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1. Introduction and main results

Nevanlinna value distribution theory of meromorphic functions has been extensively

applied to the uniqueness theory of meromorphic functions, see [23]. Given a mero-

morphic function f , recall that a meromorphic function α is said to be a small

functions of f , if T (r, α(z)) = S(r, f) where S(r, f) is used to denote any quantity

that satisfies S(r, f) = o(T (r, f)) as r → ∞, possibly outside of a set of r of finite

logarithmic measure. Let Ŝ(f) = S(f)
⋃
{∞}. For each a ∈ Ŝ(f), we say that two

meromorphic functions f(z) and g(z) share a IM(ignoring multiplicities) if f(z)−a

and g(z)−a have the same zeros, and we say that f(z) and g(z) share a CM(counting

multiplicities) provided that f(z) − a and g(z) − a have the same zeros with the

same multiplicities.

Rubel and Yang[20] considered the uniqueness of a nonconstant entire function

when it shares two values with its first derivative. Mues, Steinmetz [17] and Gundersen

[12] improved the result to the case of meromorphic functions and obtained the

following result.

Theorem A.[20] Let f be a nonconstant meromorphic function, and let a and b

be two distinct finite values. If f and f ′ share a and b CM, then f ≡ f ′.

1The work was supported by NNSF of China (No.11971344), Project of Qinglan of Jiangsu
Province.
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Gundersen[12] showed, by a counter-example, that two shared values CM in

Theorem A cannot be reduced to 1CM+1IM. However, 2CM is able to be replaced

by 3IM, see[10, 17]. Moreover, Frank and Weissenborn[8] proved the conclusion is

still valid by replacing f ′ by a higher order derivative f (k).

Theorem B.[8] Let f be a nonconstant entire function and k ⩾ 2 be a positive

integer. If f shares two distinct finite values a and b CM with f (k), then f ≡ f (k).

Later on, there are many related results about the uniqueness of meromorphic

functions with their first derivative f ′ or their k-th derivative f (k) [1, 2, 8, 21]. In

recent decade, Halburd and Korhonen[13]and, independently, Chiang and Feng[6]

developed a parallel difference version of classical Nevanlinna theory for meromorphic

functions. Then, many scholars tried to investigate the uniqueness of a meromorphic

function f(z) taking into account with its shift f(z + c) or difference operator

∆cf(z) = f(z + c) − f(z) where c is a complex constant, see[14, 15, 18, 22]. For

instance, Heittokangas et.al[14] considered the problem of a meromorphic function

f of finite order with its shift f(z + c) sharing two values CM and one value IM.

Theorem C.[14] Let f(z) be a meromorphic function of finite order, and let

a1, a2, a3 ∈ Ŝ(f) be three distinct periodic functions with period c, where c ∈ C∖{0}
is a constant. If f(z) and f(z+ c) share a1, a2 CM and a3 IM, then f(z) ≡ f(z+ c).

Regarding Theorem A and Theorem C, one may ask a question: What can be said

when the shift or difference operator of a meromorphic function f(z) shares some

values with its derivative? For a transcendental entire function f(z), Qi et.al[18]

proved the uniqueness result still remains true if f ′(z) and f(z+c) share two values

CM.

Theorem D.[18] Let f(z) be a transcendental entire function of finite order and a

be a nonzero complex constant. If f ′(z) and f(z + c) share 0, a CM, then f ′(z) ≡
f(z + c).

In 2018, Chen[4] considered the question above using the notation of partially

shared values by some ingenious methods.

Definition 1.1. Denote by E(a, f) the set of all zeros of f − a, where each zero

with multiplicity m times is counted m times. Similarly, we denote by E(a, f) the

set of zeros of f − a, where each zero is counted only once. If E(a, f) ⊆ E(a, g),

then we say that f(z) partially shares a with g(z). If E(a, f) ⊂ E(a, g), then we

can say that f and g partially share a CM.

