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Abstract. Let P (z) be a polynomial of degree n which does not vanish in |z| ⩽ 1, it was
proved by S. Gulzar [Anal Math 42, 339-352 (2016). https://doi.org/10.1007/s10476-016-0403-7]
that∥∥∥∥zsP (s)(z) + β

n(n− 1)...(n− s+ 1)

2s
P (z)

∥∥∥∥
p

⩽ n(n− 1)...(n− s+ 1)

∥∥∥∥(1 +
β

2s

)
z +

β

2s

∥∥∥∥
p

∥P (z)∥p
∥1 + z∥p

for every β ∈ C with |β| ⩽ 1, 1 ⩽ s ⩽ n and 0 ⩽ p < ∞. In this paper we extend the above
result to the growth of polynomials and also generalize the above and other related results in this
direction.
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1. Introduction

Let Pn denote the space of all polynomials of degree at most n over the field of

complex numbers. The subject of inequalities for polynomials and related classes

of functions plays an important and crucial role in obtaining inverse theorems in

Approximation Theory. The extremal problems of analytic functions and the results

were some approaches to obtaining the classical inequalities are developed on using

various methods of the geometric function theory are known for various norms and

for many classes of functions such as polynomials with various constraints and in

various regions of the complex plane. A classical result due to Bernstein [4] is that,

for two polynomials P (z) and T (z) with degree of P (z) not exceeding that of T (z)

and T (z) ̸= 0 for |z| > 1, the inequality |P (z)| ⩽ |T (z)| on the unit circle |z| = 1

implies the inequality of their derivatives |P ′(z)| ⩽ |T ′(z)| on |z| = 1. In particular,

for T (z) = zn max|z|=1 |P (z)| gives a famous Bernstein inequality namely, if P (z)

is a polynomial of degree n then

max
|z|=1

|P ′(z)| ⩽ nmax
|z|=1

|P (z)|.(1.1)

On the other hand, concerning the growth of polynomials we have for P ∈ Pn

and Q(z) = znP ( 1z ), then |Q(z)| = |P (z)| for |z| = 1. This implies |Q(z)| ⩽

max|z|=1 |P (z)| for |z| = 1. This further implies, by using maximum modulus
64
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theorem, that |Q(z)| ⩽ max|z|=1 |P (z)| for |z| ⩽ 1 or equivalently |znP ( 1z )| ⩽

max|z|=1 |P (z)|. If we take z = eiθ/R where θ ∈ [0, 2π) and R ⩾ 1, we get

|(einθ/Rn)P (Reiθ)| ⩽ max|z|=1 |P (z)|. Hence, the growth estimate for |P (z)| over

a large cricle |z| = R in comparsion with its maximum modulus over the unit circle

|z| = 1 is given by

max
|z|=R

|P (z)| ⩽ Rn max
|z|=1

|P (z)|, R > 1.(1.2)

These inequalities (1.1) and (1.2) are related with each other and have been the

starting point of a considerable literature in polynomial approximations and these

inequalities were generalized and extended in several directions, in different norms

and for different classes of functions.

Define the standard Hardy space norm for P ∈ Pn by

∥P∥p =

(
1

2π

2π∫
0

|P (eiθ)|pdθ
)1/p

, 0 < p <∞;

and the Mahler measure by

∥P∥0 = exp

(
1

2π

2π∫
0

log |P (eiθ)|dθ
)
.

It is well known that limp→0+ ∥P∥p = ∥P∥0. We also note that the supremum norm

of the space H∞ satisfies ∥P∥∞ := limp→∞ ∥P∥p = max|z|=1 |P (z)|.
If P ∈ Pn, then

∥P ′(z)∥p ⩽ n ∥P (z)∥p , p ⩾ 1,(1.3)

and for R ⩾ 1

∥P (Rz)∥p ⩽ Rn ∥P (z)∥p , p > 0.(1.4)

