \operatorname{FeCl_3(p)} + 1,5\operatorname{H_2O(q)} + 74,69 \, \underline{\mu} \mathcal{Q}:$$
(3)

DTA կորի վրայի 365°C էքստրեմումը (332...410°C ջերմաստիձանային միջակայքում) պայմանավորված է FeCl₃ ցնդմամբ։ (T_F =315°C).

$$\operatorname{FeCl}_{3^{(p)}} \to \operatorname{FeCl}_{3^{(h)}} \to \operatorname{FeCl}_{3^{(q)}},$$
(4)

որը զգացվում է TG կորի վրա զանգվածի փոքրացմամբ։ Ջերմաստիձանի բարձրացմամբ քլորացումը հիմնականում ընթանում է ըստ հետևյալ ռեակցիայի`

$$FeCl_3 + Fe_2O_3 \leftrightarrow 3FeOCl, \tag{5}$$

որի արգասիքը օքսիքլորիդն է։ Միաժամանակ տեղի են ունենում անհամամասնական ռեակցիաներ

$$\operatorname{FeCl}_{3^{(h,q)}} \leftrightarrow \operatorname{FeCl}_{2^{(p)}} + 0,5\operatorname{Cl}_{2^{(q)}} - 57,35 \ \mu \mathcal{Q},\tag{6}$$

որոնք ուղեկցվում են Cl₂ գազի ցնդմամբ։ Այն արտահայտված է DTA կորի վրա

խորը էնդոթերմիայի տեսքով (672...828°C, 798°C էքստրեմումով)։

"NiO-NH4Cl" համակարգի բաղադրատարրերի փոխազդեցության մեխանիզմը (նկ.2 բ) շատ նման է "Fe2O3 - NH4Cl" համակարգին։ Այս դեպքում նույնպես TG կորը չունի մեծ անկումներ, ինչպես նաև ընթանում են քլորացման ռեակցիաներ.

$$NiO^{(p)}+2HCl^{(q)} \leftrightarrow NiCl_{2^{(p)}}+H_{2}O^{(q)}+119,04 \ \mu \mathcal{Q}:$$
(7)

Ինչպես հայտնի է [2, 3], NiCl₂-ը ակտիվ կերպով փոխազդում է NH₃-ի հետ, հատկապես 120°C բարձր ջերմաստիձաններում.

$$NiCl_2 + NH_3 \rightarrow NiCl_2 \cdot NH_3:$$
(8)

Սակայն NiCl₂·NH₃ միացությունը թերմոդինամիկորեն անկայուն է և քայքայվում է 330...350°С ջերմաստիձաններում, որն ուղեկցվում է NH₃ – ի ցնդմամբ (DTA կորերի վրա 330°С էքստրեմում)։ Բարձր ջերմաստիձանային տիրույթում քլորացումը ընթանում է ըստ հետևյալ ոեակցիայի.

 $NiCl_2 + NiO \leftrightarrow Ni_2 OCl_2, \tag{9}$

որի արդյունքում առաջանում են օքսիքլորիդներ: 810...920°C ջերմաստիձանային միջակայքում (905°C էքստրեմումով) NiCl₂ մի մասը (Tեր=975°C) ցնդում է, ինչն արձանագրված է TG և DTG կորերի վրա, իսկ էնտրոպիան՝ DTA կորի վրա։

"CoO - NH₄Cl " և "MoO₃ - NH₄Cl " համակարգերի դերիվատոգրամները (նկ.3 ա) տարբերվում են "Fe₂O₃ - NH₄Cl " և "NiO - NH₄Cl " համակարգերից։ CoO - NH₄Cl համակարգի դերիվատոգրամայի ձախ մասը նույնն է, ինչ-որ NiO-NH₄Cl-ինը։ Ջերմաստիձանի բարձրացմամբ DTA կորի վրա արձանագրվել է էնդոթերմիկ էֆեկտ (675°C էքստրեմումով) առանց զանգվածի կորստի, որի դեպքում TG կորը ուղղագծային է։ Հետևապես, տեղի է ունենում ֆազային փոխարկում, որն ուղեկցվում է օքսիքլորիդների առաջացմամբ.