Theorem E.[4] Let f(z) be a nonconstant meromorphic function of hyper-order

ρ2(f) < 1 and c ̸= 0 ∈ C. If ∆cf and f(z) share value 1 CM and satisfy E(0, f(z)) ⊂
E(0,∆cf) and E(∞,∆cf) ⊂ E(∞, f(z)), then f(z) ≡ ∆c(f) for all z ∈ C.
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In [5], Chen et.al extended the result to the case of n-th order differences ∆n
c f(z).

More recently, for f ′(z) and f(z + c) , Qi et.al[19] proved the following result.

Theorem F.[19] Let f(z) be a nonconstant meromorphic function of finite order,

and a ∈ C ∖ {0}. If f ′(z) and f(z + c) share a CM, and satisfy E(0, f(z + c)) ⊂
E(0, f ′(z)), E(∞, f ′(z)) ⊂ E(∞, f(z + c)), then f ′(z) ≡ f(z + c). Further, f(z) is

a transcendental entire function.

In this paper we consider the uniqueness of f (j)(z) and the k-th derivative of shift

f(z+c) under the conditions of one shared value IM and two partially shared values

0,∞ CM. Actually, we obtain the following Theorem 1.1 by a different method from

those mentioned above.

Theorem 1.1. Let f(z) be a transcendental meromorphic function of finite order,

and let c be a nonzero finite complex number and j, k be integers with 0 ⩽ j < k.

Suppose that f (j)(z) and f (k)(z + c) share a finite value a ̸= 0 IM and satisfy

E(0, f (j)(z)) ⊂ E(0, f (k)(z+c)) and E(∞, f (k)(z+c)) ⊂ E(∞, f (j)(z)). If N(r, 1
f(j)(z)

)+

N(r, 1
f(z) ) = S(r, f), then f (j)(z) ≡ f (k)(z + c).

If we remove the hypothesis "N(r, 1
f(j)(z)

)+N(r, 1
f(z) ) = S(r, f)"and replace IM

by CM, then the conclusion still holds.

Theorem 1.2. Let f(z) be a nonconstant meromorphic function of finite order,

a be a nonzero finite complex number and j, k be integers with 0 ⩽ j < k. If

f (j)(z) and f (k)(z + c) share a CM, and satisfy E(0, f (j)(z)) ⊂ E(0, f (k)(z + c))

and E(∞, f (k)(z + c)) ⊂ E(∞, f (j)(z)), then f (j)(z) ≡ f (k)(z + c).

2. Some lemmas

To prove our result, we recall some notations and results. Let k be a positive

integer, we use Nk)(r,
1

f−a ) to denote the counting function of a points of f with

multiplicity ⩽ k and use N(k+1(r,
1

f−a ) to denote the counting function of a points of

f with multiplicity > k, where each a point is counted on the basis of its multiplicity.

Similarly, we define Nk)(r,
1

f−a ) and N (k+1(r,
1

f−a ) where in counting the a points

of f we ignore the multiplicities.

Lemma 2.1. [6] Let f(z) be a meromorphic function of finite order and c ∈ C.

Then we have

m(r,
f(z + c)

f(z)
) +m(r,

f(z)

f(z + c)
) = S(r, f),

where S(r, f) = o(T (r, f)) for all r outside of a possible exceptional set E with finite

linear measure.
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Lemma 2.2. [23] Let f(z) be a nonconstant meromorphic function in the complex

plane and k be a positive integer. Set

Ψ(z) =

n∑
k=0

ak(z)f
(k)(z),

where ak(z)(k = 0, 1, ..., n) are all small functions of f(z). Then

T (r,Ψ) ⩽ T (r, f) + kN(r, f) + S(r, f)

⩽ (k + 1)T (r, f) + S(r, f),

N(r,
1

Ψ
) ⩽ N(r,

1

f
) + kN(r, f) + S(r, f).

Lemma 2.3. [6] Let f(z) be a nonconstant meromorphic function of finite order

and c ∈ C. Then

T (r, f(z + c)) = T (r, f) + S(r, f),

N(r, f(z + c)) = N(r, f) + S(r, f), N(r,
1

f(z + c)
) = N(r,

1

f(z)
) + S(r, f),

and

N(r, f(z + c)) = N(r, f) + S(r, f), N(r,
1

f(z + c)
) = N(r,

1

f(z)
) + S(r, f).

