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Abstract. The uniqueness problems of the j-th derivative of a meromorphic function f(z)
and the k-th derivative of its shift f(z + c¢) are investigated in this paper, where j, k are integers
with 0 < j < k. We show that when f(9)(z) and f(*)(z + ¢) share one IM value and two partially
shared values CM, the uniqueness result remains valid under some additional hypotheses. With
one CM value and two partially shared values CM, a uniqueness theorem about the j-th derivative
of f(z) and the k-th derivative of its shift f(z + ¢) is also proved.
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1. INTRODUCTION AND MAIN RESULTS

Nevanlinna value distribution theory of meromorphic functions has been extensively
applied to the uniqueness theory of meromorphic functions, see [23]. Given a mero-
morphic function f, recall that a meromorphic function « is said to be a small
functions of f, if T'(r,a(z)) = S(r, f) where S(r, f) is used to denote any quantity
that satisfies S(r, f) = o(T(r, f)) as r — o0, possibly outside of a set of r of finite
logarithmic measure. Let S(f) = S(f) U{oco}. For each a € S(f), we say that two
meromorphic functions f(z) and g(z) share a IM(ignoring multiplicities) if f(z) —a
and ¢g(z)—a have the same zeros, and we say that f(z) and g(z) share a CM(counting
multiplicities) provided that f(z) — a and g(z) — a have the same zeros with the
same multiplicities.

Rubel and Yang|20] considered the uniqueness of a nonconstant entire function
when it shares two values with its first derivative. Mues, Steinmetz [I7] and Gundersen
[12] improved the result to the case of meromorphic functions and obtained the
following result.

Theorem A.[20] Let f be a nonconstant meromorphic function, and let ¢ and b
be two distinct finite values. If f and f’ share a and b CM, then f = f’.

1The work was supported by NNSF of China (No.11971344), Project of Qinglan of Jiangsu
Province.
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Gundersen[I2] showed, by a counter-example, that two shared values CM in
Theorem A cannot be reduced to 1CM+1IM. However, 2CM is able to be replaced
by 3IM, see[10, 17]. Moreover, Frank and Weissenborn[8] proved the conclusion is
still valid by replacing f’ by a higher order derivative f*).

Theorem B.[8] Let f be a nonconstant entire function and k > 2 be a positive
integer. If f shares two distinct finite values @ and b CM with f*), then f = f*).

Later on, there are many related results about the uniqueness of meromorphic
functions with their first derivative f’ or their k-th derivative f*) [I, 2, [8, 21]. In
recent decade, Halburd and Korhonen|[I3]and, independently, Chiang and Feng[d]
developed a parallel difference version of classical Nevanlinna theory for meromorphic
functions. Then, many scholars tried to investigate the uniqueness of a meromorphic
function f(z) taking into account with its shift f(z + ¢) or difference operator
A.f(2) = f(z 4 ¢) — f(2) where ¢ is a complex constant, see[l4, 15, 18| 22]. For
instance, Heittokangas et.al[l4] considered the problem of a meromorphic function
f of finite order with its shift f(z 4 ¢) sharing two values CM and one value IM.
Theorem C.[I4] Let f(z) be a meromorphic function of finite order, and let
a1,az,a3 € g(f) be three distinct periodic functions with period ¢, where ¢ € C~{0}
is a constant. If f(z) and f(z+ ¢) share a;,as CM and az IM, then f(2) = f(z+c¢).

Regarding Theorem A and Theorem C, one may ask a question: What can be said
when the shift or difference operator of a meromorphic function f(z) shares some
values with its derivative? For a transcendental entire function f(z), Qi et.al|I§]
proved the uniqueness result still remains true if f/(z) and f(z+¢) share two values
CM.

Theorem D.[I8] Let f(z) be a transcendental entire function of finite order and a
be a nonzero complex constant. If f/(z) and f(z + ¢) share 0, a CM, then f'(z) =
flz+0).

In 2018, Chen[4] considered the question above using the notation of partially
shared values by some ingenious methods.