 $CoO+CoCl_2 \leftrightarrow Co_2OCl_2:$ (10)

Վերծանել այս փոխակերպությունը չի հաջողվել, որովհետև այն իրականացնելու համար անհրաժեշտ է իրականացնել հետազոտություններ իզոթերմիկ պայմաններում։ 858°C ջերմաստիձանում (էքստրեմում 920°C) կայացած երկրորդ ջերմային էֆեկտը բնութագրվում է DTA և TG կորերի կտրուկ անկումով, ինչը հնարավոր է միայն միացությունների ջերմային քայքայման ժամանակ։ Ինչպես հայտնի է [4], կոբալտի ապրանքային ենթօքսիդը (CoO) պարունակում է կոբալտի ենթօքսիդ - օքսիդ (Co₃O₄), որը ~900°C ջերմաստիձանում դիսոցվում է.

$$\text{Co}_3\text{O}_4 \rightarrow \text{CoO+ O}_2$$
: (11)

Այս ռեակցիայի էնտրոպիան արձանագրված է DTA կորի վրա, իսկ O₂-ի կորուստը՝ TG կորի վրա։

MoO₃ - NH₄Cl համակարգի դերիվատոգրամը (նկ.3 բ) բնութագրվում է զանգվածի անընդհատ կորստով, հետևապես և՝ TG կորի անընդհատ անկումով մինչև 350°C ջերմաստիձան։ NH₄Cl-ի ջերմային քայքայումը տեղի է ունենում 230...365°C ջերմաստիձանային միջակայքում և արձանագրվում է DTA կորի վրա խորը էնտրոպիայով ` 302°C ջերմաստիձանային էքստրեմումով։ Իրականում գործընթացը սրանով ավարտվում է, որովհետև NH₃-ի և HCl-ի հիմնական զանգվածները՝ դեռ ռեակցիայի մեջ չմտած մասամբ հեռանում են։

Քլորացումը տեղի է ունենում ըստ հետևյալ ռեակցիայի՝

$$MoO_3 + HCI \rightarrow MoOCI_4 + H_2O, \tag{12}$$

$$MoO_3 + HCI \rightarrow MoO_2CI_2 + H_2O:$$
(13)

Նկ. 2. Fe $_2O_3$ – NH $_4$ Cl (ա) և NiO – NH $_4$ Cl (բ) համակարգերի դերիվատոգրամները

Նկ. 3. CoO – NH4Cl (ա) և MoO3 – NH4Cl (բ) համակարգերի դերիվատոգրամները

Մինչև 510°C ջերմաստիձանը նկատվում է MoO₃-ի ինտենսիվ ցնդում, որը գրանցվել է քրոմատոգրաֆիկան վերլուծության միջոցով (աղ.2)։ Ինչպես հայտնի է [5], MoO₃-ի ցնդումը իրականում տեղի է ունենում 600...800°C ջերմաստիձանային միջակայքում։ Նշվածը ասում է այն մասին, որ քլորացման գործընթացը արագացնում է ցնդումը, այն տեղափոխելով ավելի ցածր ջերմաստիձաններ։

