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Al inferencing, especially the real time processing of neural networks may require
excessive calculation power in terms of speed and memory, thus opening a big area for
research and design of new devices intended for Al acceleration. Examples of such devices
are Nvidia’s Jetson series, Google’s Coral. Also, there are FPGA solutions such as Xilinx’s
Al applicable FPGA. Depending on application requirements it could be difficult to choose
between these devices, as in most cases, speed and accuracy are the most important factors,
while there are also applications which require low power and low cost. Thus, investigation
and comparison of these inferencing devices in terms of speed, memory, power and cost for
the chosen field of subject may be useful for choosing the right device for the given task.
We have done such an analysis for the depth estimation task using Jetson Xavier NX and
Coral Dev Board as inferencing devices.

Keywords: a artificial intelligence, neural network, depth estimation, Jetson Xavier
NX, Coral Dev Board.

Introduction. In this work, we are analyzing the inference of depth estimation
deep learning model on Al inferencing devices to find out their advantages and
disadvantages for the specified task. We have chosen depth estimation from computer
vision subtasks, as it is more challenging and comparably less investigated in literature.
Also, the possible opportunity of replacing the traditional methods of depth estimation
increases the interest of this analysis, because the Photogrammetry which is the main
tool for depth estimation nowadays requires heavy 3D reconstruction processing,
that is only suitable on stationary processing units. Meanwhile, there are applications
that require instantaneous information on scene properties, such as UAVs obstacle
avoidance, indoor navigation, self-driving vehicles, etc. [1]. We have used aerial
footage for training and testing our models as it is the hardest in terms of picture
properties due to long shooting distances, meaning low resolution on objects.

Many authors solved the depth estimation problem, using supervised neural
networks [2-4]. Although, supervised methods provide high accuracy, they require
large datasets with accurate ground truth depth maps, thus reducing their applicability.
As an alternative, self-supervised methods can be applied, which do not require any
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ground truth depths and provide enough accuracy. There are two main methods of
self-supervised depth estimation: through stereo pairs [5, 6] and through monocular
videos [7, 8]. We have used monocular videos in this work.

The inferencing devices were compared in terms of the output image depth
quality, speed, required memory, power usage. We have chosen Jetson Xavier NX
and Google Coral as inferencing devices, as they have one of the best price-
performance ratios in the market and have not been sufficiently investigated in
literature.

The chosen model. This section briefly describes the chosen model for
depth estimation and also presents the inferencing hardware and the steps for
preparing models to inference.

For depth estimation we have used a convolutional neural network which is
similar to the network presented by [9] with some small architectural changes. One
of such changes is the replacement of Exponential Linear Units (ELU) with
Parametric Rectified Linear Units (PReLU) in the decoder part. This is necessary,
because Edge TPU Compiler [10] does not support ELU operation.

Jetson Xavier NX specifications. Jetson Xavier NX is a power-efficient,
compact module for Al edge devices. It accelerates the NVIDIA software stack in
as little as 10 W with more than 10x the performance of its widely adopted
predecessor Jetson TX2. The brief properties of this device are described below.

NVIDIA Volta architecture with

GPU 384 NVIDIA CUDA cores and

48 Tensor cores
Memory 8 GB 128-bit LPDDR4x 51.2 GB/s
Video Encode 2x 4Kp30 | 6x 1080p 60 | 14x 1080p30

Xavier NX is capable of 21 TOPS (int8) or 6 TFLOPS (fpl16) of Al
performance while consuming only 15 watts of power. When limited to 10 watts, it
can still perform at 14 TOPS. More detailed evaluation can be found in Nvidia’s site.

Coral Dev Board specifications. The Coral Dev Board is a single-board
computer that's ideal for performing fast machine learning (ML) inferencing in a
small form factor. The on-board Edge TPU coprocessor is capable of performing 4
trillion operations (tera-operations) per second (TOPS), using 0.5 watts for
each TOPS (2 TOPS per watt).The brief properties of this device are described
below.
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NXP i.MX 8M SoC

Py (quad Cortex-A53, Cortex-M4F)
GPU Integrated GC7000 Lite Graphics
ML accelerator Google Edge TPU coprocessor
Memory 4 GB LPDDR4

Inference. We have done inference on Jetson Xavier NX using Nvidia TensorRT
Python API, CUDA Python API and Jetson-inference library. For generating the
TensorRT engine which is required for the inference, first we have converted our
PyTorch model to Open Neural Network Exchange (ONNX) format, and then we
have generated TensorRT engine from ONNX model [11].

