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THE PROBLEM OF THIN PLATE STABILITY AT SUPERSONIC FLOW AND
PRESENCE OF CONCENTRATED WEIGHT AT EDGES

The stability problem of a thin plate with finite length, streamline gas is considered. A supersonic gas
and the weight of a plate are neglected. But it is considered that there are concentrated weights on the fixed edge
of a plate where the critical flow speeds causing flutter instability phenomenon are found.

Keywords: plate-stability, supersonic flow, harmonic oscillations, flutter, divergence speed,
concentrated weight.

Aspiration to achieve higher speeds of flight FA by their constant perfection and their use in
the new constructional materials (Aluminium-Lithium alloys, composite materials), systems of active
and adaptive managements promote the rigidity reduction of designs. Then these processes are
accompanied by the increase of aeroelastic oscillation level of the designs and also by the increased
probability of various aeroelastic phenomena display. There are numerous researches [1-6] to study the
problem of plane wing stability at supersonic flow, but this present work is actually based on piston
theory and devoted to the considered theory of panel flutter at supersonic gas stream which it is
supposed that the inertial weights of a plate are too small, so we can neglect them, but there are
concentrated weight on the fixed edge of plate. And the critical speeds of a flow which cause the flutter
phenomenon are determined.

1. Let the thin plate in the Cartesian system of coordinates oxyz which occupies the

area) < x < 1,0 <y <b,—h £z < h.and the plate in a direction of axis ox , one side of the plate
will be exposed to a supersonic distributed flow by the speed v. By accepting the validity of
Kirchhoff hypothesis and piston theory [1] we can accept that the plate at direction of axisoy is wide
enough, so it is possible to count, that the plate’s oscillations have the form of a cylindrical surface,
and do not depend on coordinate y. At specific assumptions the flexural vibration equation has the
form [1,2]:
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Here p,p,— is the density of a plate and gas material, accordingly; o, is the speed of
sound in gas; W = W(X,t) is the function of plate deflection; D is the flexural rigidity:
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The solution for equation (1.1) has been investigated by A.A.Movchan [3] under various
static boundary conditions at plate’s edgesx =0 ,x =/ and then the representation of the equation
(1.1) solution will be as

W = f(X)eim[. (13)

It turns out an ordinary differential equation of the fourth degree concerning the
function f(x), so for finding the general solution it is necessary to find the roots for characteristic
equation of the fourth degree. The problem of plate stability essentially becomes simpler by applying
Euler's static method. Then, instead of the equation (1.1), it is necessary to solve the equation [2],

o'w ow -
—+s’—=0; s’ =o,p,uD". (1.4)
ox 0x
In spite of the fact that for finding the general solution of equation (1.3) we find the

characteristic equation which also will be in the fourth degree, however the roots for that equation are
easily defined and have the form

p=0; py=-s; Py, =0.5(1%iV3). (1.5)
According to (1.5), the general solution of equation (1.4) will be

Sx
w(x)=A, +A,e™ +(A3COS§SX+A4 sin73sx)e2 . (1.6)

Let’s consider that one of the long plate edges has a rigid jamming slide and the other side is
rigidly jammed then

3
d—W=0; d V3V =0, where x=0; (1.7)
dx dx
w =0; d—W=0, where x =1
dx

By substituting (1.6) in (1.7) we will obtain a homogeneous algebraic system of equations
which will concern the constants 4, ,7 =1,2,3,4,... Equality to zero determinant of the specific system
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gives the defined equation concerning the parameter sl

=0. (1.8)

Let's enter the notation
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C(sl)=2sin(%+751)—e 2 (1.8a)
It is easy to show by the help of graphic-analytical research that:
C(sl) <0, when sl <0; (1.9
C(sl)=0, when sl=0;
c(sl) — Sign-variable function when sl > 0 zero functions are defined by using the formula

(sl), = \/_ (—+ nk); k=0,1,2,... (1.10)
S5n
C(sl) =0 when sle— 2nk;—+ 2nk k=0,1,2,... 1.10a
(sl) w \/—( 6 ); (1.10a)
2 S5m I1lx