The inequality (1.3) is due to Zygmund [16], whereas the inequality (1.4) is a simple

consequences of a result due to Hardy [8]. Arestov [2] verified that (1.3) remains

true for 0 ⩽ p < 1 as well. Also inequalities (1.3) and (1.4) are further generalized

by Aziz and Rather [3] as∥∥∥zP ′(z) + β
n

2
P (z)

∥∥∥
p
⩽ n

∣∣∣∣1 + β

2

∣∣∣∣ ∥P (z)∥p , p > 0,(1.5)

and ∥∥∥∥P (Rz) + β

(
R+ 1

2

)n

P (z)

∥∥∥∥
p

⩽

∣∣∣∣Rn + β

(
R+ 1

2

)n∣∣∣∣ ∥P (z)∥p , p > 0,(1.6)

respectively for every β ∈ C with |β| ⩽ 1 and R ⩾ 1. For p = ∞, inequalities (1.5)

and (1.6) are due to Jain [10].
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The inequalities (1.3) and (1.4) can be sharpened if we restrict ourselves to the

class of polynomials having no zeros in |z| < 1. In fact if P (z) ̸= 0 for |z| < 1, the

inequality (1.3) can be replaced by

∥P ′(z)∥p ⩽ n
∥P (z)∥p
∥1 + z∥p

, 0 ⩽ p ⩽ ∞,(1.7)

whereas the inequality (1.4) can be replaced by

∥P (Rz)∥p ⩽ n
∥1 +Rnz∥p
∥1 + z∥p

∥P (z)∥p , 0 ⩽ p ⩽ ∞.(1.8)

For p ⩾ 1, inequality (1.7) is due to de Brujin [6] and inequality (1.8) is due to

Boas and Rahman. Rahman and Schmeisser [14] extended both for 0 ⩽ p < 1. For

p = ∞, inequality (1.7) was conjectured by Erdös and later verified by Lax [12] and

inequality (1.8) by Ankeny and Rivlin [1]. Inequalities (1.7) and (1.8) are further

generalized by Aziz and Rather [[3] corollary 5, 6] as∥∥∥zP ′(z) + β
n

2
P (z)

∥∥∥
p
⩽ n

∥∥∥∥(1 + β

2

)
z +

β

2

∥∥∥∥
p

∥P (z)∥p
∥1 + z∥p

, p > 0,(1.9)

and ∥∥∥∥P (Rz) + β

(
R+ 1

2

)n

P (z)

∥∥∥∥
p

⩽

∥∥∥∥(Rn + β

(
R+ 1

2

)n)
z + 1 + β

(
R+ 1

2

)n∥∥∥∥
p

∥P (z)∥p
∥1 + z∥p

, p > 0,(1.10)

respectively for every β ∈ C with |β| ⩽ 1 and R ⩾ 1. For p = ∞, inequalities (1.9)

and (1.10) are due to Jain [10] which were further generalized by Hans and Lal [9]

for sth derivative of polynomials. Recently S. Gulzar [7] obtained an Lp version of

Hans and Lal [9] results and proved following theorems:

Theorem A. If P ∈ Pn, then for β ∈ C with |β| ⩽ 1, 1 ⩽ s ⩽ n, and 0 ⩽ p <∞∥∥∥zsP (s)(z) + β
ns
2s
P (z)

∥∥∥
p
⩽ ns

∣∣∣∣1 + β

2s

∣∣∣∣ ∥P (z)∥p ,(1.11)

where ns = n(n− 1)(n− 2) . . . (n− s+ 1).

Theorem B. If P ∈ Pn and P (z) does not vanish in |z| ⩽ 1, then for β ∈ C with

|β| ⩽ 1, 1 ⩽ s ⩽ n, and 0 ⩽ p <∞∥∥∥zsP (s)(z) + β
ns
2s
P (z)

∥∥∥
p
⩽ ns

∥∥∥∥(1 + β

2s

)
z +

β

2s

∥∥∥∥
p

∥P (z)∥p
∥1 + z∥p

,(1.12)

where ns = n(n− 1)(n− 2) . . . (n− s+ 1).