The PyCoral Python API and TFLite models have been used during the
inference on Coral Dev Board [12]. For generating TFLite models, first we have
converted our PyTorch model to Open Neural Network Exchange (ONNX) format,
then we have converted ONNX format to OpenVINO, and finally the TFLite models
have been created by converting OpenVINO model to Tensorflow and using TFLite
converter. The ONNX to OpenVINO step was necessary, because PyTorch and
Tensorflow use different data storing formats and it is difficult to directly convert
between them.

We have created various engines with different input resolution and precision
parameters and have performed extensive experiments which are described in the
following section.

Experiments. In this section we introduce the dataset and the comparison of
TensorRT and TFLite models’ results.

Dataset. We have used China video sequences from the UAVid dataset [13]
for creating training, validation and test sets. There are 34 video sequences with a
resolution of 3840x2160 in China sub-dataset.

Like [14], for testing the model performance, we compared the depth maps
generated by the model with reference depths. As reference depths the point clouds
generated through Pix4D photogrammetric tool were used. A total of 412 images
were obtained as reference depths through this process.

Evaluation metrics. To assess the performance, various pixel-wise metrics
are calculated between the predicted and reference depths. The evaluation of the
accuracy is done based on calculating several metrics between the single image
depths (d”) generated from the model and the reference depths (d) produced using
Pix4D. The evaluation metrics are: Absolute Relative difference (Abs Rel) given in
equation (1), Squared Relative difference (Sq Rel) given in equation (2), Root
Mean Square Error (RMSE) given in equation (3), Root Mean Square Logarithmic
Error (RMSE log) given in equation (4). The accuracy given in equation (5) is
described in [9] and [14]:
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Here the accuracy represents the fraction of pixels that are within a certain
threshold 0 to the corresponding pixel wise value in the reference depth map. The
thresholds chosen are 1.05, 1.15, 1.25, (1.25)% (1.25)°.

Comparison of results. We have performed the comparison of TensorRT
and TFLite models in terms of accuracy, inference statistics, memory usage, power
usage, model complexities. The evaluation of our models’ accuracies was carried
out by comparing the results with reference depths generated using the PIX4D
software. We also present the comparison with the result published by [14] which
is one of the best works that uses the UAVid dataset.

In Table 1 and Table 2 are shown the comparisons of model accuracies with
input resolutions of 256x160 and 320x192 respectively.

From Table 1, we can see that decreasing precision from fp32 to fp16 does
not significantly change the results. The results are slightly decreased when using
int8 data type, but it gives more performance boost. The results of the model with
int8 data type were measured after performing the calibration process. For that we
have used calibration dataset, which includes more than 400 images from the
original training dataset.

The difference between TFLite and TensorRT Int8 models’ accuracies may
be caused by different calibration processes of the TensorRT and TFLite converter.

From Table 2, we can see that using higher input resolution improves the
results for both TensorRT and TFLite; however, it increases the model complexity.
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Table 1

Results achieved over models with input resolution of 256x160

TFLite Results from
Model name TensorRT model (256x160) model Madhuanand
(256x160) et al (2021)
Data type Fp32 Fpl6 Int8 Int8 Fp32
Absolute relative 0.269 0.269 0.27 0.29 0.109
Square relative 17.552 17.549 17.541 23.692 7.742
RMSE 52.463 52.479 52.352 63.314 48.303
RMSE log 0.293 0.293 0.293 0.316 -
al (<1.25) 0.649 0.649 0.649 0.642 0.878
a2 (<1.25%) 0.859 0.859 0.86 0.836 -
a3 (<1.25%) 0.936 0.937 0.936 0.92 -
a2* (<1.15) 0.487 0.487 0.485 0.466 0.761
a3* (<1.05) 0.192 0.191 0.193 0.175 0.327
Table 2

