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Abstract. Donors and acceptors in semiconductors are charged impurities with a Coulomb 

potential and, therefore, are screened by free charge carriers – electrons. An analytical 

description of the oscillations of the screened external potential by the electron gas is considered 

in this paper. Using the inverse transformation of the Fourier component, the screened Coulomb 

Potential U(r) and the value of the screening radius rs for the degenerate and nondegenerate 

electron gas are found. The dependence of rs on potentials is also given. It is shown that the 

screening radius decreases with increasing the electron density. 
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1. Introduction 

Quite a lot of effort was lost at one time in the study of the gas of electrons with the Coulomb 

interaction [1–5]. It is known that an electron cloud that is homogeneous on average undergoes 

fluctuations in the electron density. The Coulomb field decreases so slowly with distance that the 

charge fluctuation at a given point in the crystal causes a redistribution of charges even at the most 

remote points in the gas. Such a distant correlation in the movement of electrons does not allow them 

to approach too much closely and creates a rarefied cloud of other electrons near each electron. 

Neutrality in the crystal is carried out due to positively charged ionic residues. There fore, in the 

region of a rarefied cloud surrounding each given electron, the positive charge of the ionic remains 

“shines through”. This positive charge compensates the Coulomb electric field of the electron 

everywhere except for a small neighborhood of the electron. It turns out that two electrons interact 

only when they are at a very small distance from each other, that is, through a short–range screened 

potential [1,2]. 

The complexity of constructing a theory of such a screened potential is that such a theoretical 

consideration must be self–consistent, that is, one must find a potential that gives such electronic 

states and charge density that lead to an initial potential. Particular attention is paid to the concept of 

elementary excitations, which turns out to be very productive in the quantum theory of solids. First 

of all, the Coulomb interaction of charged current carriers is considered. This interaction determines 

the screening effects, exciton optical properties, and metal–insulator transitions. 

The screening of the Coulomb interaction arises due to fluctuations in the electron density. The 

screening phenomenon consists in the fact that the ion “gathers” around itself an unevenly charged 

cloud of mobile charges of the opposite sign. The charge of the cloud is equal in magnitude and 

opposite in sign to the charge of the ion, and together they create an electrostatic potential U(r), where 

r is the radius vector directed from the center of the ion to the screening cloud [3, 4]. 

 

 

2. Theoretical Approaches 

In semiconductors, donors and acceptors are charged impurities with a Coulomb potential energy 

equal to 

 𝑊(𝑟)~
𝑒2

|𝑟|
 ,      (1) 
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where e is the electron charge, r – radius vector. 

Potential energy plays here the role of external potential. In this paper, we consider the screening 

of this potential by an electron gas. The Fourier component of the impurity Coulomb potential can be 

obtained by calculating the integral [2] 

 

  𝐼 =
1

𝑉
∫

1

|𝑟|
𝑒−𝑖𝑞𝑟−𝛼𝑟𝑑3𝑟,                   (2) 

 

in which the 𝑒−𝛼𝑟 is a factor added to the integrand to ensures good convergence of the integral, V–

voiume, q – quasi–wave vector, 𝛼 – absorption coefficient. 

To calculate this integral, it is convenient to use spherical coordinates and represent it in the form  

 

𝐼 = 2𝜋 ∫ 𝑟𝑑𝑟 ∫ 𝑑𝑥𝑒−𝑖|𝑞|∙|𝑟|𝑥−𝛼𝑟 =
2𝜋

−𝑖𝑞

+1

−1
⌊

1

𝑖(𝑞−𝑖𝛼)
+

1

𝑖(𝑞+𝑖𝛼)
⌋ =

4𝜋

𝑞2+𝛼2
        (3)  

 

Assuming the auxiliary quantity 𝛼 to be equal to zero in (3), we obtain the Fourier component of 

the Coulomb potential in the form 

 

𝑊𝑞 =
4𝜋𝑒2

𝑞2

1

𝑉
 .     (4) 

 

Impurity potential (1) is static, therefore, when considering the self–consistency condition 

 

𝑈(𝑟, 𝑡) = 𝑊(𝑟, 𝑡) + 𝛿𝑈(𝑟, 𝑡),      (5) 
 

the frequency 𝜔 should be set to the ℰ(𝑞, 𝜔) equal to zero. Since, on the other hand, 𝑊(𝑟) depends 

on the coordinate 𝑟, the dependence ℰ on 𝑞 should be kept. 