Lemma 2.4. Suppose that f(z) is a nonconstant meromorphic function of finite

order in |z| < R and at(t = 1, 2, ..., q) are q(⩾ 2) distinct finite complex numbers.

Let j, k be integers with 0 ⩽ j < k. Then for 0 < r < R, we have

m(r, f (j)(z)) +

q∑
t=1

m(r,
1

f (j)(z)− at
) ⩽ 2T (r, f (j)(z))−Npair(r, f) + S(r, f),

where

Npair(r, f) = 2N(r, f (j)(z))−N(r, f (k)(z + c)) +N(r,
1

f (k)(z + c)
) + S(r, f).

Proof. Set F (z) =
q∑

t=1

1
f(j)(z)−at

, then

G(z) = F (z)f (k)(z + c) =

q∑
t=1

f (k)(z + c)

f (j)(z)− at
.

It follows from the lemma of logarithmic derivatives that

m(r,G(z)) = m(r,

q∑
t=1

f (k)(z + c)

f (j)(z)− at
) ⩽

q∑
t=1

m(r,
f (k)(z + c)

f (j)(z)− at
) + S(r, f) = S(r, f).

Thus

m(r, F (z)) = m(r,G(z)
1

f (k)(z + c)
) ⩽ m(r,G(z)) +

+m(r,
1

f (k)(z + c)
) = m(r,

1

f (k)(z + c)
) + S(r, f).(2.1)
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Next, by Nevanlinna’s first fundamental theorem, we get from (2.1) that

T (r, f (k)(z + c)) = T (r,
1

f (k)(z + c)
) +O(1)

= m(r,
1

f (k)(z + c)
) +N(r,

1

f (k)(z + c)
) + S(r, f)

⩾ m(r, F (z)) +N(r,
1

f (k)(z + c)
) + S(r, f)

= m(r,

q∑
t=1

1

f (j)(z)− at
) +N(r,

1

f (k)(z + c)
) + S(r, f).(2.2)

Then by (2.2), we have
q∑

t=1

m(r,
1

f (j)(z)− at
) = m(r,

q∑
t=1

1

f (j)(z)− at
) +O(1)

⩽ T (r, f (k)(z + c))−N(r,
1

f (k)(z + c)
) + S(r, f).(2.3)

Hence, it is easy to deduce from (2.3) that

m(r, f (j)(z)) +
q∑

t=1
m(r, 1

f(j)(z)−at
)(2.4)

⩽ m(r, f (j)(z)) + T (r, f (k)(z + c))−N(r, 1
f(k)(z+c)

) + S(r, f)

= T (r, f (j)(z))−N(r, f (j)(z)) +m(r, f (k)(z + c)) +N(r, f (k)(z + c))−N(r, 1
f(k)(z+c)

)

+S(r, f) ⩽ T (r, f (j)(z))−N(r, f (j)(z)) +m(r, f (j)(z)) +m(r, f(k)(z+c)
f(j)(z)

)

+N(r, f (k)(z + c))−N(r, 1
f(k)(z+c)

) + S(r, f)

= 2T (r, f (j)(z))− 2N(r, f (j)(z)) +N(r, f (k)(z + c))−N(r, 1
f(k)(z+c)

) + S(r, f)

= 2T (r, f (j)(z))− [2N(r, f (j)(z))−N(r, f (k)(z + c)) +N(r, 1
f(k)(z+c)

)] + S(r, f).

We use Np(r,
1

f(k)−a
) to denote the counting function of the zeros of f − a where a

p− folds zero is counted m times if m ⩽ p and p times if m > p.

Lemma 2.5. [24, Lemma 2.4] Let f be a non-constant transcendental meromorphic

function. If f (k) ̸≡ 0, we have Np(r,
1

f(k) ) ⩽ T (r, f (k))−T (r, f)+Np+k(r,
1
f )+S(r, f).