Results achieved over models with input resolution of 320x192

TFLite Results from
Model name TensorRT model (320x192) model Madhuanand
(320x192) et al (2021)
Data type Fp32 Fplé Int8 Int8 Fp32
Absolute relative 0.255 0.255 0.259 0.234 0.109
Square relative 15.523 15.528 15.954 16.095 7.742
RMSE 51.523 51.552 52.132 55.275 48.303
RMSE log 0.279 0.279 0.282 0.262 -
al (<1.25) 0.65 0.65 0.643 0.709 0.878
a2 (<1.25%) 0.874 0.874 0.869 0.902 -
a3 (<1.25%) 0.945 0.945 0.944 0.956 -
a2* (<1.15) 0.489 0.489 0.484 0.517 0.761
a3* (<1.05) 0.2 0.2 0.196 0.204 0.327

Table 3 and Table 4 show the model complexities expressed in floating point
operations (FLOPs) and memory usages of the models. As we can see, TFLite models
on Coral are simpler and significantly superior TensorRT models in terms of the
memory used. Table 3 shows that TensorRT models require less memory in case of
fp16 and int8 data types.
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Table 3

TensorRT model complexities and memory usages

Input resolution 256x160 320x192
Number of parameters 148 M 14.8M
Fp32 0.85 GFLOPs 1.6 GFLOPs
Model complexity Fpl6 0.6 GFLOPs 0.65 GFLOPs
Int8 NA NA
Fp32 4 Gb 4 Gb
Memory usage Fpl6 33Gh 33Gh
Int8 3.3Gbh 33 Gb
Table 4
TFLite model complexities and memory usages
Input resolution 256x160 320x192
Number of parameters 14.8 M 148 M
Model complexity Int8 NA NA
Memory usage Int8 175 Mb 180 Mb

Comparisons of models’ performances measured by the number of frames
processed in a second (FPS) are given in Table 5 and Table 6. From these tables,
we can see that decreasing the precision significantly improves FPS numbers of
TensorRT models giving about 4-5 times higher results compared to TFLite models.

Table 5
Inference statistics (FPS) of various models with input resolution of 256x160
Video Input TensorRT model TFLite model
resolution resolution Fp32 Fpl6 Int8 Int8
640x192 256x160 65 FPS 95 FPS 106 FPS 20 FPS
720x480 256x160 48 FPS 62 FPS 68 FPS 16 FPS
1280x720 256x160 31 FPS 38 FPS 39 FPS 11 FPS
Table 6
Inference statistics (FPS) of various models with input resolution of 320x192
Video Input TensorRT model TFLite model
resolution resolution Fp32 Fpl6 Int8 Int8
640x192 320x192 44 FPS 75 FPS 85 FPS 16 FPS
720x480 320x192 30 FPS 55 FPS 60 FPS 14 FPS
1280x720 320x192 25 FPS 33 FPS 36 FPS 10 FPS

In Table 7 and Table 8 are shown the power usages of TensorRT models

with input resolutions of 256x160 and 320x192 respectively. TFLite models consume
less than 2000 mW on Coral Dev Board. We are not presenting detailed power
consumption results for Coral Dev Board, as Google has not developed yet an
accurate utility for power estimation. As we can see, Coral Dev Board is much

more power-efficient than Jetson Xavier NX.
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Table 7

Power usage of TensorRT models with input resolution of 256x160

Video Input TensorRT model Idle power
resolution resolution Fp32 Fpl6 Int8 usage
640x192 256x160 10100 mw 7700 mW 6800 mWw 3000 mw
720x480 256x160 8800 mW 6800 mW 6200 mW 3000 mW
1280x720 256x160 7800 mW 6400 mWw 5900 mW 3000 mW
Table 8

Power usage of TensorRT models with input resolution of 320x192

Video Input TensorRT model Idle power
resolution resolution Fp32 Fpl6 Int8 usage
640x192 320x192 11000 mW 8200 mw 7100 mWw 3000 mWw
720x480 320x192 9600 mW 7400 mw 6400 mWw 3000 mWw
1280x720 320x192 8400 mWw 6600 mWw 6000 mWw 3000 mw

Conclusion. For the comparison of metrics evaluated in this work, it is
obvious that Jetson Xavier NX outperforms Coral Edge TPU in terms of inference
speed and computational power. Meanwhile, Coral Edge TPU is more energy and
memory efficient. Adding to this Coral’s low price, we can argue that it can be a
good choice in applications where low power and low cost are essential. Although,
both devices perform well, they still have to work on improving data transmission,
as we can see both of them have difficulties with high resolution inputs.