Definition 1.1. Denote by E(a, f) the set of all zeros of f — a, where each zero
with multiplicity m times is counted m times. Similarly, we denote by E(a, f) the
set of zeros of f — a, where each zero is counted only once. If E(a, f) C E(a, g),
then we say that f(z) partially shares a with g(z). If E(a, f) C E(a,g), then we
can say that f and g partially share a CM.

Theorem E.[4] Let f(z) be a nonconstant meromorphic function of hyper-order
p2(f) <landc# 0 € C.If A.f and f(z) share value 1 CM and satisfy E(0, f(z)) C
E0,A.f) and E(co, A.f) C E(o0, f(2)), then f(z) = A.(f) for all z € C.
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In [5], Chen et.al extended the result to the case of n-th order differences A” f(z).
More recently, for f/(z) and f(z + ¢) , Qi et.al[I9] proved the following result.
Theorem F.[19] Let f(z) be a nonconstant meromorphic function of finite order,
and a € C~ {0}. If f'(2) and f(z + ¢) share a CM, and satisty E(0, f(z + ¢)) C
E(0, f'(2)), E(c0, f'(z)) C E(c0, f(z+ ¢)), then f/(2) = f(z + ¢). Further, f(z) is
a transcendental entire function.

In this paper we consider the uniqueness of f)(z) and the k-th derivative of shift
f(z+c¢) under the conditions of one shared value IM and two partially shared values
0,00 CM. Actually, we obtain the following Theorem 1.1 by a different method from

those mentioned above.

Theorem 1.1. Let f(z) be a transcendental meromorphic function of finite order,
and let ¢ be a nonzero finite complex number and j, k be integers with 0 < j < k.
Suppose that f9)(z) and f*)(z + ¢) share a finite value a # 0 IM and satisfy
E(0, f9(2)) € E(0, f*) (2+c)) and E(oo, f¥) (2+c)) C E(oo, f9)(2)). If N(r, f(%(z))-i-

N(r, f(lz)) =S5(r, f), then f(j)(z) = f(k)(z +¢).

If we remove the hypothesis "N (r, W) + N (r, ﬁ) = S(r, f)"and replace IM
by CM, then the conclusion still holds.

Theorem 1.2. Let f(z) be a nonconstant meromorphic function of finite order,
a be a monzero finite complex number and j, k be integers with 0 < j < k. If
f9Nz2) and f*)(z + ¢) share a CM, and satisfy E(0, f9)(2)) C E(0, f*) (2 + ¢))
and E(oo, fF) (2 + ¢)) C E(oo, fU9)(2)), then fU)(2) = f®) (2 + ¢).

2. SOME LEMMAS

To prove our result, we recall some notations and results. Let k be a positive
integer, we use Np,(r, f—ia) to denote the counting function of a points of f with
multiplicity < &k and use N1 (r, ﬁ) to denote the counting function of a points of
f with multiplicity > k, where each a point is counted on the basis of its multiplicity.
Similarly, we define Nk) (r, ﬁ) and N(;H_l(r, ﬁ) where in counting the a points

of f we ignore the multiplicities.

Lemma 2.1. [6] Let f(z) be a meromorphic function of finite order and ¢ € C.

Then we have
fz+¢) f(2)
— —— )=9
e Fleva) 0T
where S(r, f) = o(T(r, f)) for all r outside of a possible exceptional set E with finite

m(r, )+ m(r,

linear measure.
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Lemma 2.2. [23] Let f(z) be a nonconstant meromorphic function in the complex

plane and k be a positive integer. Set

Zak FO

where ar(z)(k = 0,1,...,n) are all small functions of f(z). Then
T(r,¥) < T(rf)+kN(r f)+S(rf)
< (k+D)T(r )+ 5 f),

N(r, %) +kN(r, f) +S(r, f).

