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Abstract. In this paper, we study the existence of infinitely many nontrivial solutions for a
class of nonlinear Kirchhoff type equation

−
(
a+ b

∫
RN

|∇λu|2dx
)
∆λu+ V (x)u = f(x, u), in RN

where constants a > 0, b > 0, ∆λ is a strongly degenerate elliptic operator, and f is a function
with a more general superlinear conditions or sublinear conditions.
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1. Introduction

This paper is concerned with a class of nonlinear Kirchhoff type equations

−
(
a+ b

∫
RN

|∇λu|2dx
)
∆λu+ V (x)u = f(x, u), in RN(1.1)

where constants a, b > 0, N ⩾ 1, V ∈ C(RN ,R), ∇λ = (λ1∂x1
u, ..., λN∂xN

u) and

∆λ is a strongly degenerate elliptic operator of the following form

∆λ :=
N∑
i=1

∂xi
(λ2

i ∂xi
), λ = (λ1, · · · , λN ) : RN → RN .

Kogoj and Lanconelli in [7] firstly introduced the strongly degenerate elliptic

operator ∆λ. After that, a growing attention has been devoted to ∆λ-Laplacians.

Kogoj and Lanconelli in [7] assume that the operator is homogeneous of degree

two with respect to a group dilation in RN . Kogoj and Sonner [8] showed that

global well-posedness and long-time behavior of solutions of semilinear degenerate

parabolic involving the ∆λ-Laplacians, and this result was extended in [9], where

hyperbolic problems were considered. Ahn and My [2] proved that Liouville-type

theorems for elliptic inequalities involving the ∆λ-Laplacians. Finally, Kogoj and

Sonner remark that the ∆λ-Laplacians belong to the more general class of X −
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Technology and Business University(No. CTBUZDPTTD201909), Graduate Innovation Project
of Chongqing Technology and Business University(yjscxx2021-112-109).
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elliptic operators. The ∆λ operator contains many degenerate elliptic operators

such as the Grushin-type operator

Gα = ∆x + |x|2α∆y, α > 0,

where (x, y) denotes the point of RN1 × RN2 , N1 + N2 = N , and the operator of

the form

Pα,β,γ = ∆x+|x|2α∆y+|x|2β |y|2γ∆z, (x, y, z) ∈ RN1×RN2×RN3 , N1+N2+N3 = N,

where α, β and γ are real positive constants. We can refer the readers to [1] for

some important properties of this operator.

In the last decades, ∆λ elliptic equations{
−∆λu = f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.2)

where Ω is a smooth bounded domain of RN , has been studied by many authors.

See [3, 1, 7, 13, 14, 19] and the references therein. The nonlinear term f satisfies

the Ambrosetti-Rabinowitz(AR) condition is studied in [7]. The (AR) condition

guarantees the boundedness of the Palais-Smale(PS) sequence of the energy functional,

which is essential for the application of the critical point theorem. When f does

not satisfy the (AR) condition is studied in [3, 1, 14]. At present, some authors

began to consider problem (1.2) on unbounded domain RN . The main difficulty in

RN is lack of compactness of Sobolev embedding. For this reason, some authors

work on the subspace of Sobolev space to overcome this difficulty. Luyen and Tri

[15] considered that V (x) is a coercive potential, which ensures that the weighted

Sobolev space embedding is compactness. They proved that ∆λ equation possess

infinity many solutions with the nonlinear term has (AR) condition.

Recently, a class of Kirchhoff-type elliptic equation

(1.3)
{

−
(
a+ b

∫
RN |∇u|2dx

)
∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

has received extensive attention and research by many authors. Cheng and Wu [4]

proved the existence result of positive solutions to Kirchhoff-type problems with

the variational method. Mao and Zhang [16] shows that in the absence of (PS)

condition, the minimax methods and invariant sets of descent flow are used to

study multiple solutions of Kirchhoff type problems. The problem (1.3) is related

to the stationary analogue of the Kirchhoff equation

(1.4) utt −
(
a+ b

∫
Ω

|∇xu|2dx
)
∆xu = g(x, u)
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which was proposed by Kirchhoff in 1883 as a generalization of the well-known

d’Alembert’s wave equation

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= g(x, u)

for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes

in length of the string produced by transverse vibrations. Here, L is the length of

the string, h is the area of the cross section, E is the Young modulus of the material,

ρ is the mass density and P0 is the initial tension. Problem (1.4) models several

physical systems, where u describes a process which depends on the average of

itself. A parabolic version of equation (1.4) be used to describe the growth and

movement of a particular species. The movement, modeled by the integral term, is

assumed dependent on the “energy” of the entire system with u being its population

density. Alternatively, the movement of a particular species may be subject to the

total population density within the domain (for instance, the spreading of bacteria)

which gives rise to equations of the type ut − a(
∫
Ω
udx)∆u = h.

In this paper, we want to use the idea of [21] to study the existence of infinitely

many nontrivial solutions for the Kirchhoff type problem with ∆λ type operator.

Now, we give the following assumptions on potential V (x):

(V1) V ∈ C(RN ,R), infx∈RN V (x) > 0.

(V2) There exists a constant R > 0 such that∫
|x|⩾R

V −1dx < ∞.