2. Main results

In this paper, we first present the following interesting result which is compact

generalization of inequalities (1.3) – (1.6) and (1.11).
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Theorem 2.1. If P ∈ Pn, then for β ∈ C with |β| ⩽ 1, 0 ⩽ s ⩽ n, R ⩾ 1 , and

0 ⩽ p <∞ ∥∥∥∥zsP (s)(Rz) + β(R+ 1)n−s s!C(n, s)

2n
P (z)

∥∥∥∥
p

⩽ s!C(n, s)

∣∣∣∣Rn−s + (R+ 1)n−s β

2n

∣∣∣∣ ∥P (z)∥p .(2.1)

The result is best possible and equality in (2.1) holds for P (z) = czn, c ̸= 0.

For taking R = 1 in (2.1) we obtain (1.11). The following result is obtained by

letting p→ ∞ in (2.1).

Corollary 2.1. If P ∈ Pn, then for β ∈ C with |β| ⩽ 1, 0 ⩽ s ⩽ n, R ⩾ 1, and

0 ⩽ p <∞ ∥∥∥∥zsP (s)(Rz) + β(R+ 1)n−s s!C(n, s)

2n
P (z)

∥∥∥∥
∞

⩽ s!C(n, s)

∣∣∣∣Rn−s + (R+ 1)n−s β

2n

∣∣∣∣ ∥P (z)∥∞ .(2.2)

The result is best possible and equality holds for P (z) = czn, c ̸= 0.

Taking β = 0 in (2.1), we get the following compact generalization of inequalities

of (1.3) and (1.4).

Corollary 2.2. If P ∈ Pn, then for 0 ⩽ s ⩽ n, R ⩾ 1, and 0 ⩽ p <∞∥∥∥zsP (s)(Rz)
∥∥∥
p
⩽ s!C(n, s)Rn−s ∥P (z)∥p .(2.3)

For taking both s = 1 and R = 1 in (2.3), we get inequality (1.3) and for taking

s = 0, inequality (2.3) reduces to (1.4).

Remark 1. Inequality (1.5) can be obtained by putting s = 1 and R = 1 in (2.1)

and for s = 0, inequality (2.1) reduces to (1.6).

Next, we present the following compact generalization of the inequalities (1.7), (1.8),

(1.9), (1.10) and (1.12).

Theorem 2.2. If P ∈ Pn and P (z) does not vanish in |z| ⩽ 1, then for β ∈ C with

|β| ⩽ 1, 0 ⩽ s ⩽ n, R ⩾ 1, and 0 ⩽ p <∞

∥∥∥∥zsP (s)(Rz) + (R+ 1)n−sβ
s!C(n, s)

2n
P (z)

∥∥∥∥
p

(2.4)

⩽ s!C(n, s)

∥∥∥∥(Rn−s + (R+ 1)n−s β

2n

)
z +

ds(1)

dzs
+ (R+ 1)n−s β

2n

∥∥∥∥
p

∥P (z)∥p
∥1 + z∥p

.

The result is best possible and equality in (2.4) holds for P (z) = azn + b, |a| =
|b| = 1.
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Remark 2. By letting p → ∞ in (2.4), we obtain a result due to Jain [[11],

Theorem 3]. Inequality (1.12) can be obtained by putting R = 1 in (2.4).

The following is compact generalization of inequalities (1.7) and (1.8) is obtained

by putting β = 0 in (2.4).

Corollary 2.3. If P ∈ Pn and P (z) does not vanish in |z| ⩽ 1, then for 0 ⩽ s ⩽ n,

R ⩾ 1 , and 0 ⩽ p <∞∥∥∥zsP (s)(Rz)
∥∥∥
p
⩽ s!C(n, s)

∥∥∥∥Rn−sz +
ds(1)

dzs

∥∥∥∥
p

∥P (z)∥p
∥1 + z∥p

.(2.5)

For s = 1 and R = 1, inequality (2.5) reduces to (1.7) and inequality (1.8) is

obtained by putting s = 0 in (2.5). Also for s = 1 and R = 1 in (2.4), we obtain

(1.9) and inequality (1.10) can be obtained by putting s = 0 in (2.4).

Finally, we establish the following result for self-inversive polynomials.