Lemma 2.3. [6] Let f(z) be a nonconstant meromorphic function of finite order

and ¢ € C. Then

N

]\/v(’l"7 6)

T(r,f(z+c)) = T(r, )+ S(r, f),
1

N fe+0) = N )+ S0 f). N gy) = Nogi) +500),
and
N fG+e) =N+ S0, N ) = N ) + S0 ),

Lemma 2.4. Suppose that f(z) is a nonconstant meromorphic function of finite
order in |z| < R and as(t = 1,2, ...,q) are q(= 2) distinct finite complex numbers.
Let j, k be integers with 0 < j < k. Then for 0 <r < R, we have

(r, f9(2)) + Z m(r f(]) o —a) S LIV = Nair () + (. 1),
where
Npair(r, f) = 2N(r, f9(2)) = N(r, f®) (2 + ¢)) + N(r, m) +S(r, f).
Proof. Set F(z) = i m, then
t=1
F®(z+¢)
G(z) = F(2)f®(z4¢) = 3 00 —a
It follows from the lemma of logarithmic derivatives that
(k) a (k)
m(r, G Zf chat <Xt Zf‘jt>+5(r,f>:5<r,f>-
Thus
1
mir, F(2)) = m(r, G) gy gy) < mir G +
1 1
(2.1) () = M ) S )
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Next, by Nevanlinna’s first fundamental theorem, we get from (2.1) that

1
T’(?"7 f(k) (Z + C)) = T(?"7 W) + O(l)
1 1
= m(r, 7f(k)(z " c)) + N(r, 7f(k)(z n c)) + S(r, f)
> m(r, F(2)) ‘*‘N(Tvm) + S(r, f)
I 1 1
Then by (2.2), we have
q
1
;m 7}0(]) —Clt) = m(r’;if(j)(z) _at)JrO(l)
1
(2.3) < T(r, fO(z +¢) — N(r, m) + S(r, f).
Hence, it is easy to deduce from (2.3) that
(2.4) mlr fO() + X mlr, 7o)

m(r, f9(2) +T(r, f® (= + ) = N(r, Jriery) + 50 )
= T(r, f9(2)) = N(r, f9(2)) + m(r, fO (2 + 6) + N(r, B (2 4 €)) = N(r, 75)
+8(r, f) < T(r, f9(2)) = N(r, O (2)) +m(r, fO)(2)) + m(r, L)
TN, fO(z +6) — N(r, urisrg) + S f)
= 2T(r, f9(2)) = 2N(r, fO)(2)) + N(r, {2 + ) = N(r, srrisgey) + 5(r, )
= 2T(r, f9(2)) — 2N (. fD(2)) = N(r. fO (2 + €)) + N(r, uriegg)] + 5. ).

We use N (r, ﬁ) to denote the counting function of the zeros of f —a where a

p— folds zero is counted m times if m < p and p times if m > p.

Lemma 2.5. |24, Lemma 2.4] Let f be a non-constant transcendental meromorphic
function. If f*) % 0, we have Ny(r, 7iz) < T(r, f¥)=T(r, f)+Nps1(r, )+5(r, f).

Lemma 2.6. Let f be a mon-constant transcendental meromorphic function and
> 0 is an integer. If N(r, ( y) = S(r, f), then S(r, f9)) = S(r, f).

Proof. By Lemma 2.5,

T(r,f) < T(rf9) = Ny(r, z55) + Ny (7, )+ 50 f)

f(J) f
< nnwn+u+ﬂMn%+smn<TmﬂM+smﬂ.

Also by Lemma 2.2, T(r, f4)) < (j 4+ 1)T(r, f) + S(r, f). This completes the proof.
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3. PROOF OF THEOREM 1.1

Without loss of generality, we assume that fU)(z) and f*)(z + ¢) share a = 1
IM. For a general case, we can consider substituting % f(z) for f(z). Suppose on
the contrary that f@)(z) # f*) (2 + ¢).

Set h(z) = fU)(z) and g(2) = f*¥)(z + ¢). By the assumption that E(0,h(z)) C
E(0,9(2)) and E(c0,g(z)) C E(oo, h(z)), we have

®) (2 +¢ z
(3.1) ! f<§'>(::) ) _ iiz; = G(2),

where G(z) is an entire function.