Lemma 2.6. Let f be a non-constant transcendental meromorphic function and

j ⩾ 0 is an integer. If N(r, 1
f(z) ) = S(r, f), then S(r, f (j)) = S(r, f).

Proof. By Lemma 2.5,

T (r, f) ⩽ T (r, f (j))−Np(r,
1

f (j)
) +N1+j(r,

1

f
) + S(r, f)

⩽ T (r, f (j)) + (1 + j)N(r,
1

f
) + S(r, f) ⩽ T (r, f (j)) + S(r, f).

Also by Lemma 2.2, T (r, f (j)) ⩽ (j +1)T (r, f) +S(r, f). This completes the proof.
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3. Proof of Theorem 1.1

Without loss of generality, we assume that f (j)(z) and f (k)(z + c) share a = 1

IM. For a general case, we can consider substituting 1
af(z) for f(z). Suppose on

the contrary that f (j)(z) ̸≡ f (k)(z + c).

Set h(z) = f (j)(z) and g(z) = f (k)(z + c). By the assumption that E(0, h(z)) ⊂
E(0, g(z)) and E(∞, g(z)) ⊂ E(∞, h(z)), we have

(3.1)
f (k)(z + c)

f (j)(z)
=

g(z)

h(z)
= G(z),

where G(z) is an entire function.

From (3.1), the lemma of logarithmic derivative and Lemma 2.1 it follows that

(3.2)

m(r,G(z)) = m(r,
f (k)(z + c)

f (j)(z)
) ⩽ m(r,

f (k)(z + c)

f (k)(z)
) +m(r,

f (k)(z)

f (j)(z)
) = S(r, f).

Since G(z) is an entire function, we know that

(3.3) N(r,G(z)) = 0.

Combining (3.2) and (3.3), we get

(3.4) T (r,G(z)) = m(r,G(z)) +N(r,G(z)) = S(r, f).

Set

(3.5) F =
1

h
(

g′

g − 1
− h′

h− 1
) =

g

h
(

g′

g − 1
− g′

g
)− (

h′

h− 1
− h′

h
).

From the lemma of logarithmic derivative again, (3.2) and (3.5) it follows that

(3.6) m(r, F ) = m(r,
g

h
(

g′

g − 1
− g′

g
)− (

h′

h− 1
− h′

h
)) = S(r, f).

By (3.5), we see that the possible poles of F (z) can occur at the zeros of h(z),

the 1 points of h(z) and g(z), and the poles of h(z) and g(z). If z0 is a 1 point of

h(z), then by a short calculation with Laurent series and (8) we know that z0 is

a simple pole of F (z). And hence, the 1 points of g(z) are also the simple pole of

F (z). If z0 is a pole of h(z) with multiplicity p ⩾ 1, by E(∞, g(z)) ⊂ E(∞, h(z)),

we have F (z) = O((z − z0)
p−1). Similarly, the poles of g(z) are not the poles of

F (z). Therefore, the poles of F (z) can occur at the 1 point of h(z), the 1 point of

g(z) and the zeros of h(z). From (3.1), (3.4), the hypothesis N(r, 1
f(j) ) = S(r, f)

and h shares 1 IM with g, we can find that

N(r, F ) ⩽ N(r,
1

h− 1
) +N(r,

1

g − 1
) +N(r,

1

h
)

⩽ N(r,
1

G− 1
) +N(r,

1

G− 1
) +N(r,

1

f (j)
)

⩽ 2T (r,G) + S(r, f) = S(r, f).(3.7)
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Combining (3.6) and (3.7), we conclude that

(3.8) T (r, F ) = m(r, F ) +N(r, F ) = S(r, f).

If F ≡ 0, then by (3.5) we find that g − 1 = A(h− 1), with A ̸= 0 being constant.

We assert that A = 1. Otherwise, if A ̸= 1, then m(r, 1
h ) = 1

1−Am(r, g
h − A) =

S(r, f). Due to N(r, 1
h ) = N(r, 1

f(j) ) = S(r, f), it is easy to deduce that T (r, 1
h ) =

m(r, 1
h ) + N(r, 1

h ) = S(r, f), and then by the first fundamental theorem, we have

T (r, h) = T (r, 1
h ) + O(1) = S(r, f). Noting that h = f (j), by Lemma 2.6 we have

S(r, f) = S(r, h), and hence T (r, h) = S(r, h), which is a contradiction. Then F ̸≡ 0.