Theorem 2.3. If P ∈ Pn and P (z) is a self-inversive polynomial, then for β ∈ C
with |β| ⩽ 1, 0 ⩽ s ⩽ n, R ⩾ 1, and 0 ⩽ p <∞

∥∥∥∥zsP (s)(Rz) + (R+ 1)n−sβ
s!C(n, s)

2n
P (z)

∥∥∥∥
p

(2.6)

⩽ s!C(n, s)

∥∥∥∥(Rn−s + (R+ 1)n−s β

2n

)
z +

ds(1)

dzs
+ (R+ 1)n−s β

2n

∥∥∥∥
p

∥P (z)∥p
∥1 + z∥p

.

If we let p→ ∞ in (2.6) , we obtain the following result:

Corollary 2.4. If P ∈ Pn and P (z) is a self-inversive polynomial, then for R ⩾ 1,

and β ∈ C with |β| ⩽ 1

∥∥∥∥zsP (s)(Rz) + (R+ 1)n−sβ
s!C(n, s)

2n
P (z)

∥∥∥∥
∞

(2.7)

⩽
s!C(n, s)

2

{∣∣∣∣Rn−s + (R+ 1)n−s β

2n

∣∣∣∣+ ∣∣∣∣ds(1)dzs
+ (R+ 1)n−s β

2n

∣∣∣∣} ∥P (z)∥∞ .

3. Lemmas

For the proof of these theorems, we need the following lemmas. The first lemma

is the following well known-result ([[13] Theorem 14.1.2 and its proof , corollary

12.1.3] and [[6] Theorem 1 and its proof]).

Lemma 3.1. Let F ∈ Pn and let P be a polynomial of degree at most n, such that

|P (z)| ⩽ |F (z)| for |z| = 1. If F (z) ̸= 0 for |z| < 1 (resp. |z| > 1) and for every

z ∈ C and every α, P (z) ̸= eiαF (z), then

(i) |P (z)| ⩽ |F (z)| for |z| < 1 (resp. |z| > 1),
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(ii) F (z) + βP (z) ̸= 0 for |z| < 1 (resp. |z| > 1) and β ∈ C with |β| ⩽ 1 and

(iii)P (z) + λF (z) ̸= 0 for |z| < 1 (resp. |z| > 1) and λ ∈ C with |λ| ⩾ 1.

Lemma 3.2. If P ∈ Pn and P (z) have all its zeros in |z| ⩽ 1, then for every

R > 1, and |z| = 1,

|P (Rz)| ⩾
(
R+ 1

2

)n

|P (z)| .

Proof. Since all the zeros of P (z) lie in |z| ⩽ 1, we write

P (z) = c

n∏
j=1

(
z − rje

iθj
)
,

where rj ⩽ 1. Now for 0 ⩽ θ < 2π, R > 1, we have∣∣∣∣Reiθ − rje
iθj

eiθ − rjeiθj

∣∣∣∣ =
{
R2 + r2j − 2Rrj cos(θ − θj)

1 + r2j − 2rj cos(θ − θj)

}1/2

⩾

{
R+ rj
1 + rj

}
⩾

{
R+ 1

2

}
, for j = 1, 2, · · · , n.

Hence ∣∣∣∣P (Reiθ)P (eiθ)

∣∣∣∣ = n∏
j=1

∣∣∣∣Reiθ − rje
iθj

eiθ − rjeiθj

∣∣∣∣ ⩾ n∏
j=1

(
R+ 1

2

)
=

(
R+ 1

2

)n

for 0 ⩽ θ < 2π. This implies for |z| = 1 and R > 1,

|P (Rz)| ⩾
(
R+ 1

2

)n

|P (z)| ,

which completes the proof of Lemma 3.2. □

By applying lemma 3.2 to the polynomial P s(z), (1 ⩽ s ⩽ n), we obtain

Lemma 3.3. If P ∈ Pn and P (z) have all its zeros in |z| ⩽ 1, then for 1 ⩽ s ⩽ n∣∣∣P (s)(Rz)
∣∣∣ ⩾ (

R+ 1

2

)n−s ∣∣∣P (s)(z)
∣∣∣ , R ⩾ 1 and |z| = 1.