In the case of a degenerate electron gas the dielectric function [2,3] 

 

ℰ(𝑞, 𝜔)|𝑞→0
𝜔=0

= 1 +
4𝜋𝑒2

𝑉𝑞2
∑ − (

𝜕𝑓(𝑝)

𝜕𝐸(𝑝)
) ,𝑝     (6) 

 

can be represented as 

 

ℰ(𝑞, 0) = 1 +
4𝜋𝑒2

𝑞2

2

(2𝜋ħ)3
∫(−

𝜕𝑓(𝑝)

𝜕𝐸(𝑝)
)𝑑3𝑝,                                             (7) 

 

where ℏ is Planck's constant, and the sum over the 𝑝 is replaced by the integral according to the rule 

 
1

𝑉
∑ 𝑓(𝐸(𝑝)) ≈

1

𝑉𝑝
𝑉

(2𝜋ħ)3 ∫ 𝑑3𝑝𝑓(𝐸(𝑝)).    (8) 

 

In the case of a degenerate electron gas, when the distribution function is represented by a step, 

the derivative (−
𝜕𝑓(𝑝)

𝜕𝐸(𝑝)
) reduces with good accuracy to the 𝛿 function  

(−
𝜕𝑓(𝑝)

𝜕𝐸(𝑝)
) ≈ 𝛿(𝐸 − 𝐸𝐹) .          (9) 

 
Substituting (9) into (7) and using the dispersion, here 𝐸𝐹 is Fermi energy 

 

      𝐸(𝑝) =
𝑝2

2𝑚0
 ,                     (10) 
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and integrating with the 𝛿–function, we obtain 

 

ℰ(𝑞, 0) = 1 +
4𝜋𝑒2

𝑞2 ∙
2

(2𝜋ħ)3∙ ∙ 2𝜋(2𝑚0)3 2⁄  ∙ 𝐸𝐹
1 2⁄

,    (11) 

 

where 𝑚0 is the electron mass. 

The density of a degenerate electron gas 𝑛 is related to the Fermi energy 𝐸𝐹 by the relation [2] 

 

𝐸𝐹 ≡  𝜇(0) = (3𝜋2)2 3⁄ ħ2

2𝑚0
∙ 𝑛2 3⁄ ,     (12) 

 

where n is the electron concentration. 

There fore, we can write (11) through the electron density𝑛: 
 

ℰ(𝑞, 0) = 1 +
4𝜋𝑒2

𝑞2 ∙
𝑛

𝐸𝐹
∙  

3

2
= 1 +

𝜆𝑝
2

𝑞2    ,          (13) 

 
where 

𝜆𝑝=
2 4𝜋𝑒2𝑛

𝐸𝐹
∙

3

2
 .      (14) 

 

 For nondegenerate electron gas, the function 𝑓(𝑝)is reduced to the Boltzmann distribution [2] 

 

𝑓(𝐸) = 𝑒𝑥𝑝
𝜇(𝑇)

𝑇
𝑒𝑥𝑝 ⌈−

𝐸

𝑇
⌉ = 𝐴 𝑒𝑥𝑝 [−

𝐸

𝑇
]     (15) 

 

The derivative of the distribution function (7) in this case is equal to (−
𝜕𝑓(𝑝)

𝜕𝐸(𝑝)
). 

Substituting the derivative into ℰ(𝑞, 0) from (7), we have 

 

ℰ(𝑞, 0) = 1 +
4𝜋𝑒2

𝑞2 ∙
2

(2𝜋ħ)3∙ ∙  
1

𝑇
∫ 𝑓(𝑝)𝑑3𝑝,     (16) 

 

where T is the temperature. 