For the nonlinearity f , we give the following assumptions:

(f1) f ∈ C(RN × R,R) and there exist constants C1, C2 > 0 and p ∈ (2, 2∗λ)

such that

|f(x, u)| ⩽ C1|u|+ C2|u|p−1, ∀(x, u) ∈ RN × R.

where 2∗λ = 2Q
Q−2 and Q denotes the homogeneous dimension of RN with

respect to a group of dilations(see Section 2 for more details).

(f2) f(x, u) = −f(x,−u), ∀(x, u) ∈ RN × R.

(f3) lim|u|→∞
|F (x,u)|

|u|4 = ∞, uniformly in x ∈ RN , Q < 4, and there exists

r0 ⩾ 0, such that F (x, u) ⩾ 0, ∀(x, u) ∈ RN ×R, |u| ⩾ r0, where F (x, u) :=∫ u

0
f(x, t)dt.

(f4) There exist β ⩾ 0 such that F (x, u) ⩽ 1
4f(x, u)u+ βu2, ∀(x, u) ∈ RN × R.

(f5) F (x, u) ⩾ 0,∀(x, u) ∈ RN × R and G(x, h) ⩽ G(x, l) whenever (h, l) ∈
R+ × R+ and h ⩽ l, where G(x, u) := 1

4f(x, u)u− F (x, u).
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In the following theorem, we give the multiplicity result of the solution of problem

(1.1) when f satisfies the superlinear condition.

Theorem 1.1. Assume that the potential V (x) satisfies (V1), (V2) and nonlinearity

f(x, u) satisfies (f1) − (f4). Then the problem(1.1) has possesses infinitely many

nontrivial solutions {uk} such that

lim
k→∞

1

2

∫
RN

(
a|∇λuk|2 + V (x)u2

k

)
dx+

b

4

(∫
RN

|∇λuk|2dx
)2

−
∫
RN

F (x, uk)dx = +∞.

Theorem 1.2. Assume that the potential V (x) satisfies (V1), (V2) and nonlinearity

f(x, u) satisfies (f1)− (f3) and (f5). Then the problem(1.1) has possesses infinitely

many nontrivial solutions {uk} such that

lim
k→∞

1

2

∫
RN

(
a|∇λuk|2 + V (x)u2

k

)
dx+

b

4

(∫
RN

|∇λuk|2dx
)2

−
∫
RN

F (x, uk)dx = +∞.

Next, in addition to discussing the above results, we also consider the multiplicity

result that can still obtain a solution of problem (1.1) when f satisfies the sublinear.

(f6) f ∈ C(RN × R,R), there exist constant 1 < q1 < q2 < 2, such that

|f(x, t)| ⩽ q1|t|q1−1 + q2|t|q2−1.

(f7) There exist a bounded open set B̃ ⊂ RN and constants δ, ξ > 0, q3 ∈ (1, 2)

such that

F (x, u) ⩾ ξ|u|q3 , ∀(x, u) ∈ B̃ × [−δ, δ].

Now, we give the second result:

Theorem 1.3. Assume that the potential V (x) satisfies (V1), (V2) and nonlinearity

f(x, u) satisfies (f2), (f6), (f7). Then the problem (1.1) has possesses infinitely many

nontrivial solutions {uk}.

Remark 1.1. Compared with problem (1.1), we extend the equation to operator

∆λ, because operator ∆λ is more complicated with the addition of function λ. As

can be seen from [7], when the function λ is smooth, then ∆λ is the general operator

class studied by Hömander in [5], and is hypoelliptic. The typical example is the

Grushin-type operator, which means that ∆λ is a generalization of Grushin-type

operator. Later, ∆λ belongs to the more general X − elliptic operators introduced

in [10], and has some of the same important homogeneity as the classical Laplacian.

Therefore, it is meaningful for us to extend the problem (1.3) to a more general

Kirchhoff-type equation, and it is applicable to more environments.

Now, we give an example that satisfies all the assumptions of Theorem 1.1, as

follows f(x, u) = u| sinx|+|u|3u| cosx|, obviously, F (x, u) = 1
2u

2| sinx|+ 1
5 |u|

5| cosx|.
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Of course, there is also f that satisfies the sublinear condition, such as f(x, u) =
4
3 |u|

− 2
3u sin2 x + 5

4 |u|
− 3

4 cos2 x, and F (x, u) = |u| 43 sin2 x + |u| 54 cos2 x. Through

simple calculations, it can be verified that the assumptions of each theorem are

satisfied.

The main structure of this article is as follows. In the second section, we give

some preliminary knowledge and main theorems. In the third section, we use the

symmetric mountain pass theorem to prove Theorems 1.1 and 1.2. In the fourth

section, we apply the theorem in [18], to get the multiplicity result of the solution.