Lemma 3.4. If P ∈ Pn and P (z) have all its zeros in |z| ⩽ 1, then for 0 ⩽ s ⩽ n,

|zsP (s)(z)| ⩾ s!C(n, s)

2s
|P (z)|, R ⩾ 1 and |z| = 1.

The above lemma is simply consequences of repeated application of Turán theorem

[15].

Lemma 3.4 along with lemma (3.3) leads to following lemma:

Lemma 3.5. If P ∈ Pn and P (z) have all its zeros in |z| ⩽ 1, then for 0 ⩽ s ⩽ n,

|zsP (s)(Rz)| ⩾ (R+ 1)n−s s!C(n, s)

2n
|P (z)|, R ⩾ 1 and |z| = 1,

and for every β ∈ C with |β| ⩽ 1, the zeros of polynomial

zsP (s)(Rz) + β(R+ 1)n−s s!C(n,s)
2n P (z)
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lies in |z| ⩽ 1.

The second part of above lemma is the consequences of lemma 3.1.

The next lemma is due to Jain [11].

Lemma 3.6. Let F (z) be a polynomial of degree n having all its zeros in |z| ⩽ 1

and P (z) be a polynomial of degree not exceeding that of F (z) such that

|P (z)| ⩽ |F (z)|, |z| = 1,

then for R ⩾ 1, 0 ⩽ s ⩽ n, and |β| ⩽ 1∣∣∣zsP (s)(Rz) + β(R+ 1)n−s s!C(n,s)
2n P (z)

∣∣∣ ⩽∣∣∣zsF (s)(Rz) + β(R+ 1)n−s s!C(n,s)
2n F (z)

∣∣∣ for |z| ⩾ 1.

The next lemma follows immediately from lemma 3.6 by taking F (z) = Q(z)

where Q(z) = znP (1/z).

Lemma 3.7. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every β ∈ C
with |β| ⩽ 1, 0 ⩽ s ⩽ n, and R ⩾ 1∣∣∣∣zsP (s)(Rz) + β(R+ 1)n−s s!C(n, s)

2n
P (z)

∣∣∣∣(3.1)

⩽

∣∣∣∣zsQ(s)(Rz) + β(R+ 1)n−s s!C(n, s)

2n
Q(z)

∣∣∣∣ for |z| ⩾ 1,

where Q(z) = znP (1/z).

Lemma 3.8. If P ∈ Pn and P (z) does not vanish in |z| < 1 and Q(z) = znP (1/z),

then for every β ∈ C with |β| ⩽ 1, 0 ⩽ s ⩽ n, R ⩾ 1, and α real(
zsP (s)(Rz) + β(R+ 1)n−s s!C(n, s)

2n
P (z)

)
eiα + znM(1/z) ̸= 0 for |z| < 1,

where M(z) = zsQ(s)(Rz) + β(R+ 1)n−s s!C(n,s)
2n Q(z).

Proof. Since P (z) =
∑n

j=0 ajz
j does not vanish in |z| < 1, therefore by lemma

3.7 for every β ∈ C with |β| ⩽ 1 and |z| = 1, we have∣∣∣∣zsP (s)(Rz) + β(R+ 1)n−s s!C(n, s)

2n
P (z)

∣∣∣∣ ⩽ ∣∣∣∣zsQ(s)(Rz) + β(R+ 1)n−s s!C(n, s)

2n
Q(z)

∣∣∣∣
= |M(z)| = |znM(1/z)|.

Since P (0) ̸= 0 implies degQ(z) = n. Moreover Q(z) ̸= 0 for |z| > 1 and then

lemma 3.5 implies that M(z) ̸= 0 for |z| > 1. Therefore znM(1/z) ̸= 0 for |z| < 1.

Then by lemma 3.1 for |z| < 1(
zsP (s)(Rz) + β(R+ 1)n−s s!C(n,s)

2n P (z)
)
eiα + znM(1/z) ̸= 0. □
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Next we describe a result of Arestov [2].

For δ = (δ0, δ1, · · · , δn) ∈ Cn+1 and P (z) =
∑n

j=0 ajz
j ∈ Pn, we define

ΛδP (z) =

n∑
j=0

δjajz
j .