And so we can know from (3.5) and (3.8) that

(3.9) m(r, h) ⩽ m(r,
1

F
) +m(r,

g′

g − 1
− h′

h− 1
) ⩽ T (r, F ) + S(r, f) = S(r, f).

Set

(3.10) H(z) =
g′(h− 1)

h′(g − 1)
= (

g′

g − 1
− g′

g
)
g

h′ (h− 1).

It follows from the lemma of logarithmic derivative, (12) and (13) that

(3.11)

m(r,H) = m(r,
g′(h− 1)

h′(g − 1)
) ⩽ m(r,

g′

g − 1
− g′

g
) +m(r,

g

h′ ) +m(r, h− 1) = S(r, f).

We now estimate the poles of H(z). Obviously, the poles of H(z) can only occur at

the 1 point of g, the poles of h and g′, and the zeros of h′. Since h(z) and g(z) share

1 IM, then by Laurent series we know that H(z) is analytic at the 1 point of g. If

h has a pole z∞ with multiplicity p ⩾ 2, then by a short calculation with Laurent

series and (3.10) we see that the poles of h are not poles of H(z). Similarly, the

poles of g′ are not poles of H(z). Let z0 be a zero of h′ with multiplicity q, if z0
is also a zero of h (respectively h− 1) with multiplicity q + 1, then from these and

(3.10) it is easy to see that z0 is a pole of H(z) with multiplicity at most q. Thus

(3.12) N(r,H) ⩽ N0(r,
1

h′ ) + S(r, f),

where N0(r,
1
h′ ) denotes the zeros of h′ which are not zeros of h − 1. From (3.11)

and (3.12), we deduce that

(3.13) T (r,H) = m(r,H) +N(r,H) ⩽ N0(r,
1

h′ ) + S(r, f),

Next, we consider the simple poles of h(z). Let z0 be a simple pole of h. Since

E(∞, h(z)) ⊃ E(∞, g(z)), we need to discuss two cases:

Case 1. z0 is not a simple pole of g. We set

(3.14) h(z) =
a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)

2 + · · ·
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and

(3.15) g(z) = b0 + b1(z − z0) + b2(z − z0)
2 + · · · ,

where aj(j = −1, 0, 1, · · · ) and bj(j = 0, 1, · · · ) are the coefficients of the Laurent

series of h(z) and g(z) respectively. Differentiating (3.14) and (3.15), we obtain

h′(z) = − a−1

(z − z0)2
+ a1 + 2a2(z − z0) + 3a3(z − z0)

2 + · · ·

and

g′(z) = b1 + 2b2(z − z0) + 3b3(z − z0)
2 + · · · .

By (3.10) it follows that

H(z) =
g′(h− 1)

h′(g − 1)
=

[b1 + 2b2(z − z0) + · · · ][ a−1

z−z0
+ a0 − 1 + a1(z − z0) + · · · ]

[− a−1

(z−z0)2
+ a1 + 2a2(z − z0) + · · · ][b0 − 1 + b1(z − z0) + · · · ]

.

Thus H(z0) = 0. If H(z) ≡ 0, then we have g′(h − 1) ≡ 0. By integration, we can

get f(z) is a nonconstant polynomial, this contradicts with the fact that f(z) is a

transcendental function. Thus H ̸≡ 0, and so

(3.16) N1)(r, h) ⩽ N(r,
1

H
).

Case 2. z0 is a simple pole of g. Similarly as in Case 1, let

h(z) =
c−1

z − z0
+ c0 + c1(z − z0) + c2(z − z0)

2 + · · ·

and

g(z) =
d−1

z − z0
+ d0 + d1(z − z0) + d2(z − z0)

2 + · · · .