Since the concentration of electrons can be written in the form 𝑛 =
2

(2𝜋ħ)3∙ ∙  ∫ 𝑓(𝑝)𝑑3𝑝,  then (16) 

takes the form 

 

ℰ(𝑞, 0) = 1 +
4𝜋𝑒2

𝑞2 ∙
𝑛

𝑇
= 1 +

𝜆𝑛𝑝
2

𝑞2   ,       (17) 

where 

𝜆𝑛𝑝
2 = 4𝜋𝑒2 ∙

𝑛

𝑇
  .                            (18) 

 

Here Fourier component of the screened Coulomb potential is  

 

𝑈𝑞 =
𝑊𝑞

ℰ(𝑞,𝜔)
      (19) 

 

behaves as follows  
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𝑈𝑞 =
𝑊𝑞

ℰ(𝑞,𝜔)
=

4𝜋𝑒2

𝑞2+𝜆2
∙

1

𝑉
 .       (20) 

 

In the long wavelength limit 𝑞 → 0, and the pole in ℰ(𝑞, 0) is compensated by the pole in 𝑊𝑞. 

This leads to the disappearance of the long–range part of the initial Coulomb potential. 

The inverse Fourier transform can be used to find the screened Coulomb potential 𝑈(𝑟) as 

 

𝑈(𝑟) =
𝑒2

|𝑟|
𝑒−𝜆𝑟      (21) 

 

From (21) it follows that at 𝑟 = 0, this potential behaves like a Coulomb potential, and at large 𝑟 

it is "cut off" along the length ~𝜆−1. For this reason, the quantity 𝜆−1  is called the screened radius 

𝑟𝑆 = 𝜆−1. 

For a degenerate electron gas 𝑟𝑆  is 

 

𝑟𝑆𝑝

2 =
𝐸𝐹

4𝜋𝑒2𝑛
∙

2

3
.      (22) 

 

In a classical nondegenerate electron gas, we have 

 

𝑟𝑆𝑛𝑝

2 =
𝑇

4𝜋𝑒2𝑛
 .                   (23) 

 

The change in the impurity potential due to the redistribution of the electronic charge is called 

electrostatic screening of the impurity potential. In both cases, the screening radius decreases with 

increasing electron concentration. 

In metals, the electron concentration is of the order of 1022 cm–3, and the screening radius reaches 

values on the order of interatomic distances. 

In semiconductors, the electron concentrations vary in a wide range from 1016 cm–3 to 1020 cm–3. 

Accordingly, the screening radius turns out to be larger than the crystal lattice constant. 

In the classical case, the screening radius (23) was obtained in the theory of strong electrolytes by 

Debye and Hückel. It is often referred to as the Debye–Hückel shielding radius. 

The transformation of the long–range Coulomb potential (1) into the short–range screened 

Coulomb potential (21) occurs due to the screening action of the electron gas with interelectronic 

interaction. In Fig.1. the dependence for the Coulomb and electronized Coulomb potentials is given. 

 

 
Fig. 1. Coulomb (curve a) and screened Coulomb (curve b – in case 𝑟𝑆 = 10𝑟∗ and c – 𝑟𝑆 = 100𝑟∗) potentials in 

relative terms. 
 

A decrease in the radius of action of the screened potential compared to the Coulomb potential 

significantly reduces the probability of electron scattering by impurities. 
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Conclusions 

 

 In this paper, the analytical matching of the changes of the screened external potential by the 

electron gas was considered. 

 The screened Coulomb potential 𝑈(𝑟) is found using the inverse Fourier transform of the 

component. 

 The value of the screening radius 𝑟𝑠 for a degenerate and non–degenerate electron gas is 

obtained. The dependence of 𝑟𝑠(𝜆−1) on potentials is presented. 

 It is shown that the screening radius decreases with increasing the electron density. 
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