Որոշակի հետաքրքրություն է ներկայացնում բազմաբաղադրատարր

համակարգերի սինթեզի գործընթացը (նկ.4 և 5)։ Fe₂O₃–NiO–CoO–NH₄Cl համակարգի քյորացման գործընթացն ընթանում է բավականին ակտիվ (նկ.4), որն արտահայտված է DTA կորի վրա, հատկապես մինչև 455°C ջերմաստիձանը։ Նմուշի զանգվածի կորուստը շատ փոքր է՝ TG կորը համարյա ուղղագծային է։ Հետևապես, ռեակզիայի ընթագքի ամենամեծն Fe2O3-NiO-MoO3-NH4Cl ամբողջականությունը Ŀ: համակարգի դերիվատոգրաման (նկ.5) համարյա չի տարբերվում Fe2O3–NiO–CoO–NH4Cl համակարգի դերիվատոգրամայից։ Սակայն այս դեպքում TG կորն ունի խորը անկումներ, այնպես, ինչպես MoO₃–NH₄Cl համակարգի մոտ (նկ.3,բ)։ Զանգվածի կորուստր մեծ է (~50% MoO₃), ինչը պայմանավորված է MoO3-ի և նրա ցնդման հետ։ Սակայն այս դեպքում MoO3 ցնդման ջերմաստիձանը տեղաշարժված է դեպի աջ, այսինքն` 515...800°C ջերմաստիձանային միջակայթ, որը կարեյի է բազատրել NiO –ի արգելակող հատկությամբ։ Զանգվածի կորստի` էնտրոպիալի գործընթացի փոփոխություններն արձանագրված են TG և DTA կորի վրա։ DTA կորի վրա արձանագրված է խորը էնդոթերմիկ էֆեկտ, որը գտնվում է 515...655°C ջերմաստիձանային միջակայքում (598°C էքստրեմումով)։

MoO₃ սինթեզի դժվարությունը, որը պայմանավորված է վերջինիս ցնդմամբ մինչև 50...75%, հաղթահարվում է CoO–ի առկայության դեպքում, ինչը լավ երևում է Fe₂O₃–NiO–CoO–MoO₃–NH₄Cl համակարգի դերիվատոգրամայի վրա (նկ.6)։ CoO–ն լինելով ակտիվ օքսիդ, որը երևում է նկ.3 (ա) և նկ.4 վրա, MoO₃-ին կապում է իր հետ` ըստ հետևյալ ռեակցիայի.

$$CoO + MoO_3 \leftrightarrow CoOMoO_4, \tag{14}$$

առաջացնելով CoOMoO₄ և արդյունքում արգելակելով MoO₃-ի ցնդման գործընթացը։ Այս դեպքում զանգվածի կորուստը ամենափոքրն է (TG կորն ունի փոքր թեքություն), իսկ սինթեզման ռեակցիայի ընթացքի ամբողջականությունը` ամենամեծը։ TG կորի բնույթը նույնն է, ինչ-որ Fe₂O₃–NiO–CoO–NH₄Cl համակարգի դեպքում (նկ.4)։ Ինչ վերաբերում է DTA կորին, ապա նրա ձախ մասը համանման է նկ.2-ին և նկ.3-ին, իսկ աջ մասը բնութագրվում է երկու էնդոթերմիկ էֆեկտներով (835°C և 880°C էքստրեմումներով), որոնք հանգեցնում են զանգվածի կորստի (հիմնականում քլորիդների)։

Նկ.4. Fe2O3–NiO–CoO–NH4Cl համակարգի դերիվատոգրամը

Նկ.5. Fe2O3–NiO–MoO3–NH4Cl համակարգի դերիվատոգրամը

Նկ.6. Fe₂O₃–NiO–CoO–MoO₃–NH₄Cl համակարգի դերիվատոգրամը

Ռեակցիայի արգասիքների վերլուծությունը (աղ.2) ցույց է տալիս, որ օքսիդների սինթեզն իրականացվում է ծավալային մեխանիզմով, մասնավորապես.

$$FeOCI + MoO_3 \rightarrow Fe_2(MoO_4)_3 + MoO_2CI_2,$$
(15)

$$MoO_2Cl_2 + Fe_3O_4 \rightarrow FeMoO_4 + FeOCI:$$
(16)

Այս ռեակցիային զուգընթաց տեղի են ունենում նաև պինդ ֆազային ռեակցիաներ. $Fe_2O_3 + MeO \rightarrow MeFe_2O_4$: (17)

Սինթեզի վերջին փուլը երկրորդական ռեակցիաներն են.

$$MeFe_2O_3 + Me'Fe_2O_3 \rightarrow (Me, Me') Fe_{3-x-y}O_{4+\gamma},$$
(18)

$$MeFe_2O_3 + Me' Me'O_4 \rightarrow [MeFe_2O_3 - Me' Me'O_4,$$
(19)

որտեղ Me-ը, Me'-ը, Me''–Ni-ը, Co-ն և Mo-ն մետաղներն են, իսկ γ- ն` թթվածնային պարամետրը։