C(Sl) <0 , when sle — ? 27[1(,?4‘ 27[1(), k = 0,1,2,... . (110b)

V3

According to (1.10) the first zero function will be:

Sn
sl), ¥ —=x—~ 3,012 . (1.11)
(s1), ﬁ 6
It is possible to find v . for the stream from expression (1.4), by substituting (1.11) in (1.4):
27 D
- 21D (1.12)
o op,l
At this undistributed speed form the plate balance stability ceases and divergence conditions
take place, then it will be obvious that from equations (1.9), (1.10) the divergence conditions arise
only in the case when the gas stream is directed from rigid jamming slide edge to rigidly jammed
edge.

cr

2. As we see the equation (1.4) possesses remarkable property which corresponds to the
characteristic equation and has simple roots (1.5), so there is a dynamic research idea for the (flutter
instability) problem in which dynamic members are taken into account in the boundary conditions.
Such an idea has been used by B.B.Bolotin in his method where the solution of plate stability problem
was studied by keeping up the force system [1] According to that method instead of the equation
(1.1) we can use the considered equation
o'w ;0w
.

ox 0x

We have to neglect the dynamic forces in the equation (1.1), as well as in the static approach
(1.4). It is supposed that for edge x = 0 the rigid jamming slide is a

=0; s’ =a,p,uD". (2.1)
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2
concentrated weight m which creates inertial force (—m 57) . So the boundary conditions (1.7)

are replaced by the following conditions [4]:

3 2
Mo, DY o %Y when x =0, 2.2)
0x ox ot

w=0; — =0, when x=1.
Ox

By substituting the equation (2.1) the solution will be as the harmonic oscillation (1.3), and
we will obtain an equation concerning the function f(x) which the general solution is related to (1.6)
and by substituting (1.3) in the boundary conditions (2.2) we obtain the conditions concerning the
function f(x):
f'=0; f"-Bo’f=0, when x=0 (2.3)
f=0; f'"=0, when x =1,
where

m
=—; 2.4
p b (2.4)
where B>0 is the parameter, describing the concenrated weight which is applied on edge x=0.

Furthermore, substituting the general solution of the form (1.6) in boundary conditions (2.3)
we obtain a homogeneous algebraic system of equations concerning constants A,,i =1,2,3,4:

] NE)
A2 —5A3 —7A4 :0,
Bo A, + (s’ +Bo’)A, +(s’ +Bw’)A, =0;

sl sl (2.5)
_sl > 3 5 . 3
A +e A, +(e? cosTSI)A3 +(e? 51n7s1)A4 =0

S1 \/_ S1 \/_

_ S ...m 3 5 T A3
e A, —(e? s1n(g—7sl))A3 —(e? cos(g—Tsl))A4 =0.

Equating to zero system determinant (2.5), we obtain o, expression defending own
frequencies square of plate oscillations:

2 _ i B(s)) .
= 5 X A B#0; (2.6)
A(sl) = (ch(sl) - ch%lcosgsl - \/gsh%lsin gsl); 2.7
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B(sl)=¢? (sin(g + 751) - Ee 2. (2.8)

It is obvious that from the comparison of expressions (2.8) and (1.8a), and the behavior of
function B(sl) as well as at function C(sl) according to (1.9) and (1.106) we have

B(sl)<0 At sl<0, when sl € (% + 27k; % + 2nkj; k=0,12,...(2.9)

B(s])=0 At sl=0, when (sl,) = 2 (om + Tckj; k=0,12,....;

5l

B(sl) >0 At sle %(27:1(; %Jr 27k); k=0,1,2,.....