2. Preliminaries

We recall the functional setting in [7, 3]. We consider the operator of the form

∆λ :=

N∑
i=1

∂xi(λ
2
i ∂xi),

where ∂xi
= ∂

∂xi
, i = 1, . . . , N . Here the function λi : RN → R are continuous,

strictly positive and of C1 outside the coordinate hyperplane, i.e. λi > 0, i =

1, . . . , N in RN ∖
∏

, where
∏

= {(x1, . . . , xN ) ∈ RN :
∏N

i=1 xi = 0}. As in [7], we

assume that λi satisfy the following properties:

(1) λ1(x) ≡ 1, λi(x) = λi(x1, . . . , xi−1), i = 2, . . . N ;

(2) For every x ∈ RN , λi(x) = λi(x
∗), i = 1, . . . , N, where x∗ = (|x1|, . . . , |xN |)

if x = (x1, . . . , xN );

(3) There exists a constant ρ ⩾ 0 such that

0 ⩽ xk∂xk
λi(x) ⩽ ρλi(x), ∀k ∈ {1, . . . , i− 1}, i = 2, . . . , N,

and for every x ∈ RN
+ := {(x1, . . . , xN ) ∈ RN : xi ⩾ 0, ∀i = 1, . . . , N};

(4) Exists a group of dilations {δt}t>0

δt : RN → R, δt(x) = δt(x1, . . . , xN ) = (tϵ1x1, . . . , t
ϵNxN ),

where 1 ⩽ ϵ1 ⩽ ϵ2 ⩽ . . . ⩽ ϵN , such that λi is δt − homogeneous of degree

ϵi − 1, i.e.

λi(δt(x)) = tϵi−1λi(x), ∀x ∈ RN , t > 0, i = 1, . . . , N.

This implies that the operation ∆λ is δt − homogeneous of degree two, i.e.

∆λ(u(δt(x))) = t2(∆λu)(δt(x)), ∀u ∈ C∞(RN ).

We denote by Q the homogeneous dimension of RN with respect to group of

dilations {δt}t>0, i.e.

Q := ϵ1 + · · ·+ ϵN .
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The homogeneous Q plays a crucial role, both in the geometry and the functional

associated to the operator ∆λ.

Now, we denote by W 1,2
λ (RN ) the closure of C1

0 (RN ) with respect to the norm

∥u∥W 1,2
λ (RN ) =

(∫
RN

(|∇λu|2 + u2)dx

) 1
2

,

is Hilbert space with the inner product

(u, v) =

∫
RN

(∇λu∇λv + uv)dx.

Under the hypotheses (V1), we define space

E =

{
u ∈ W 1,2

λ (RN ) :

∫
RN

V (x)u2dx < +∞
}
,

with the inner product

(u, v) =

∫
RN

(∇λu∇λv + V (x)uv) dx,

and the norm

∥u∥2 =

∫
RN

(|∇λu|2 + V (x)u2)dx.

Here, we denote ∥ · ∥p as the norm of Lebesgue space Lp(RN ).

Proposition 2.1. Under the assumptions (V1) and (V2), the embedding E ↪→
Lp(RN ) is compact for every p ∈ [1, 2∗λ).

Proof. In [15], we know that under the assumption of (V1), the embedding

E ↪→ Lp(RN ) is continuous for p ∈ [2, 2∗λ], and E ↪→ Lp
loc(RN ) is compact for

p ∈ [1, 2∗λ). Then there are constant Cp such that

(2.1) ∥u∥p ⩽ Cp∥u∥, ∀u ∈ E.

When we want to embedding E ↪→ Lp(RN ) is compact for p ∈ [1, 2∗λ) under the

assumption of (V1) and (V2), it suffices to prove the result for p = 1. Assume un ⇀ u

in E. For any R > 0, write∫
RN

|un − u|dx =

∫
|x|⩽R

|un − u|dx+

∫
|x|>R

|un − u|dx.(2.2)

By the Hölder inequality to obtain that

(2.3)
∫
|x|>R

|un − u|dx ⩽

(∫
|x|>R

V |un − u|2dx

) 1
2
(∫

|x|>R

V −1dx

) 1
2

= oR(1),

where oR(1) is a quantity that converges to 0 as R → ∞ uniformly for n. Then

un → u strongly in L1(RN ) since un → u in L1
loc(RN ). □
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Remark 2.1. Several important problems arising in many research fields such

as physics and differential geometry lead to consider semilinear variational elliptic

equations defined on unbounded domains of the Euclidean space and a great deal

of work has been devoted to their study. From the mathematical point of view,

probably the main interest relies on the fact that often the tools of nonlinear

functional analysis, based on compactness arguments, can not be used, at least

in a straight forward way, and some new techniques have to be developed. The

seminal paper [11] by Lions has inspired a (nowadays usual) way to overcome the

lack of compactness by exploiting symmetry. This approach is fruitful in the study

of variational elliptic problems in presence of a suitable continuous action of a

topological group on the Sobolev space where the solutions are being sought.

Here, we use another skill following the idea of Rabinowitz [17] to get the Sobolev

embedding is compact by the potential V . Luyen and Tri [15] use the idea of

Rabinowitz to get the Sobolev compact embedding, but they only obtained the

embedding map from E into Lp(RN ) is compact for 2 ⩽ p < 2∗λ. We want to study

the sublinear case, so we give a wider interval for the Sobolev embedding. Moreover,

Assumption (V2) makes V look like a well-shaped potential.

Now, we define the following energy functional

J(u) =
1

2

∫
RN

(a|∇λu|2+V (x)u2)dx+
b

4

(∫
RN

|∇λu|2dx
)2

−
∫
RN

F (x, u)dx, u ∈ E.