Այսպիսով, NH₄Cl առկայությամբ տեղի են ունենում ինչպես գազային, այնպես էլ պինդ ֆազային հետերոգեն ռեակցիաներ` որոնց արգասիքները շպինելի տիպի և պինդ լուծույթների ձևով առաջացած բարդ օքսիդներ են։

Աղյուսակ 2 Ռեակցիայի արգասիքների քիմիական, գազային, մագնիսական և ռենտգենակառուցվածքային վերլուծության արդյունքները

			T		
Համա-կարգ	Т, ° С	Պինդ ֆազի բաղադրությունը	Գազային ֆազի բաղադրությունը		
Fe₂O₃ - NH₄CI	170	Fe ₂ O ₃ , NH ₄ Cl	H ₂ O		
	290	Fe ₂ O ₃ , NH ₄ Cl, FeCl ₃	NH ₃ , HCI, H ₂ O		
	420	Fe ₂ O ₃ , FeOCI	NH ₃ , FeCl ₃		
NiO - NH₄CI	210	NiO, NH ₄ Cl	H ₂ O		
	280	NiO, NH4CI, NiCl ₂	NH ₃ , HCI, H ₂ O		
	420	NiO, NiCl ₂ , Ni ₂ OCl ₂	NH ₃		
CoO - NH4CI	220	CoO, NH₄Cl	-		
	390	CoO, CoCl ₂ , Co ₂ OCl ₂	NH ₃ , HCI, H ₂ O		
MoO ₃ -	230	MoO ₃ , NH ₄ Cl	H_2O , NH_3 , HCI ,		
NH ₄ CI	350	H ₂ O, MoO ₂ Cl, MoOCl ₄			
Fe ₂ O ₃ –NiO– CoO–NH ₄ Cl	400	Fe ₂ O ₃ , NiO, CoO, ֆերիտային ֆազ	NH ₃		
	650	Fe2O3, NiO, ֆերիտային ֆազ	-		
	800	NiO, ֆերիտային ֆազ	FeCl₃		
	1080	ֆերիտային ֆազ	-		
FeoO2-NiO-	550	Fe2O3, Ni MoO4, ֆերիտային ֆազ	NH3		
M ₂ O ₂ -NH ₄ Cl					
1VIOO3-INIT4CI	1050	ֆերիտային ֆազ	-		
	550	Fe2O3, NiO, CoO, MoO3, ֆերիտային	NH3		
Fe2O3-INIO-		ֆազ			
COO-MOO3-					
NH4Cl	1050	ֆերիտային ֆազ	-		

Ֆերիտների ստացման ռեժիմների (Τ, τ) լավարկման նպատակով կատարվել են համալիր հետազոտություններ։ 68,5% Fe_2O_3 + 16,4%NiO + 9,7%CoO + 5,4% MoO₃ +2% NH₄Cl բովախառնուրդը խառնվել է թրթռաաղացում 1,0...1,5 ժ տևողությամբ՝ ապահովելով բաղադրության համասեռությունը և բաղադրատարրերի հատիկների դիսպերսայնությունը՝ 1...10 *մկմ* չափերով։ Ֆերիտացման գործընթացը արագացնելու նպատակով բովախառնուրդը ենթարկվել է խտացման՝ մամլվածքների ձևով մինչև 0,1*µ* 60...70% ծակոտկենությամբ, որից հետո կատարվել է սինթեզ։ Փորձի արդյունքները բերված են նկ.7-ում։

Ֆերիտացման աստիձանը (Φ,%)գնահատվել է քիմիական, ռենտգենամետրական և մագնիսական վերլուծությամբ։ Ֆազային վերլուծության նպատակն է եղել որոշել ազատ օքսիդներիր, որոնք ռեակցիայի մեջ չեն մտել և չեն

