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1. Introduction

The theory of weighted inequalities started with the seminal work of Muckenhoupt

[10], where he proved that the Hardy-Littlewood maximal operator is bounded on

Lp(w), 1 < p < ∞, for positive measurable w : R → R if and only if

(1.1) [w]Ap
:= sup

I

(
1

|I|

∫
I

w

)(
1

|I|

∫
I

w− 1
p−1

)p−1

< ∞,

where the supremum is taken over all intervals and |I| denotes the Lebesgue measure

of the interval. If (1.1) holds, then w is said to be in the Muckenhoupt class Ap and

the quantity [w]Ap
is called its Ap characteristic. Later, Buckley [11] obtained the

sharp dependence of the norm of the maximal operator on the Ap characteristic.

Namely, he proved that

∥M∥Lp(w)→Lp,∞(w) ≲ [w]
1
p

Ap
,(1.2)

∥M∥Lp(w)→Lp(w) ≲ [w]
1

p−1

Ap
,(1.3)

and these are sharp in the sense of the theorems below.

The problem of the sharp dependence of the L2(w) → L2(w) norm of the

Caldéron-Zygmund operator on the A2 characteristic of w is known as the A2-

conjecture. It was first proved by Hytönen [7, 6]. A simpler proof was given by

Lerner [8, 9] proving that the Caldéron-Zygmund operators can be dominated by

the simple sparse operators. Later, it was proved that a number of operators in

harmonic analysis admit pointwise or norm domination by the sparse operators
23
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[12, 13, 2, 1, 8, 9]. On the other hand, Lp and weighted-Lp bounds for the sparse

operators are fairly easy to obtain[1].

Let us have a family S of intervals in R and 0 < γ < 1. S is called γ-sparse,

or just sparse, if there exists pairwise disjoint subsets EA ⊂ A, A ∈ S, such that

|EA| ≥ γ|A|. Let us set for an interval B

⟨f⟩B :=
1

|B|

∫
B

|f |, MBf := sup
A intervals: A⊃B

⟨f⟩A.

For a sparse family S, we define the sparse and the strong-sparse operators as

ASf(x) :=
∑
A∈S

⟨f⟩A · 1A(x),(1.4)

A∗
Sf(x) :=

∑
A∈S

(MAf) · 1A(x),(1.5)

respectively. The sharp weighted bound for the sparse operator[1] is as follows

(1.6) ∥AS∥Lp(w)→Lp(w) ≲ [w]
max(1, 1

p−1 )

Ap
.

The strong-sparse operators were introduced by Karagulyan and the author in

[3], where Lp and weak-L1 estimates are proved in the setting of an abstract measure

space with ball-basis. In this paper, we obtain the sharp dependence of the weighted-

L2 norm of the strong-sparse operator on the A2 characteristic of the weight.

Theorem 1.1. For an A2 weight w we have the bound

(1.7) ∥A∗
S∥L2(w)→L2,∞(w) ≲ [w]

3
2

A2
.

The inequality is sharp in the following sense: there exist a sparse family S and a

sequence of weights wα such that

(1.8) [wα]A2
→ ∞, as α → 0,

and for any function ϕ : [0,∞) → [0,∞) with ϕ(x)/x
3
2 → 0 as x → ∞, we have

(1.9)
∥A∗

S∥L2(wα)→L2,∞(wα)

ϕ([wα]A2
)

→ ∞, as α → 0.

Theorem 1.2. For an A2 weight w we have the bound

(1.10) ∥A∗
S∥L2(w)→L2(w) ≲ [w]2A2

.

The inequality is sharp in the following sense: there exist a sparse family S and a

sequence of weights wα such that

(1.11) [wα]A2
→ ∞, as α → 0,

and for any function ϕ : [0,∞) → [0,∞) with ϕ(x)/x2 → 0 as x → ∞, we have

(1.12)
∥A∗

S∥L2(wα)→L2(wα)

ϕ([wα]A2
)

→ ∞, as α → 0.
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On the other hand, we have the following simple partial improvement for the

strong bound. For this theorem we assume that all the intervals in the statement,

proof and in the definition of the strong-sparse operator are dyadic.

Theorem 1.3. Let the sparse family S be such that for any two A,B ∈ S either

A ⊂ B or B ⊂ A. Then, we have

(1.13) ∥A∗
S∥L2(w)→L2(w) ≲ [w]

3
2

A2
.

Looking at the definition of the strong-sparse operators, we see that MBf ≤
Mf(x) for any x ∈ B. Thus, MBf ≤ ⟨Mf⟩B and we obtain

(1.14) A∗
Sf(x) ≤ AS(Mf).