N

It is easy to show by the help of graphic-analytical researches that
A(sl) =0 At s # 0and A(sl)=0 at s=0. (2.10)
Let's notice that by accepting in the equation (2.6) the limit at s — 0 (b — 0), we obtain the
accepted value approach of frequency square for free plate oscillations with the concentrated weight
m on the edge when x =0

2 iXB(sl)_lz

o; = hm =—. 2.11
P TIE AGh Br ¢1b
It is clear that ooir ~0atB>0.
According to (2.9) and (2.10), from (2.6) we will obtain
2 57

®> =0 when sl)  ——=(—+ nk); k=01.2,... (2.12)
®> <0 when (sl) € i(S—TE + 2nk;& +2mk); k=0,1.2,... (2.13)

V36 6

2 5

©®> =0 when (sI)<0 u (sl)e (2nk;?+2nk); k=01.2,.. (2.14)

NE)

It means that from intervals (2.13) the movement becomes unstable and changes to oscillatory
movement; from intervals (2.14) the movement will be steady and oscillatory movement is fading.
Thus the change of o’ from positive values to negative ones (or on the contrary) through (032 =0)
zero we have a small change from fading oscillations to increasing oscillations (or on the contrary) —
type of flutter oscillations.

From (2.14) we can see if the stream is directed from rigidly jammed edge x =/ to an edge
which has rigid jamming slide x = 0, the plate movement will be steady at all values of speed for gas
stream of flow. For corresponding to zero
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functions C(sl) and B(sl) the value of critical divergence speeds are equal so according to considered
equations (2.12) and (2.1) we can write the expression

2 5n

3
L. = {_ 4 K a'1p511'3; k=0,12,.... (2.15)
" ﬁ( 6 ﬂ '

Sn L .
According to the first zero (sl), = —— and by taking into account the equation (1.12)

2
J3 06

V.o, =27 Da 'p,'17°.

cr

we have

Let's note that if the jammed edge of plate and the other edge is free, and the streamline of gas
stream with concentrated weight is at free end, the value of critical gas stream speed takes place by
the type of flutter oscillations and equals three times of value of considered equation (2.15),

approximately [5] .
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1.U. UUUru

QGMUSLUSPL TrezNUU UL B4 BRLELPL UELSNILUSUD QULAYUOULE P UNuUSNRE3UL
1ENLNPU UULP WUSNPULNRESUL ULYIPT

Thuwpymu E qugh ghpdugtiughtt hnupny ppohnuynn Ybpownp Epljupnmput pupul
uwih jumimpjub jutghpp, vwh qubquép wphwdwphymd b vwuyt hwdwpynwd £ np uwgh
wdpwlgyus bqppptt Juwb twb YEunpntwgws qubqusubp, npnoduws tu pjupkpuyht
wbljuyniimpjut hwigkgunn opohnudwt Yphnhjuljwt wpugmpnibubbkpp:

Unwbgpuyhli  punkp. uwbp, Yuyniinipjnit, ghpduybughtt  hnup, ubkppupbuly
nwnwinidubp, ppeonud, wpugnipju nwpudhunnid, JEnpniugdwus Yohn:

I.A. CAMPA

3AJIAYA YCTOMYUBOCTU TOHKOM TUTACTUHKU TP CBEPX3BYKOBOM OBTEKAHUU U
HAJIMYUU COCPEJIOTOYEHHOM MACCH HA KPOMKAX

PaccmaTpuBaeTcst 3asada yCTOMYMBOCTEL TOHKOM — IUIACTHHKY KOHEYHOM [JIMHBI, OOTEeKaeMOi
CBEpPX3BYKOBBIM IIOTOKOM rasa. Macca IJIaCTUHKH ITpeHeOperaeTcs, HO CIUTAETCS, YTO Ha ee 3aKPeILIeHHBIX
KPOMKaX MMEIOTCA COCpeloToYeHHbIe Macchl. HaliieHsl KpUTHdecKue CKOPOCTH OOTeKaHU, IIPUBOAAIINE K
¢raTTepHOI HEYCTOMYMBOCTH.

KrfogeBsre coBa: IUIaCTHHKA, CTaOUIBHOCTD, CBEP3BYKOBOI IOTOK, TApMOHHYECKUE KOIeGaHusd,
BUOPpALN, CKOPOCTh PACXOXKAEHH, CKOHIIeHTPHPOBAaHHEbII BeC.
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