Obviously, given constant a > 0,
∫
RN (|∇λu|2+V (x)u2)dx is equivalent to

∫
RN (a|∇λu|2+

V (x)u2)dx. Hence, the norm of u in E denoted by

∥u∥ =

(∫
RN

(a|∇λu|2 + V (x)u2)dx

) 1
2

that is,

(2.4) J(u) =
1

2
∥u∥2 + b

4

(∫
RN

|∇λu|2dx
)2

−
∫
RN

F (x, u)dx.

Definition 2.1. A sequence {un} ⊂ E is said to be a (C)c−sequence if J(un) → c

and J ′(un)(1 + ∥un∥) → 0. J is said to satisfy the (C)c − condition if any (C)c −
sequence has a convergent subsequence.

Definition 2.2. A sequence {un} ⊂ E is said to be a (PS)−sequence if J(un) ⩽ c

and J ′(un) → 0, n → ∞. J is said to satisfy (PS)−condition if any (PS)−sequence

has a convergent subsequence.
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Definition 2.3. Let X be a Banach space, J ∈ C1(X,R) and c ∈ R. Set

Σ = {A ⊂ X − {0} : A is closed in X and symmetric with respect to 0},

Kc = {u ∈ X : J(u) = c, J ′(u) = 0}, Jc = {u ∈ X : J(u) ⩽ c},

for A ∈ Σ, we say genus of A is n denoted by γ(A) = n if there is an odd map

ϕ ∈ C(A,Rn ∖ {0}) and n is the smallest integer with this property.

Theorem 2.1. ([18]) Let X be an infinite dimensional Banach space, X = Y ⊕Z,

where Y is finite dimensional. If J ∈ C1(X,R) satisfies (C)c − condition for all

c > 0, and

(J1) J(0) = 0, J(−u) = J(u) for all u ∈ X;

(J2) there exist constants ρ, α > 0 such that J |∂Bρ∩Z > α;

(J3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such

that J(u) ⩽ 0 on X̃ ∖BR.

Then J possesses an unbounded sequence of critical values.

Theorem 2.2. ([18]) Let X be a Banach space, J be an even C1 functional on X

and satisfy the (PS)− condition. For any n ∈ N, set

Σn = {A ∈ Σ : γ(A) ⩾ n}, cn = inf
A∈Σn

sup
u∈A

J(u).

(i) If Σn ̸= 0 and cn ∈ R, then cn is critical value of J ;

(ii) If there exists k ∈ N such that cn = cn+1 = · · · = cn+k = c ∈ R, and

c ̸= J(0), then γ(Kc) ⩾ k + 1.

3. The superlinear case

Lemma 3.1. Assume (V1), (V2) and (f1) are satisfied. Then J(u) is well-defined

and of class C1(E,R) and

(3.1)

⟨J ′(u), v⟩ = (u, v)+ b

(∫
RN

|∇λu|2dx
)∫

RN

∇λu∇λvdx−
∫
RN

f(x, u)vdx, u, v ∈ E.

And, the critical points of J(u) in E are also solutions of problem (1.1).

Proof. We can get from (f1), one has

(3.2) |F (x, u)| ⩽ C1

2
|u|2 + C2

p
|u|p,∀(x, u) ∈ RN × R,

for 2 ⩽ p < 2∗λ, where F (x, u) =
∫ u

0
f(x, t)dt. It can be known from Proposition 2.1

and the above formula, J(u) defined by (2.4) is well-defined on E.
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Let H(u) =
∫
RN F (x, u)dx. For all u, v ∈ E and 0 < |t| < 1, by the Mean Value

Theorem and (f1), there exist θ ∈ (0, 1) such that

|F (x, u(x) + tv(x))− F (x, u(x))|
|t|

= |f(x, u(x) + θtv(x))v(x)|

⩽C1|u(x)||v(x)|+ C1|v(x)|2 + C2|u(x) + θtv(x)|p−1|v(x)|

⩽C1|u(x)||v(x)|+ C1|v(x)|2 + 2p−1C2(|u(x)|p−1|v(x)|+ |v(x)|p).

The Hölder inequality implies that∫
RN

|u(x)||v(x)|dx ⩽∥u(x)∥p∥v(x)∥ p
p−1

,∫
RN

|v(x)|2dx ⩽∥v(x)∥p∥v(x)∥ p
p−1

,∫
RN

|u(x)|p−1|v(x)|dx ⩽∥u(x)∥p−1
p ∥v(x)∥p,∫

RN

|v(x)|pdx ⩽∥v(x)∥p/2
p2

2

∥v(x)∥p/2(p−1)
p2

2(p−1)

.

Hence,

ν(x) := C1|u(x)||v(x)|+ C1|v(x)|2 + 2p−1C2(|u(x)|p−1|v(x)|+ |v(x)|p) ∈ L1(RN ).

which implies H(u) ∈ C1(E,R). By Lebesgue’s Dominated Convergence Theorem

and Mean Value Theorem, we obtain

⟨H ′(u), v⟩ = lim
t→0+

H(u+ tv)−H(u)

t
= lim

t→0+

∫
RN

F (x, u+ tv)− F (x, u)

t
dx.

= lim
t→0+

∫
RN

f(x+ tθv)vdx =

∫
RN

f(x, u)vdx.