From (3.1), the lemma of logarithmic derivative and Lemma 2.1 it follows that
(3.2)

i, G2 =mir, LD <ot L) o LEE — s, ),
Since G(2) is an entire function, we know that
(3.3) N, G(2)) = 0.
Combining (3.2) and (3.3), we get
(3.4) T(r,G(2)) = m(r,G(2)) + N(r,G(2)) = S(r, ).
Set
52) F;(g{lh}il)z(gg—lli)(hﬂ%'

From the lemma of logarithmic derivative again, (3.2) and (3.5) it follows that

g g/ g/ h/ h/
(3.6) m(r, F) = m(r 7(9—1 P h_l—ﬁ)):S(r,f).

By (3.5), we see that the possible poles of F(z) can occur at the zeros of h(z),

the 1 points of h(z) and g(z), and the poles of h(z) and g(z). If zg is a 1 point of
h(z), then by a short calculation with Laurent series and (8) we know that zg is
a simple pole of F(z). And hence, the 1 points of g(z) are also the simple pole of
F(z). If z9 is a pole of h(z) with multiplicity p > 1, by E(oc0,¢(z)) C E(oco, h(2)),
we have F(z) = O((z — 29)P~!). Similarly, the poles of g(z) are not the poles of
F(z). Therefore, the poles of F(z) can occur at the 1 point of i(z), the 1 point of
g(z) and the zeros of h(z). From (3.1), (3.4), the hypothesis N(r, ﬁ) =S(r,f)
and h shares 1 IM with g, we can find that

)+ NG 7)

N(rF) < N(rn——)+N(

h—1 g—1

1 1
G—1)+N(T7G—1)+N(T7W)
(3.7 < 2T(r,G)+ S(r, f) = S(r, f).
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Combining (3.6) and (3.7), we conclude that
(3.8) T(r,F)=m(r,F)+ N(r,F) = S(r, f).

If F =0, then by (3.5) we find that g — 1 = A(h — 1), with A # 0 being constant.
We assert that A = 1. Otherwise, if A # 1, then m(r, 1) = Z5m(r,$ — A) =
S(r, f). Due to N(r, +) = N(r, ﬁ) = S(r, f), it is easy to deduce that T(r, ;) =
m(r,+) + N(r,+) = S(r, f), and then by the first fundamental theorem, we have
T(r,h) = T(r,+) + O(1) = S(r, f). Noting that h = fU), by Lemma 2.6 we have
S(r, f) = S(r,h), and hence T'(r, h) = S(r, h), which is a contradiction. Then F' £ 0.
And so we can know from (3.5) and (3.8) that

(3.9) m(r,h) < m(r,%) + m(r, gg_/ 1~ h]i/ 1) <T(r,F)+S(r, f)=S(rf).
Set

_ygth-=-1) ¢ 49
(3.10) e =20 L8y,

It follows from the lemma of logarithmic derivative, (12) and (13) that
(3.11)

m(r,H) = m(r

gth=1y o 9 gy, 9
WD) S ) +m(r,

g1 g h/)+m(r,h—1):S(r,f).
We now estimate the poles of H(z). Obviously, the poles of H(z) can only occur at
the 1 point of g, the poles of h and ¢’, and the zeros of k. Since h(z) and g(z) share
1 IM, then by Laurent series we know that H(z) is analytic at the 1 point of g. If
h has a pole z,, with multiplicity p > 2, then by a short calculation with Laurent
series and (3.10) we see that the poles of h are not poles of H(z). Similarly, the
poles of ¢’ are not poles of H(z). Let zg be a zero of h' with multiplicity g, if 2z
is also a zero of h (respectively h — 1) with multiplicity ¢ 4+ 1, then from these and

(3.10) it is easy to see that zg is a pole of H(z) with multiplicity at most ¢g. Thus

1
(312) N(T,H) <NO(Taﬁ)+S(r>f)a
where No(r, 77) denotes the zeros of h’ which are not zeros of h — 1. From (3.11)

and (3.12), we deduce that
1
(3.13) T(r,H) =m(r,H) + N(r, H) < No(r, 77) + 5(r, f),
Next, we consider the simple poles of h(z). Let zy be a simple pole of h. Since
E(00,h(2)) D E(c0,g(z)), we need to discuss two cases:
Case 1. z; is not a simple pole of g. We set

a—1

(314) h(z) - +a0+a1(2—20)—|—a2(z—zo)2+...