For future work, we would like to explore the depth estimation inference on
high resolution videos, as the experiments show, that increasing resolution can
significantly improve the accuracy.

REFERENCES

. Nex F., Remondino F. UAV for 3D mapping applications: A review // Appl.
Geomatics. -2014.-Vol. 6.-P. 1-15.

. Eigen D., Puhrsch C., Fergus R. Depth Map Prediction from a Single Image using a
Multi-Scale Deep Network // Advances in Neural Information Processing Systems. -
2014. - P. 2366-2375.

. Deep ordinal regression network for monocular depth estimation / H. Fu, M. Gong,
C. Wang, et al // CVPR. - 2018. - P. 2002-2011.

. Deeper depth prediction with fully convolutional residual networks / I. Laina,
C. Rupprecht, V. Belagiannis, et al /3DV. - 2016. - P. 239-248.

Garg R., Kumar BG V., Carneiro G., Reid I. Unsupervised CNN for Single View
Depth Estimation: Geometry to the Rescue // ECCV. - 2016. - P. 740-756.
Godard C., Mac Aodha O., Brostow G. J. Unsupervised Monocular Depth Estimation
with Left-Right Consistency / Computer Vision and Pattern Recognition. - 2017. - P.
6602-6611.

78



7. Zhou T., Brown M., Snavely N., Lowe D. Unsupervised learning of depth and ego-
motion from video // Computer Vision and Pattern Recognition. - 2017. - P. 6612-6619.

8. Casser V., Pirk S., Mahjourian R., Angelova A. Depth prediction without the sensors:
Leveraging structure for unsupervised learning from monocular videos // AAAI —2019.

9. Godard C., Aodha O.M., Firman M., Brostow G. Digging into self-supervised
monocular depth estimation / IEEE International Conference on Computer Vision. -
2019. - P. 3827-3837.

10. https://coral.ai/docs/edgetpu/compiler/.

11. https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html.

12. https://coral.ai/docs/reference/py/.

13. UAVid: A semantic  segmentation dataset for UAV imagery / Y. Lyu, G. Vosselman,
G. Xia, et al // ISPRS Journal of Photogrammetry and Remote Sensing. - 2020. - Vol.
165. - P. 108-119.

14. Madhuanand L., Nex F., Yang M.Y. Self-supervised monocular depth estimation
from oblique UAV videos // ISPRS Journal of Photogrammetry and Remote Sensing. -
2021. - Vol. 176. - P. 1-14.

National Polytechnic University of Armenia. The material is received on 03.03.2022.

S.£. WUQUSI3UNL, 1.5, MUY 63UL

ULZBUSUYUL AULUYULAREUL UPRNSNY MUSYE P ACNREEUL
QLUZUSUUL ZUUUL JETSON XAVIER NX-P 649 CORAL DEV BOARD
SLUUULULUYUL BrUYUSNRESUL UUNLENP ZUUBUUSNRESNRLE