փոխակերպվել։ Fe₂O₃ –ի համար կիրառվել է ցերիմետրային [6] NiO և CoO-ի համար՝ դիմետիլգլիօքսիմային [7] և MoO₃ –ի համար՝ ռադանիտային [2] մեթոդները։ Քիմիական և ռենտգենամետրական վերլուծության արդյունքները վերահսկվել են մագնիսական վերլուծության միջոցով, որը հիմնված է այն բանի վրա, որ ելքային օքսիդները (Fe₂O₃, NiO, CoO, MoO₃) պարամագնիսական են, իսկ սինթեզված օքսիդները՝ ֆերոմագնիսական։

Նկ.7. Ջերմաստիձանի (ա) և պահման տևողության (բ) ազդեցությունը ֆերիտների ստացման աստիձանի վրա (Փ, %)

Ելնելով նշվածից սինթեզված ֆերիտները հեղուկ միջավայրում (ջրում) դիսպերս մանրացնելուց հետո (1...5*մկմ*) ենթարկվել են թաց մագնիսական տարանջատման 25ը-հ3 մակնիշի խողովակավոր մագնիսական վերլուծաչափի վրա։

Սինթեզի ժամանակ կատարվել է ռեակցիայի արգասիք հանդիսացող գազերի որակական վերլուծություն։ Քանակական վերլուծություն չի կատարվել՝ համապատասխան սարքավորումներ չունենալու պատՃառով։ Ռեակցիայի գազային արգասիքները, հատկապես քլորիդները, սառեցվել, խտացվել են ու ենթարկվել ֆազային վերլուծության։ Ածխաջրածնային և այլ միացությունները որոշվել են XT-2 մակնիշի քրոմատոգրաֆի միջոցով, որը ենթարկվել է որոշակի ձևափոխությունների։ Գազային բաղադրիչների կոնցենտրացիան գրանցվել է ջերմաքիմիական դետեկտորի միջոցով` ЭПИ–09 պոտենցոմետրի օգնությամբ։ Փոքր քանակությունները չափվել են զգայուն սանդղակով։ Վերլուծությունը կատարվել է փորձանմուշի ընտրման մեթոդով [8]։ Ցավոք, սորբենտների մոտավոր ընտրությունը և մեթոդիկայի բացակայությունը թույլ չեն տվել նման յուրահատուկ փորձերի համար մանրամասնորեն ուսումնասիրել գազային ֆազը և Ճիշտ որոշել բաղադրատարրերը։ Քիմիական վերլուծությամբ բացահայտվել է քլորիդների և օքսիքլորիդների առկայությունը (աղ.2), իսկ քրոմատոգրաֆիկ եղանակով` H₂, NH₃ և N₂։ Ստացված արդյունքներն ապացուցում են, որ քիմիական փոխազդեցությունների գործընթացը ընթանում է ոչ միայն օքսիդների կոնտակտների պինդ ֆազային ռեակցիաներով, այլ նաև գազային ֆազում արագ նյութատեղափոխությամբ։ Սրանով է բացատրվում NH₄Cl-ի առկայությամբ ֆերիտացման ռեակցիաների մեծ արագությունը։ Քրոմատոգրաֆիային վերլուծության արդյունքները ցույց են տալիս, որ նախ առաջանում են քլորիդներ և օքսիքլորիդներ, այնուհետև ընթանում են ծավալային և պինդ ֆազային ֆերիտացման ռեակցիաներ։

Նկ. 7-ում բերված են հետազոտության արդյունքները` կախված ջերմաստիձանից (T, °C) և պահման տևողությունից (τ , σ), որոնք հիմնական պարամետրեր են։ Ֆերիտացման աստիձանը (Φ ,%)հիմնավորվել է ըստ ոչ մագնիսական բաժնեմասի քանակի։ Ինչպես երևում է նկ.7 (ա)-ից, $\tau = 2 \sigma$ պահման տևողության դեպքում չի ապահովվում ֆերիտացման ամբողջական գործընթաց, մինչդեռ T=1100°C և $\tau = 3,5...4,0 \sigma$ դեպքում տեղի է ունենում ~100% ֆերիտացում (նկ.7 բ)։