Then

h′(z) = − c−1

(z − z0)2
+ c1 + 2c2(z − z0) + 3c3(z − z0)

2 + · · ·

and

g′(z) = − d−1

(z − z0)2
+ d1 + 2d2(z − z0) + 3d3(z − z0)

2 + · · · .

By (3.5), it follows that

F (z) =
1

h
(

g′

g − 1
− h′

h− 1
) =

1
c−1

z−z0
+ c0 + · · ·

(− d−1

(z−z0)2
+ d1 + · · ·

d−1

z−z0
+ d0 − 1 + · · ·

−
− c−1

(z−z0)2
+ c1 + · · ·

c−1

z−z0
+ c0 − 1 + · · ·

)
Thus F (z0) = 0. If F (z) ≡ 0, then we have g − 1 = t(h − 1) with t ̸= 0 constant.

Similarly, we can assert that t = 1, then g ≡ h, this contradicts with the assumption

g ̸≡ h. Thus F ̸≡ 0, and so

(3.17) N1)(r, h) ⩽ N(r,
1

F
).

Combining (3.8), (3.13), (3.16) and (3.17), we have

N1)(r, h) ⩽ N(r,
1

F
) +N(r,

1

H
) ⩽ T (r, F ) + T (r,H)

⩽ S(r, f) +N0(r,
1

h′ ) + S(r, f) = N0(r,
1

h′ ) + S(r, f).(3.18)
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Since h and g share 1 IM, it follows from (3.1) and (3.4) that

(3.19) N(r,
1

h− 1
) ⩽ N(r,

1

G− 1
) ⩽ T (r,G) = S(r, f).

Combining (3.18), (3.19), the second fundamental theorem, N(r, 1
h ) = N(r, 1

f(j) ) =

S(r, f) and S(r, h) = S(r, f), we have

T (r, h) ⩽ N(r,
1

h
) +N(r, h) +N(r,

1

h− 1
)−N0(r,

1

h′ ) + S(r, h)

⩽ S(r, f) +N0(r,
1

h′ )−N0(r,
1

h′ ) + S(r, h)

= S(r, f) + S(r, h) = S(r, h),(3.20)

which is impossible. Therefore, f (j)(z) ≡ f (k)(z + c).

4. Proof of Theorem 1.2

Firstly, we prove that T (r, f (j)(z)) and T (r, f (k)(z+c)) can be restricted by each

other. It follows from Lemma 2.2 that

T (r, f (j)(z)) ⩽ T (r, f(z)) + jN(r, f(z)) + S(r, f(z))

⩽ (j + 1)T (r, f(z)) + S(r, f(z))(4.1)

On the other hand, by Lemma 2.2 and Lemma 2.3, we get

T (r, f (k)(z + c)) = T (r, f (k)(z)) + S(r, f)

⩽ T (r, f(z)) + kN(r, f(z)) + S(r, f(z))

⩽ (k + 1)T (r, f(z)) + S(r, f(z)).(4.2)

Combining (4.1) and (4.2), we have

S(r, f (j)(z)) = S(r, f (k)(z + c)) = S(r, f).

Set

H(z) =
f (k)(z + c)

f (j)(z)
,(4.3)

From the assumption E(0, f (j)(z)) ⊂ E(0, f (k)(z + c)) and E(∞, f (k)(z + c)) ⊂
E(∞, f (j)(z)), we can deduce that H(z) is an entire function. That is to say,

N(r,H(z)) = 0.(4.4)

Case 1 If H(z) ≡ 1, then f (j)(z) ≡ f (k)(z + c).

Case 2 We suppose on the contrary that the result of Theorem 1.2 is not valid,
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i.e., H(z) ̸≡ 1. By Lemma 2.1 and the lemma of logarithmic derivative, we know

that

m(r,H(z)) = m(r,
f (k)(z + c)

f (j)(z)
) ⩽ m(r,

f (k)(z + c)

f (k)(z)
) +

+ m(r,
f (k)(z)

f (j)(z)
) = S(r, f).(4.5)

From (4.4) and (4.5), we can obtain that

T (r,H(z)) = m(r,H(z)) +N(r,H(z)) = S(r, f).(4.6)

Without loss of generality, we assume that f (j)(z) and f (k)(z+ c) share a = 1 CM.