Next, we prove the continuity of H ′. Let un → u in E, then un → u in Lp(RN ) by

Proposition 2.1 for p ∈ [1, 2∗λ). Note that

∥H ′(un)−H ′(u)∥ = sup
∥v∥⩽1

|⟨H ′(un)−H ′(u), v⟩|

= sup
∥v∥⩽1

∣∣∣∣∫
RN

[f(x, un)− f(x, u)]vdx

∣∣∣∣ ⩽ sup
∥v∥⩽1

∫
RN

∣∣f(x, un)− f(x, u)
∣∣|v|dx.

By the Hölder inequality

sup
∥v∥⩽1

∫
RN

|f(x, un)− f(x, u)||v|dx

⩽ sup
∥v∥⩽1

(∫
RN

|f(x, un)− f(x, u)|
p

p−1 dx

) p−1
p
(∫

RN

vpdx

) 1
p

→ 0,

as n → ∞. Hence, H ′ is continuous. This shows that (3.1) holds. Moreover, by a

standard argument, it is easy to show that the critical points of J in E are solutions

of problem (1.1). □
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Lemma 3.2. Assume that (V1), (V2), (f1), (f3), (f4) are satisfied. Then any (C)c−
sequence {un} of J is bounded in E.

Proof. We will use the contradiction method to prove the boundness of {un},
assume that ∥un∥ → ∞, as n → ∞. Let {un} ⊂ E be (C)c − sequence such that

(3.3) J(un) → c, (1 + ∥un∥)J ′(un) → 0,

then we have

(3.4) c+ 1 ⩾ J(un)−
1

4
⟨J ′(un), un⟩.

Setting vn := un

∥un∥ , then ∥vn∥=1. And assume that

vn ⇀ v in E,

vn → v in Lp(RN ), for 1 ⩽ p < 2∗λ,

vn(x) → v(x) a.e. x ∈ RN .

If v = 0, then vn → 0 in Lp(RN ), ∀p ∈ [1, 2∗λ), and vn(x) → 0 a.e. in RN . By (f4)

and (3.4), we have

c+ 1

∥un∥2
⩾

1

∥un∥2

(
J(un)−

1

4
⟨J ′(un), un⟩

)
=

1

∥un∥2

(
1

4
∥un∥2 +

∫
RN

1

4
f(x, un)un − F (x, un)dx

)
⩾

1

4
− β

∫
RN

u2
n

∥un∥2
dx =

1

4
− β

∫
RN

v2ndx,

(3.5)

as n → ∞, which implies 1
4 ⩽ 0. Thus, it is a contradiction.

If v ̸= 0. For 0 ⩽ δ0 < δ1, let An(δ0, δ1) = {x ∈ RN : δ0 ⩽ |un| < δ1}. Setting

B := {x ∈ RN : v(x) ̸= 0}. Thus, meas(B) > 0. For almost every x ∈ B, we have

limn→∞ |vn(x)| = ∞. Hence, B ⊂ An(r0,∞) for large n ∈ N, where r0 is given in

(f3). By (f3), we have

lim
n→∞

|F (x, un)|
∥un∥4

= lim
n→∞

|F (x, un)|
|un|4

|vn|4 = ∞.
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From Fatou’s Lemma, (3.2) and (3.3) we can get

0 = lim
n→∞

c+ o(1)

∥un∥4
= lim

n→∞

J(un)

∥un∥4

= lim
n→∞

1

∥un∥4

(
1

2
∥un∥2 +

b

4

(∫
RN

|∇λun|2dx
)2

−
∫
RN

F (x, un)dx

)

=
b

4
lim
n→∞

(
∫
RN |∇λun|2dx)2

∥un∥4
+ lim

n→∞

1

∥un∥4

(
1

2
∥un∥2

−
∫
An(0,r0)

F (x, un)dx−
∫
An(r0,+∞)

F (x, un)dx

)

⩽
b

4
+ lim

n→∞

(
1

2∥un∥2
−
∫
An(0,r0)

F (x, un)

|un|2
|vn|2

|un|2
|vn|2dx−

∫
An(r0,+∞)

F (x, un)

∥un∥4
dx

)(3.6)

⩽
b

4
+ lim sup

n→∞

[
1

2∥un∥2
+

(
C1

2
+

C2

p
rp−2
0

)
1

∥un∥2

∫
RN

|vn|2dx−
∫
An

F (x, un)

|un|4
|vn|4dx

]
⩽
b

4
+ C3 − lim inf

n→∞

∫
An

F (x, un)

|un|4
|vn|4dx = −∞,

which is a contradiction. Thus, {un} is bounded in E. □

Lemma 3.3. Assume that (V1), (V2), (f1) − (f3) and (f5) are satisfied. Then any

(C)c − sequence {un} of J is bounded in E.

Proof. The proof method is similar to Lemma 3.2, also assuming that ∥un∥ →
∞, as n → ∞. We may assume that vn ⇀ v in E, by Proposition 2.1, vn → v in

Lp(RN ) for 1 ⩽ p < 2∗λ, and vn(x) → v(x) a.e. x ∈ RN .

If v = 0, we define

J(tnun) = max
t∈[0,1]

J(tun).

For any K > 0, set vn =
√
4K un

∥un∥ =
√
4Kvn, then ∥vn∥2 = 4K. By (3.2) and

Proposition 2.1, we have∣∣∣∣∫
RN

F (x, vn)dx

∣∣∣∣ ⩽ C1

2

∫
RN

|vn|2dx+
C2

p

∫
RN

|vn|pdx → 0, n → ∞.