Uphtunuui putwuinipiui (UR) npudwpwbwljud tqpujugnipmnitp, dwubw-
Unpuytu ubpntught guughkph hpujut dudwtuynid dowlnidp, jupny bu wwhwel)
swthwquig Uks hwoywpluyhtt hgnponipnitbp, wynuhuny pugkiny ks quown UL wpw-
gugdwt hwdwp twpuntudws unp vwpptph hbnwgnundw b bwppwgsdwt hwdwp: Ujg-
whuh uwppbph ophtiwjukip ku Nvidia-h Jetson pwippp, Google-h Coral-p: Ywt twl FPGA |nt-
snultikp, hsughupt k Xilinx-h UR Yhpunkjh FPGA-p: Ywu]ws hwbp]wsh wwhwbeubphg
Jupnn L nddup (hul pinpmipyut junwpnidp wyu vwpptph dholi, pwtth np hhdtwlw-
unud wdktwljuplinp gnpénuubpp wpugnipniub nt Logpuumipiniub &y, dhspbn jub twub
hwtjusutp, npnup ywhwbgnid Eu gudp hqnpnipinit b ght: Uju kqpuijugnipjut uwp-
ptnh htnwgnuunudt nt hwdkdwnnudp, phnpduws nppunh hwdwp wpugnipjul, hhpnnnt-
pul, Swhuwsd hqnpnipjul b qih wkuwilniihg, jupnn G oquuuljup 1hutk) ipdws fuunph
hwdwp dhownn vwpp phnpknt gnpdnd: Ywnwpyb) £ wjuyhuh JEpndnipinit wqunlkpp
Junpnipjul giwhwndwl juinph hwdwp' npuybu kgpuljugm pput vwppbp oquugnpstny
Jetson Xavier NX-n i Coral Dev Board-p:

Umubgpuyhli punkp. wphbunwljut putwljuwinipiniy, thpntughtt gutg, anpnipjut
quwhwwnnd, Jetson Xavier NX, Coral Dev Board:
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T.B. XAYATPSIH, 1.®. JABTSIH

CPABHEHUE YCTPOMCTB JJOTMYECKOI'O BBIBOJIA JETSON XAVIER NX
N CORAL DEV BOARD /UIs1 OOEHKH I'NTYBUHBI U30BPAKEHUSA C
NOMOIIBIO NHCKYCCTBEHHOI'O UHTEJIJIEKTA

Jlornueckuit BpIBOA MCKyccTBeHHOro mHTe/wiekra (M), B wactHocTH - 00paboTka
HEWPOHHBIX CeTel B peabHOM BpEMEHH, TpeOyeT upe3MepHO OOJIBLIMX BBIYMCIUTEIBHBIX
MOIIIHOCTEH, TeM CaMBIM OTKPBIBas OONBIIYIO 001aCTh IS UCCIENOBAHUS U IPOSKTHPOBA-
HUsI HOBBIX ycTpoiicTB yckopenust M. Tlpumepamu Takux ycTpocts siBisitores Nvidia Jetson,
Google Coral. Imerorcs takxke pemenus FPGA, rakue kak FPGA Xilinx, s mpuMeHeHUs
WU. B 3aBucuMocTH OT TpeOOBaHHI TPIIIOKEHNUS, BEIOOP STUX YCTPOHCTB MOXKET OBITH TPYA-
HBIM, TaK KaK CaMbIMH TJIABHBIMU (PaKTOPaMH B OCHOBHOM SIBIISTIOTCSI CKOPOCTb U TOYHOCTb,
HO MMEIOTCSI IPUIIOXKEHUS], KOTOPbIe TPeOYIOT HU3KMUX MOIIHOCTEH U 1eH. Takum oOpazom,
HCCIIe/IOBaHNUE M CPAaBHEHHE ITUX YCTPOHCTB NPHUMEHEHMS, C TOYKU 3PEHHsI CKOPOCTH, MaMsTH,
NOTPa4YeHHOW MOIIHOCTY M LIEHBI JUIsl BHIOPaHHOM cdepbl, MO3BOJIST BHIOpATh NPaBUIBHOE
YCTPOWCTBO JJIsl TIOCTaBJICHHOM 3amaun. [IpoBeseH aHanu3 i 3a1a4d OLCHKHU TJIyOUHBI
U300pakeHHMs, UCIIOJB3Ys B KauecTBe yCTpoicTB npumeHenus Jetson Xavier NX u Coral
Dev Board.

Knrwouesvie cnosa: MCKyCCTBEHHBI HMHTEIJICKT, HEHPOHHAs CETh, OLIEHKA TITyOHHBL,
Jetson Xavier NX, Coral Dev Board.
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