The operator Λδ is said to be admissible if it preserves one of the following properties:

(i) P (z) has all its zeros in {z ∈ C : |z| ⩽ 1} ,
(ii) P (z) has all its zeros in{z ∈ C : |z| ⩾ 1} .
The result of Arestov [2] may now be stated as follows.

Lemma 3.9. [2, Theorem 4] Let ϕ(x) = ψ(logx) where ψ is a convex non decreasing

function on R. Then for all P ∈ Pn and each admissible operator Λδ,∫ 2π

0

ϕ(|ΛδP (e
iθ)|)dθ ⩽

∫ 2π

0

ϕ(A(δ, n)|P (eiθ)|)dθ,

where A(δ, n) = max(|δ0|, |δn|).

In particular, Lemma 3.9 applies with ϕ : x→ xp for every p ∈ (0,∞). Therefore,

we have

(3.2)
{∫ 2π

0

(|ΛδP (e
iθ)|p)dθ

}1/p

⩽ A(δ, n)

{∫ 2π

0

|P (eiθ)|pdθ
}1/p

.

From lemma 3.9, we deduce the following result:

Lemma 3.10. If P ∈ Pn and P (z) does not vanish in |z| < 1 and Q(z) =

znP (1/z), then for every β ∈ C with |β| ⩽ 1, 0 ⩽ s ⩽ n, R ⩾ 1, α real, and

p > 0,∫ 2π

0

∣∣∣∣(eisθP (s)(Reiθ) + β(R+ 1)n−s s!C(n, s)

2n
P (eiθ)

)
eiα + einθM(eiθ)

∣∣∣∣p dθ

⩽ (s!C(n, s))p
∣∣∣∣(Rn−s + (R+ 1)n−s β

2n

)
eiα +

ds(1)

dzs
+ (R+ 1)n−s β

2n

∣∣∣∣p
2π∫
0

|P (eiθ)|pdθ,

(3.3)

where M(z) = zsQ(s)(Rz) + β(R+ 1)n−s s!C(n,s)
2n Q(z).

Proof. Since P (z) =
n∑

j=o

ajz
j does not vanish in |z| < 1. Therefore by lemma

3.8, the polynomial

ΛδP (z) =

(
zsP (s)(Rz) + β(R+ 1)n−s s!C(n, s)

2n
P (z)

)
eiα + znM(1/z)

= s!C(n, s)

{(
Rn−s + (R+ 1)n−s β

2n

)
eiα +

ds(1)

dzs
+ (R+ 1)n−s β

2n

}
anz

n+

...+ s!C(n, s)

{(
ds(1)

dzs
+ (R+ 1)n−s β

2n

)
eiα +Rn−s + (R+ 1)n−s β

2n

}
a0
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does not vanish in |z| < 1 for every β ∈ C with |β| ⩽ 1 and α real. Therefore

Λδ is an admissible operator. Applying (3.2) we get desired result for p > 0. This

completes the proof of lemma 3.10. □

4. Proofs of the theorems

Proof of Theorem 2.1. By hypothesis P ∈ Pn, we can write

P (z) = P1(z)P2(z) =

k∏
j=1

(z − zj)

n∏
j=k+1

(z − zj), k ⩾ 1,

where the zeros z1, z2, . . . , zk of P1(z) lie in |z| ⩽ 1 and the zeros zk+1, zk+2, . . . , zn

of P2(z) lie in |z| > 1. Since all the zeros of P2(z) lie in |z| > 1, the polynomial

Q2(z) = zn−kP2(1/z) has all its zeroes in |z| < 1 and |Q2(z)| = |P2(z)| for |z| = 1.

Now consider the polynomial

T (z) = P1(z)Q2(z) =

k∏
j=1

(z − zj)

n∏
j=k+1

(1− zzj),

then all the zeros of T (z) lie in |z| ⩽ 1, and for |z| = 1,

|T (z)| = |P1(z)| |Q2(z)| = |P1(z)| |P2(z)| = |P (z)| .