Therefore, for a sufficiently large n such that

(3.7) J(tnun) ⩾ J(vn) =
1

2
∥vn∥2 +

b

4

(∫
RN

|∇λvn|2dx
)2

−
∫
RN

F (x, vn)dx ⩾ K.
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Hence, by(f3), (f5), we obtain

J(un)−
1

4
⟨J ′(un), un⟩ =

1

4
∥un∥2 +

∫
RN

(
1

4
f(x, un)un − F (x, un)

)
dx

⩾
1

4
∥tnun∥2 +

∫
RN

(
1

4
f(x, tnun)tnun − F (x, tnun)

)
dx

=J(tnun)−
1

4
⟨J ′(tnun), tnun⟩ .

According to (3.7), which implies limn→∞ J(tnun) = ∞, and due to the choice

of tn we know ⟨J ′(tnun), tnun⟩ = 0. That is, J(un) − 1
4 ⟨J

′(un), un⟩ ⩾ ∞, which

contradicts with (3.4).

If v ̸= 0, contradictions can be obtained by similar argument as (3.6). The proof

is complete. □

Lemma 3.4. ([20]) Assume that p1, p2 > 1, r, q ⩾ 1 and Ω ⊆ R. Let g(x, t) be a

Carathéodory function on RN × R and satisfy

(3.8) |g(x, t)| ⩽ a1|t|(p1−1/r) + a2|t|(p2−1/r), ∀(x, t) ∈ RN × R,

where a1, a2 ⩾ 0. If un → u in Lp1(RN ) ∩ Lp2(RN ), un(x) → u(x) a.e. x ∈ RN ,

then for any v ∈ Lp1q(RN ) ∩ Lp2q(RN ),

(3.9) lim
n→∞

∫
RN

|g(x, un)− g(x, u)|r|v|qdx = 0.

Lemma 3.5. ([20]) Assume that p1, p2 > 1, r ⩾ 1 and Ω ⊆ R. Let g(x, t) be

a Carathéodory function on RN × R and satisfy (3.8). If un → u in Lp1(RN ) ∩
Lp2(RN ), un(x) → u(x) a.e. x ∈ RN , then

lim
n→∞

∫
RN

|g(x, un)− g(x, u)|r|un − u|dx = 0.(3.10)

Lemma 3.6. Assume that (V1), (V2), (f1), (f3) and (f4) or (f5) are satisfied. Then

any (C)c − sequence {un} has a convergent subsequence in E.

Proof. By the previous lemma, we know that {un} is bounded in E. Going if

necessary to a subsequence, we can suppose that un ⇀ u in E. By Proposition 2.1,

un → u in Lp(RN ) for 1 ⩽ p < 2∗λ, and together with by Lemma 3.5, one has

(3.11)
∫
RN

|f(x, un)− f(x, u)||un − u|dx → 0, n → ∞.
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Observe that,

⟨J ′(un)− J ′(u), un − u⟩ =∥un − u∥2 + b

(∫
RN

|∇λun|2dx
)∫

RN

∇λun∇λ(un − u)dx

− b

(∫
RN

|∇λu|2dx
)∫

RN

∇λu∇λ(un − u)dx

−
∫
RN

[
f(x, un)− f(x, u)

]
(un − u)dx

=∥un − u∥2 + b

(∫
RN

|∇λun|2dx
)∫

RN

∇λ|un − u|2dx(3.12)

− b

(∫
RN

|∇λu|2 −
∫
RN

|∇λun|2dx
)∫

RN

∇λu∇λ(un − u)dx

−
∫
RN

[
f(x, un)− f(x, u)

]
(un − u)dx

⩾∥un − u∥2 −
∫
RN

[
f(x, un)− f(x, u)

]
(un − u)dx

− b

(∫
RN

|∇λu|2 −
∫
RN

|∇λun|2dx
)∫

RN

∇λu∇λ(un − u)dx.

It is clear that,

∥un − u∥2 ⩽⟨J ′(un)− J ′(u), un − u⟩+
∫
RN

(f(x, un)− f(x, u))(un − u)dx

+ b

(∫
RN

|∇λu|2 −
∫
RN

|∇λun|2dx
)∫

RN

∇λu∇λ(un − u)dx.

(3.13)

By the definition of weak convergence, we have

(3.14) ⟨J ′(un)− J ′(u), un − u⟩ → 0, n → ∞.

Set E = {u ∈ L2(RN ) : ∇λu ∈ L2(RN )} with the norm ∥u∥E =
(∫

RN |∇λu|2dx
) 1

2 .

Then the embedding E ↪→ E is continuous. Hence, un ⇀ u in E. According to the

boundedness of {un} in E, one has

(3.15) b

(∫
RN

|∇λu|2 −
∫
RN

|∇λun|2dx
)∫

RN

∇λu∇λ(un − u)dx → 0, as n → ∞.

From the (3.11)-(3.15) we can get un → u in E, as n → ∞. □

Let {ej} is an orthonormal basis of E and define Xj = Rej ,

Yk = ⊕k
j=1Xj , Zk = ⊕∞

j=k+1Xj , k ∈ Z.