For a general situation, we can consider replacing f(z) by 1
af(z). As a result of the

hypothesis that f (j)(z) and f (k)(z + c) share 1 CM, we find that

N(r,
1

f (j)(z)− 1
) ⩽ N(r,

1
f(k)(z+c)
f(j)(z)

− 1
) =

= N(r,
1

H − 1
) ⩽ T (r,H) + S(r, f) = S(r, f).(4.7)

Secondly, we shall estimate the counting functions of the zeros of f (j)(z)− 1 whose

multiplicities are not less than 2.

Differentiating (4.3), we have

(4.8) H ′(z) = (
f (k)(z + c)

f (j)(z)
)′ =

f (k+1)(z + c)f (j)(z)− f (k)(z + c)f (j+1)(z)

[f (j)(z)]2
.

It follows from (4.3) and (4.8) that

H ′(z)

H(z)
=

f (k+1)(z + c)f (j)(z)− f (k)(z + c)f (j+1)(z)

[f (j)(z)]2
· f (j)(z)

f (k)(z + c)

=
f (k+1)(z + c)f (j)(z)− f (k)(z + c)f (j+1)(z)

f (j)(z)f (k)(z + c)

=
f (k+1)(z + c)

f (k)(z + c)
− f (j+1)(z)

f (j)(z)
.(4.9)

Let z0 be a 1 point of f (j)(z) with multiplicity m ⩾ 2. Since f (j)(z) and f (k)(z+ c)

share 1 CM, we obtain that z0 is also a 1 point of f (k)(z + c) with multiplicity

m ⩾ 2. Then by (4.9) and calculation with Laurent series, we see that z0 is also a

zero of H′(z)
H(z) with multiplicity at least m− 1. Thus by Lemma 2.2 we can get

N(2(r,
1

f (j)(z)− 1
) ⩽ 2N(r,

1
H′

H

) ⩽ 2N(r,H) + 2N(r,
1

H ′ )

⩽ 2N(r,H) + 2[N(r,
1

H
) +N(r,H) + S(r, f)]

⩽ 6T (r,H) + S(r, f) = S(r, f).(4.10)
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Together (4.7) with (4.10), we have

(4.11) N(r,
1

f (j)(z)− 1
) = N(r,

1

f (j)(z)− 1
) +N(2(r,

1

f (j)(z)− 1
) ⩽ S(r, f).

By the assumption that E(0, f (j)(z)) ⊂ E(0, f (k)(z + c)) and E(∞, f (k)(z + c)) ⊂
E(∞, f (j)(z)) again, we deduce that

(4.12) N(r,
1

f (j)(z)
)−N(r,

1

f (k)(z + c)
) ⩽ 0, N(r, f (k)(z+c))−N(r, f (j)(z)) ⩽ 0.

From Lemma 2.4, we get

m(r, f (j)(z)) +m(r,
1

f (j)(z)
) +m(r,

1

f (j)(z)− 1
)

⩽ 2T (r, f (j)(z))−Npair(r, f) + S(r, f).(4.13)

Adding N(r, f (j)(z)) +N(r, 1
f(j)(z)

) +N(r, 1
f(j)(z)−1

) on both sides of (4.13) at the

same time and by (4.12), we obtain

T (r, f (j)(z)) ⩽ N(r, f (j)(z)) +N(r,
1

f (j)(z)
) +N(r,

1

f (j)(z)− 1
)−Npair(r, f) + S(r, f)

= N(r,
1

f (j)(z)− 1
) + [N(r,

1

f (j)(z)
)−N(r,

1

f (k)(z + c)
)]

+ [N(r, f (k)(z + c))−N(r, f (j)(z))] + S(r, f)

⩽ N(r,
1

f (j)(z)− 1
) + S(r, f) ⩽ S(r, f),

which yields a contradiction.

Therefore, H(z) ≡ 1. Then we have f (j)(z) ≡ f (k)(z + c).
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