40

Z— 20



UNIQUENESS OF MEROMORPHIC FUNCTIONS ...

and
(3.15) 9(2) = bo + b1(z — 20) + ba(z — 20)* + - -,

where a;(j = —1,0,1,---) and b;(j = 0,1,---) are the coefficients of the Laurent

series of h(z) and g(z) respectively. Differentiating (3.14) and (3.15), we obtain
a_q

N T,

+ay + 2az(z — 20) + 3az(z — 20)* + - -

and
g’ (2) = by + 2ba(2 — 20) + 3bz(2z — 20)% + - - -
By (3.10) it follows that
g(h—1) [b1 + 2ba(z — z9) + - - }[z Z0+a0—1+a1(z—z0)+ -]
h’( [~ m—i—al—i—Qag(z—zo) < Jbo —14+b1(z —20) + -]
Thus H(zp) = 0. If H(z) = 0, then we have ¢’(h — 1) = 0. By integration, we can
get f(z) is a nonconstant polynomial, this contradicts with the fact that f(z) is a

transcendental function. Thus H # 0, and so
1
(3.16) Nyy(r,h) < N(r, ﬁ)

Case 2. zj is a simple pole of g. Similarly as in Case 1, let

h(z) = e “+co + Cl(Z — ZO) —|—02(z — 20)2 N
Z— 20
and
d_
g(Z) = e _120 +d(] +d1(2 — Z()) —|—d2(2 _ 20)2 + ...
Then
h'(z) = 7(Zi;;.)2 +c1 4 2¢2(2 — 20) + 3e3(z — z0)2 N
and

d_
9'(z) = —m +dy 4 2do(z — 20) + 3d3(z — 29)? + - --

By (3.5), it follows that
d_z

tdy—1+- 7 tc—1l+-
Thus F(zg) = 0. If F(z) = 0, then we haveg— 1 = t(h — 1) with ¢ # 0 constant.

Similarly, we can assert that ¢ = 1, then g = h, this contradicts with the assumption
g Z h. Thus F # 0, and so

1, 9 W 1 (Z Zo2+d1+ —(/Zc;zgy+cl+~--
E(g—fh—ﬂ* +co+- =

zZ—2Zz0

F(z) =

(3.17) Nyy(r,h) < N(r, %)
Combining (3.8), (3.13), (3.16) and (3.17), we have
Nyy(r,h) < N(r,%)+N(r,%) <T(r,F)+T(r,H)
(3.15) < S0 0) + Nolr, 20) + S0, £) = Nolr, ) + 5(r, ).
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Since h and g share 1 IM, it follows from (3.1) and (3.4) that
— 1 1

. " V< — )< - .
(319) N(r, 1) < Nlr, 50) <T(,G) = S, f)
Combining (3.18), (3.19), the second fundamental theorem, N(r, +) = N(r, ﬁ) =
S(r, f) and S(r,h) = S(r, f), we have
T(r,h) < N(r, %) + N(r,h) + N(r, ﬁ) — No(r, %) + S(r, h)
1 1
< S(raf)—’—NO(nﬁ)_NO(rvﬁ)—i—S(nh)
(3.20) = S(r f)+S8(r,h) = S(r,h),

which is impossible. Therefore, fU)(z) = f*) (2 + ¢).

4. PROOF OF THEOREM 1.2
Firstly, we prove that T'(r, fU)(2)) and T(r, f**)(z+c)) can be restricted by each
other. It follows from Lemma 2.2 that
T(r,f9(2)) < T(rf(2) + N f(2)) + S(r, f(2))

(4.1) < G+DT(r f(2) + S(r, f(2))
On the other hand, by Lemma 2.2 and Lemma 2.3, we get

T, fP(z+c) = T(rfP)+S(r f)
T(r, f(2)) + kN (r, f(2)) + S(r, f(2))
(4.2) < (B+1)T(r, f(2)) + S(r, f(2))-

N

Combining (4.1) and (4.2), we have

S(r, f9(2)) = S(r, Pz + ) = S(r. f).
Set
_fME+o
o f(j)(z) ’
From the assumption E(0, fU)(z2)) ¢ E(0, f*)(z + ¢)) and E(co, f*) (2 + ¢)) C

E(co, fU)(2)), we can deduce that H(z) is an entire function. That is to say,

(4.3)

(4.4) N(r,H(z)) = 0.