Lemma 3.7. Assume that (V1) and (V2) are satisfied. Then

βk := sup
u∈Zk,∥u∥=1

∥u∥p → 0, k → ∞, p ∈ [1, 2∗λ).

Proof. It is clear that 0 < βk+1 ⩽ βk, so that βk → β ⩾ 0, k → ∞. For

every k ∈ N, there exists uk ∈ Zk such that ∥uk∥2 > βk

2 and ∥uk∥ = 1. We denote
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v =
∑∞

j=1 cjej , for any v ∈ E by the Cauchy-Schwarz inequality, one has

|(uk, v)| =

∣∣∣∣∣∣
uk,

∞∑
j=1

cjej

∣∣∣∣∣∣ =
∣∣∣∣∣∣
uk,

∞∑
j=k

cjej

∣∣∣∣∣∣ ⩽ ∥uk∥

∥∥∥∥∥∥
∞∑
j=k

cjej

∥∥∥∥∥∥
⩽

 ∞∑
j=k

c2j

 1
2
 ∞∑

j=k

e2j

 1
2

=

 ∞∑
j=k

c2j

 1
2

→ 0, as k → ∞,

which implies that uk ⇀ 0 in E. By Proposition 2.1, we have uk → 0 in Lp(RN ).

Hence, letting k → ∞, we get β = 0. □

Lemma 3.8. Assume that (V1), (V2) and (f1) are satisfied, there exist constants

ρ, α ⩾ 0 such that Jλ|∂Bρ∩Zm
⩾ α.

Proof. By Lemma 3.7, we can choose an integer m ⩾ 1 such that

(3.16) ∥u∥22 ⩽
1

2C1
∥u∥2, ∥u∥pp ⩽

p

4C2
∥u∥p, ∀u ∈ Zm.

According to (2.4) (3.2) and (3.16), for u ∈ Zm, we have

J(u) =
1

2
∥u∥2 + b

4

(∫
RN

|∇λu|2dx
)2

−
∫
RN

F (x, u)dx

⩾
1

2
∥u∥2 −

∫
RN

F (x, u)dx ⩾
1

2
∥u∥2 − C1

2
∥u∥22 −

C2

p
∥u∥pp

⩾
1

4
(∥u∥2 − ∥u∥p) = 2p−2 − 1

2p+2
:= α ⩾ 0,

choosing ρ = ∥u∥ = 1
2 . □

Lemma 3.9. Assume that (V1), (V2), (f1) and (f3) are satisfied. Then for any

finite dimensional subspace E ⊂ E, there is R = R(E) > 0 such that

J(u) ⩽ 0, ∀u ∈ E ∖BR.

Proof. For any E ⊂ E, there is a positive integral number m such that E ⊂ Em.

Since all norms are equivalent in finite dimensional space, there is a constant η > 0

such that

(3.17) ∥u∥4 ⩾ η∥u∥, ∀u ∈ Em.

By (f1) and (f3), one has

(3.18) F (x, u) ⩾ δ|u|4 − Cδ|u|2, ∀(x, u) ∈ RN × R,

for any δ > b
4C4

4
and constant Cδ > 0. Hence, by (3.17) and (3.18), we have

J(u) ⩽
1

2
∥u∥2+ b

4
∥u∥4−δ∥u∥44+Cδ∥u∥22 ⩽

(
1

2
+ CδC

2
2

)
∥u∥2−

(
δC4

4 − b

4

)
∥u∥4,∀u ∈ Em.

Hence, there is a large R = R(E) > 0 such that J(u) ⩽ 0 for all u ∈ E ∖BR. □
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Proof of Theorem 1.1. Let X = E, Y = Ym and Z = Zm. Obviously, J(0) = 0 and

(f2) implies J is even. By Lemmas 3.2, 3.6, 3.8 and 3.9, all conditions of Theorem

2.1 are satisfied. Thus, problem (1.1) possesses infinitely many nontrivial sequence

solutions {uk} such that J(uk) → ∞ as k → ∞. □

Proof of Theorem 1.2. Let X = E, Y = Ym and Z = Zm. Obviously, J(0) = 0 and

(f2) implies J is even. By Lemmas 3.3, 3.6, 3.8 and 3.9, all conditions of Theorem

2.1 are satisfied. Thus, problem (1.1) possesses infinitely many nontrivial sequence

solutions {uk} such that J(uk) → ∞ as k → ∞. □

4. The sublinear case

Lemma 4.1. Assume that (V1),(V2),(f2), (f6),(f7) are satisfied. Then the J satisfies

the (PS)-condition.

Proof. Obviously, from (V1), (f6), we know the functional J ∈ C1 and also have

the derivative functional (3.1). According to the (f6), one has

(4.1) |F (x, u)| ⩽ |u|q1 + |u|q2 , ∀(x, u) ∈ RN × R.

From the above formula, for 1 < q1 < q2 < 2, we can get

J(u) =
1

2
∥u∥2 + b

4

(∫
RN

|∇λu|2dx
)2

−
∫
RN

F (x, u)dx

⩾
1

2
∥u∥2 −

∫
RN

F (x, u)dx ⩾
1

2
∥u∥2 −

∫
RN

(
|u|q1 + |u|q2

)
dx

⩾
1

2
∥u∥2 − C ′

1 (∥u∥q1 + ∥u∥q2) → ∞.