Now on applying lemma 3.6 we get for R ⩾ 1, 0 ⩽ s ⩽ n, and |β| ⩽ 1∣∣∣∣zsP (s)(Rz) + β(R+ 1)n−s s!C(n, s)

2n
P (z)

∣∣∣∣
⩽

∣∣∣∣zsT (s)(Rz) + β(R+ 1)n−s s!C(n, s)

2n
T (z)

∣∣∣∣ for |z| ⩾ 1,

which in particular gives for p > 0,

2π∫
0

∣∣∣∣eisθP (s)(Reiθ) + β(R+ 1)n−s s!C(n, s)

2n
P (eiθ)

∣∣∣∣p dθ(4.1)

⩽

2π∫
0

∣∣∣∣eisθT (s)(Reiθ) + β(R+ 1)n−s s!C(n, s)

2n
T (eiθ)

∣∣∣∣p dθ.
Since all the zeros of T (z) lies in |z| ⩽ 1, by lemma 3.5 the polynomial

zsT (s)(Rz) + β(R+ 1)n−s s!C(n,s)
2n T (z),
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has also all its zeros in |z| ⩽ 1 for every β ∈ C with |β| ⩽ 1. Therefore if T (z) =

cnz
n + cn−1z

n−1 + ...+ c1z + c0, then the operator Λδ defined by

ΛδT (z) = zsT (s)(Rz) + β(R+ 1)n−s s!C(n, s)

2n
T (z)

= s!C(n, s)

(
Rn−s + (R+ 1)n−s β

2n

)
cnz

n + ...

+ s!C(n, s)

(
ds(1)

dzs
+ (R+ 1)n−s β

2n

)
c0,

is admissible. Hence by (3.2) of lemma 3.9 for each p > 0, we have

(4.2)
2π∫
0

∣∣∣∣eisθT (s)(Reiθ) + β(R+ 1)n−s s!C(n, s)

2n
T (eiθ)

∣∣∣∣p dθ ⩽ (c(δ))p
2π∫
0

|T (eiθ)|pdθ,

where c(δ) = max
(
s!C(n, s)

∣∣Rn−s + (R+ 1)n−s β
2n

∣∣, s!C(n, s)
∣∣ds(1)

dzs + (R+ 1)n−s β
2n

∣∣).

For every β ∈ C with |β| ⩽ 1 and R ⩾ 1, it can be easily verified that c(δ) =

s!C(n, s)
∣∣∣Rn−s + (R+ 1)n−s β

2n

∣∣∣. Thus from (4.2), we have

2π∫
0

∣∣∣∣eisθT (s)(Reiθ) + β(R+ 1)n−s s!C(n, s)

2n
T (eiθ)

∣∣∣∣p dθ(4.3)

⩽ (s!C(n, s))p
∣∣∣∣Rn−s + (R+ 1)n−s β

2n

∣∣∣∣p
2π∫
0

|T (eiθ)|pdθ.

Combining inequalities (4.1) and (4.3) and noting that |T (eiθ)| = |P (eiθ)|, we obtain

2π∫
0

∣∣∣∣eisθP (s)(Reiθ) + β(R+ 1)n−s s!C(n, s)

2n
P (eiθ)

∣∣∣∣p dθ
⩽ (s!C(n, s))p

∣∣∣∣Rn−s + (R+ 1)n−s β

2n

∣∣∣∣p
2π∫
0

|P (eiθ)|pdθ.

This proves theorem (2.1) for p > 0. To obtain this result for p = 0, we simply

make p→ 0+. □

Proof of Theorem 2.2. By hypothesis P (z) does not vanish in z < 1, therefore

by lemma 3.6 for every β ∈ C with |β| ⩽ 1 and 0 ⩽ θ ⩽ 2π∣∣∣∣eisθP (s)(Reiθ) + β(R+ 1)n−s s!C(n, s)

2n
P (eiθ)

∣∣∣∣(4.4)

⩽

∣∣∣∣eisθQ(s)(Reiθ) + β(R+ 1)n−s s!C(n, s)

2n
Q(eiθ)

∣∣∣∣ ,
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where Q(z) = znP (1/z). Also by lemma 3.10,

2π∫
0

∣∣∣eiαF (θ) + einθM(eiθ)
∣∣∣p dθ

(4.5)

⩽ (s!C(n, s))p
∣∣∣∣(Rn−s + (R+ 1)n−s β

2n

)
eiα +

ds(1)

dzs
+ (R+ 1)n−s β

2n

∣∣∣∣p
2π∫
0

|P (eiθ)|pdθ,

where

F (θ) = eisθP (s)(Reiθ) + β(R+ 1)n−s s!C(n,s)
2n P (eiθ)

and

M(eiθ) = eisθQ(s)(Reiθ) + β(R+ 1)n−s s!C(n,s)
2n Q(eiθ).