Case 1 If H(z) =1, then fU)(2) = f*) (2 +¢).
Case 2 We suppose on the contrary that the result of Theorem 1.2 is not valid,
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ie., H(z) # 1. By Lemma 2.1 and the lemma of logarithmic derivative, we know
that

fB(+e) fH+e)
m(r,H(z)) = m(r, W) < m(r, NCIOH
f¥(z)
(4.5) + m(r, f(j)(z)) =S5(r, f).
From (4.4) and (4.5), we can obtain that
(4.6) T(r,H(z)) =m(r,H(z))+ N(r,H(2)) = S(r, f).

Without loss of generality, we assume that fU)(z) and f*)(z +¢) share a = 1 CM.
For a general situation, we can consider replacing f(z) by % f(2). As a result of the
hypothesis that f)(z) and f*)(z + ¢) share 1 CM, we find that

— 1 1
N P P < N Iy v =
AR CIC R L
(47) = Nr ) <TG H) + 5(r.f) = S(r, ).

Secondly, we shall estimate the counting functions of the zeros of fU)(z) — 1 whose
multiplicities are not less than 2.

Differentiating (4.3), we have

(4.8) H'(z) = (f(k)(z +c),, FEED (24 ¢) fO) (2) — fR) (2 + C)f(j"‘l)(z).

fa) T [fD(2)]
It follows from (4.3) and (4.8) that
H'(z) _ f"(+0fD%) = [P+ fV(E)  fD()
H(z) [fD(2)]? B (z+0)
G+ fOE) - [P+ fI)
- fOI(2) f R (2 +¢)

f(k"‘l)(z—i—c) f(j+1)(z)
fB+o)  fO(2)

Let 2o be a 1 point of f)(z) with multiplicity m > 2. Since fU)(z) and f*) (2 +¢)
share 1 CM, we obtain that z, is also a 1 point of f*)(z + ¢) with multiplicity

(4.9) -

m > 2. Then by (4.9) and calculation with Laurent series, we see that zg is also a

zero of Z((j)) with multiplicity at least m — 1. Thus by Lemma 2.2 we can get

1 1 1
N@(T,W) < 2N(r,g) <2N(T,H)+2N(T,F)
< QN(’I“,H)‘FQ[N(T,%)‘FN(T,H)+S(T‘,f)]

(4.10) < 6T(r, H) +S(r, f) = S(r, f).
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Together (4.7) with (4.10), we have
1 — 1 1
f(ﬂ)(z) — 1) = N(Ta f(J)(Z) — 1) +N(2(Ta f(J)(Z) — 1) < S(va)
By the assumption that E(0, f)(2)) C E(0, f*) (2 + ¢)) and E(co, f*) (2 +¢)) C
E(oo, fU)(2)) again, we deduce that
1 1
o) N G

From Lemma 2.4, we get

(4.11)  N(r,

(4.12) N(r, ) <0, N(r, f%(z+4¢)=N(r, f9(2)) <0.

; 1 1
m(r, f9(2)) + m(r, f(T(z)) +m(r, W)
(4.13) < 2T(r, f9(2)) = Npair (1, f) + 5(r, f).
Adding N(r, f9)(z)) + N(r, W) + N(r, W) on both sides of (4.13) at the

same time and by (4.12), we obtain

Tl f(2) € N D) + N g) + N f—) = V) + S(0.)
1 1 1
= Voo ) Vo) TNV e )
NG f® e+ ) = N, f9 )] + S(r. )
< N 710@)(;) —)+ S0 ) <80, 1),

which yields a contradiction.
Therefore, H(z) = 1. Then we have fU)(z) = f®) (2 + ¢).
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