Ելնելով փորձերի արդյունքներից՝ Fe₂O₃–NiO–CoO–MoO₃–NH₄Cl համակարգի համար ընտրվել են սինթեզման և ֆերիտների ստացման հետևյալ ռեժիմները. տաքացման ջերմաստիձանը ՝ 1100^{±25} °C, պահման տևողությունը ՝ 3,5...4,0 *ժամ*։

Աշխատանքը կատարվել է "Հայաստանի բնական հումքից նոր հատկություններով նյութերի ստացում" (դասիչ 04.10.27) գիտական և գիտատեխնիկական պետական նպատակային ծրագրի շրջանակներում՝ "Կոմպոզիցիոն, այդ թվում միկրո- և նանոկառուցվածքներով նյութերի ստացում" ենթածրագրով։

ԳՐԱԿԱՆՈւԹՅԱՆ ՑԱՆԿ

- 1. Печковский В.В., Звездин А.Г. Сборник трудов ППИ. Т.5.17.-Пермь, 1965.- С.35.
- 2. Рабинович В.А., Хавин З.Я. Краткий химический справочник.-М.:Химия, 1978.- 54с.
- 3. Zimmermann R., Gunter K. Metallurgie und Werkstoffenhnik.-Leipzig, 1982.-145p.
- 4. Журавлев Г.И. Химия и технология ферритов.-Л.: Химия, 1970.-192с.
- 5. Зеликман А.Н. Молибден.-М.: Металлургия, 1970.- 89с.
- 6. Hauffe K. Oxydation von Metallen und Metalle.-Gierungen.-Berlin, 1957.
- 7. Корякин Ю.В. Чистые химические вещества.-М.: Химия, 1974.-248с.
- 8. Фромм Е., Гебхардт Е. Газы и углерод в металлах.-М.: Металлургия, 1980.-712с.

ՀՊՃՀ։ Նյութը ներկայացվել է խմբագրություն 24.09.2005.

С.Г. АГБАЛЯН, А.А. ПЕТРОСЯН, А.С. АГБАЛЯН, В.Л. КАСЬЯН, А.Н. КАЗАРЯН, А.М. ОГАНЕСЯН

ДЕРИВАТОГРАФИЧЕСКОЕ И МЕТАЛЛОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ ПРОЦЕССА СИНТЕЗА СЛОЖНЫХ ОКСИДОВ ИЗ ОКСИДНЫХ СИСТЕМ Fe2O3 – NiO – CoO – MoO3

Дериватографическим методом выявлены механизм, кинетика и термодинамика массопереноса синтеза сложных оксидных систем в галогенных средах из оксидов Fe₂O₃, NiO, CoO и MoO₃. Выбраны оптимальные режимы синтеза и получения ферритов для расчетных систем 68,5% $Fe_2O_3 + +16,4\%$ NiO + 9,7% CoO + 5,4% MoO₃ + 2% NH₄Cl: температура нагрева 1100^{±25°}C; время выдержки 3,5...4,0 ч.

Ключевые слова: оксид, синтез, феррит, компонент, энтропия, превращение, хлорирование, дериватограмма, фаза, степень ферритизации.

S.G. AGHBALYAN, A.A. PETROSYAN, A.S. AGHBALYAN, V.L. KASYAN, A.N. GHAZARYAN, A.M. OGANESYAN

DERIVATOGRAPHIC AND MICROGRAPHIC INVESTIGATION OF THE PROCESS OF COMPOUND OXIDE SYNTHESIS FROM Fe₂O₃ – NiO – CoO – MoO₃ OXIDE SYSTEMS

By the derivatographic method oxide systems of mass transfer mechanism are revealed, kinetics and thermodynamics synthesis in the halogen medium from oxide of Fe₂O₃, NiO, CoO and MoO₃ is discovered. The optimum synthesis conditions are revealed and ferrits for calculated systems 68,5% Fe₂O₃ + 16,4% NiO + 9,7% CoO + 5,4% MoO₃ + 2% NH₄Cl - reheat temperature $1100^{\pm 25}$ C, cure time 3,5...4,0 are obtained.

Keywords: oxide, synthesis, ferrit, component, entropy, diffusion, transformation, chlorination, derivatographic, phase, ferreting degree.