(4.2)

as ∥u∥ → ∞. Hence J is bounded from below. Next we show that J satisfies (PS)-

condition. Suppose that {un}n∈N ⊂ E is (PS)-sequence. Therefore, according to

(2.1), there exist a constant η > 0, such that

(4.3) ∥u∥2 ⩽ C2∥u∥ < η.

By Proposition 2.1 let a subsequence still denoted by {un}, such that

un ⇀ u in E,

un → u in Lp(RN ), for 1 ⩽ p < 2∗λ.
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It follows from (f6) that∫
RN

∣∣f(x, un)− f(x, u)
∣∣∣∣un − u

∣∣dx
⩽
∫
RN

∣∣∣∣q1(|un|q1−1 − |u|q1−1) + q2(|un|q2−1 − |u|q2−1)

∣∣∣∣∣∣∣∣un − u

∣∣∣∣dx
⩽q1

(∫
RN

|un − u|q1dx
) 1

q1

[(∫
RN

|un|q1dx
) q1−1

q1

−
(∫

RN

|u|q1dx
) q1−1

q1

](4.4)

+ q2

(∫
RN

|un − u|q2dx
) 1

q2

[(∫
RN

|un|q2dx
) q2−1

q2

−
(∫

RN

|u|q2dx
) q2−1

q2

]
→ 0,

as n → ∞. According to (3.12), we know

∥un − u∥2 ⩽⟨J ′(un)− J ′(u), un − u⟩+
∫
RN

(f(x, un)− f(x, u))(un − u)dx

+ b

(∫
RN

|∇λu|2 −
∫
RN

|∇λun|2dx
)∫

RN

∇λu∇λ(un − u)dx.

(4.5)

It follow from (3.14), (3.15), (4.4) and (4.5), we have ∥un − u∥ → 0, as n → ∞. □

Proof of Theorem 1.3. We take n disjoint open sets B̃i for any n ∈ N, such that⋃n
i=1 B̃i ⊂ B̃. Let ui ∈

(
W 1,2

0 (B̃i)
⋂
E
)
∖ {0} and ∥ui∥E = 1, i = 1, 2, ..., n, and

Λ1 = span{u1, u2, · · · , un}, Λ2 = {u ∈ Λ1 : ∥u∥E = 1}.

For any u ∈ Λ1, there exist τi ∈ R, i = 1, 2, ..., n such that

(4.6) u(x) =

n∑
i=1

τiui(x), x ∈ RN .

Hence,

∥u∥q3 =

(∫
RN

|u|q3dx
) 1

q3

=

(∫
RN

∣∣∣∣∣
n∑

i=1

τiui(x)

∣∣∣∣∣
q3

dx

) 1
q3

=

(
n∑

i=1

|τi|q3
∫
B̃i

|ui(x)|q3dx

) 1
q3

,(4.7)

and

∥u∥2 =

∫
RN

(a|∇λu|2 + V (x)u2)dx =

n∑
i=1

τ2i

∫
B̃i

(a|∇λui|2 + V (x)u2
i )dx

=

n∑
i=1

τ2i ∥ui∥2 =

n∑
i=1

τ2i ,

(4.8)

which together with (4.7) implies there exists a constant κ > 0 such that

(4.9) κ∥u∥ ⩽ ∥u∥q3 , u ∈ Λ1.
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It follows from (4.6) − (4.9) and (f7), we have

J(tu) = t2∥u∥2 + bt4

4

(∫
RN

|∇λu|2dx
)2

−
∫
RN

F (x, tu)dx

⩽ t2∥u∥2 + bt4

4
∥u∥4 −

n∑
i=1

∫
B̃i

F (x, tτiui)dx

⩽ t2∥u∥2 + bt4

4
∥u∥4 − ξtq3

n∑
i=1

|τi|q3
∫
B̃i

|ui|q3dx

= t2∥u∥2 + bt4

4
∥u∥4 − ξtq3∥u∥q3q3

⩽ t2∥u∥2 + bt4

4
∥u∥4 − ξ(tκ)q3∥u∥q3

= t2 +
bt4

4
− ξ(tκ)q3 := −σ, u ∈ Λ2.

Hence, there exist 0 < t < 1 and σ > 0 such that J(tu) < −σ, u ∈ Λ2. Let

Λ′
2 = {tu : u ∈ Λ2}, B̃ =

{
(τ1, τ2, · · · , τn) ∈ Rn :

n∑
i=1

τ2i < t2

}
.

Therefore J(u) < −σ, u ∈ Λ′
2. And by (f2), we know J is even and J(0) = 0, can

deduce Λ′
2 ⊂ J−σ ∈ Σ. Also, in view of (4.6), (4.8), there exist an odd mapping

φ ∈ C(Λ′
2, ∂B̃). By properties of the genus, we obtain that

(4.10) γ(J−σ) ⩾ γ(Λ′
2) = n.

Hence, we get for any n ∈ N, there exists σ > 0 such that γ(J−σ) ⩾ n. Now let

cn = inf
A∈Σn

sup
u∈A

J(u).

In view of J is bounded below on E and (4.10), one has

(4.11) −∞ < cn < −σ < 0.

In other words, for any n ∈ N, cn is negative real number. Thus, we can apply the

Theorem 2.2 to get that problem (1.1) has infinitely many solutions.

□
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