Integrating both sides of (4.5) with respect to α from 0 to 2π, we get for each p > 0,
2π∫
0

2π∫
0

∣∣∣eiαF (θ) + einθM(eiθ)
∣∣∣p dθdα

⩽ (s!C(n, s))p
2π∫
0

∣∣∣∣(Rn−s + (R+ 1)n−s β

2n

)
eiα +

ds(1)

dzs
+ (R+ 1)n−s β

2n

∣∣∣∣p dα
2π∫
0

|P (eiθ)|pdθ.

(4.6)

Now for every real α, t ⩾ 1 and p > 0, we have
2π∫
0

|t+ eiα|pdα ⩾
2π∫
0

|1 + eiα|pdα.

If F (θ) ̸= 0, we take t = |M(eiθ)/F (θ)|, then by (4.4), t ⩾ 1 and we get
2π∫
0

∣∣∣eiαF (θ) + einθM(eiθ)
∣∣∣p dα = |F (θ)|p

2π∫
0

∣∣∣∣∣eiα +
einθM(eiθ)

F (θ)

∣∣∣∣∣
p

dα

= |F (θ)|p
2π∫
0

∣∣∣∣eiα +

∣∣∣∣M(eiθ)

F (θ)

∣∣∣∣∣∣∣∣p dα ⩾ |F (θ)|p
2π∫
0

|1 + eiα|pdα.

For F (θ) = 0, this inequality is trivially true. Using this in (4.6) , we conclude that

for every β ∈ C with |β| ⩽ 1

2π∫
0

|F (θ)|pdθ
2π∫
0

|1 + eiα|pdα

(4.7)

⩽ (s!C(n, s))p
2π∫
0

∣∣∣∣(Rn−s + (R+ 1)n−s β

2n

)
eiα +

ds(1)

dzs
+ (R+ 1)n−s β

2n

∣∣∣∣p dα
2π∫
0

|P (eiθ)|pdθ.
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Since
2π∫
0

∣∣∣∣(Rn−s + (R+ 1)n−s β

2n

)
eiα +

ds(1)

dzs
+ (R+ 1)n−s β

2n

∣∣∣∣p dα
=

2π∫
0

∣∣∣∣∣∣∣∣Rn−s + (R+ 1)n−s β

2n

∣∣∣∣ eiα +
ds(1)

dzs
+ (R+ 1)n−s

∣∣∣∣ β2n
∣∣∣∣∣∣∣∣p dα

=

2π∫
0

∣∣∣∣(Rn−s + (R+ 1)n−s β

2n

)
eiα +

ds(1)

dzs
+ (R+ 1)n−s β

2n

∣∣∣∣p dα,(4.8)

the desired result follows immediately by combining (4.7) and (4.8). This proves

Theorem 2.2 for p > 0. To establish this result for p = 0, we simply make p→ 0. □

Proof of Theorem 2.3. Since P (z) is a self-inversive polynomial, we have P (z) =

uQ(z) for all z ∈ C where |u| = 1 and Q(z) = znP (1/z). Therefore for every β ∈ C
with |β| ⩽ 1, ∣∣∣eisθP (s)(Reiθ) + β(R+ 1)n−s s!C(n,s)

2n P (eiθ)
∣∣∣ =∣∣∣eisθQ(s)(Reiθ) + β(R+ 1)n−s s!C(n,s)

2n Q(eiθ)
∣∣∣,

for all z ∈ C. Using (4.4) and proceeding similarly as in the proof of Theorem 2.2

we get the desired result. This completes the proof of Theorem 2.3. □
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