Then, one can try to black-box the sharp weighted bounds (1.2), (1.3) and (1.6)

for Theorem 1.1 and Theorem 1.2. As it will be shown in Section 2, the weighted

weak-L2 bound for the sparse operator is the same as for the strong one. Thus,

Theorem 1.1 will not follow from such a black-box. Instead, we will decompose the

operator according to the magnitude of the MBf for the sparse intervals B, then,

we will use the weighted weak bound of the maximal function (1.2). We will do this

in Section 2.

As for Theorem 1.2, we see that by black-boxing the above mentioned inequalities

we trivially get the upper bound, i.e.

∥A∗
S∥L2(w)→L2(w) ≤ ∥AS ◦M∥L2(w)→L2(w)

≲ ∥AS∥L2(w)→L2(w)∥M∥L2(w)→L2(w) ≲ [w]2A2
.

Thus, the interesting thing about Theorem 1.2 is to obtain the sharpness of this

estimate. For that we will construct a weight which is a lacunary mixture of the

dual power weights xα−1 and x1−α. We will do this in Section 3.

In Section 4, we will prove Theorem 1.3.

We say a ≲ b if there is an absolute constant c, maybe depending on the sparse

parameter γ, such that a ≤ c · b. Furthermore, we say a ∼ b if a ≲ b and b ≲ a.

2. The upper bound of Theorem 1.1

2.1. A well-known property of A∞ weights. Following [5, 4], we say that w is

an A∞ weights if

(2.1) [w]A∞ := sup
I

1

w(I)

∫
I

M(w1I)(x)dx < ∞.

It is well-known that any Ap weight is also an A∞ weights and that a reverse Hölder

inequality holds for in the latter class. The following theorem with sharp constants

is due to Hytönen, Pérez and Rela[4].
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Theorem 2.1. If w is an A∞ weight and ϵ = 1
4[w]A∞

, then ⟨w1+ϵ⟩I ≤ 2 (⟨w⟩I)1+ϵ,

for any interval I.

This implies the following lemma.

Lemma 2.1. For any cube Q and measurable subset E ⊂ Q, we have

w(E) ≤ 2w(Q)

(
|E|
|Q|

)c/[w]A∞

,

where c is an absolute constant.

Proof. Let ϵ be as before.∫
E

w ≤
(∫

E

w1+ϵ

) 1
1+ϵ

· |E|ϵ/(1+ϵ) (Hölder)

≤ ⟨w1+ϵ⟩
1

1+ϵ

Q · |E|ϵ/(1+ϵ) · |Q|1/(1+ϵ)

≤ 2⟨w⟩Q|E|ϵ/(1+ϵ) · |Q|1/(1+ϵ) (Reverse Hölder)

= 2w(Q)

(
|E|
|Q|

)c/[w]A∞

.

2.2. The proof of the weak bound. The idea is to group MBf ’s, B ∈ S,

according to their magnitude and estimate each group applying Lemma 2.1 and

the weighted weak bound for the maximal operator (1.2). Denote α := 1
[w]∞

, and

for λ > 0 let

A0 := {B ∈ S : MBf > αλ},

Aj := {B ∈ S : 2−j+1αλ ≥ MBf > 2−jαλ},

for j = 1, 2, . . . . Thus, Aj ’s partition S. We write

w{A∗
Sf > λ} ≤

∞∑
j=0

w
{ ∑

B∈Aj

(MBf)χB > λ2−j/2C
}

≤ w

( ⋃
B∈A0

B

)
+

∞∑
j=1

w
{ ∑

B∈Aj

χB >
1

α
2j/2C

}

≤ w
{
Mf > λα

}
+

∞∑
j=1

2w

 ⋃
B∈Aj

B

 |{
∑

B∈Aj

χB > 1
α2

j/2C}|c/[w]∞

|
⋃

B∈Aj

B|c/[w]∞

≤ w
{
Mf > λα

}
+ 2

∞∑
j=1

w

 ⋃
B∈Aj

B

 2−2j/2Cα· c
α

≤ w
{
Mf > λα

}
+ 2

∞∑
j=1

w
{
Mf > 2−jλα

}
2−cC2j/2

≲
[w]2A∞

λ2
∥M∥2L2→L2,∞ ,
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where the first line is due to the triangle inequality, the third inequality follows

from Lemma 2.1 and the fourth one from the fact, that Aj is a sparse collection. It

reimains to apply the bound (1.2) to get the upper bound of Theorem 1.1.

2.3. The lower bound of Theorem 1.1. Let w = |x|α−1 and σ = |x|1−α be the

dual power weights, 0 < α < 1. We know, for example from [11], that

(2.2) [w]A2
= [σ]A2

∼ 1

α
.

Let S := {[0, 2−k) : for k ∈ N} be a sparse family. Then, we claim

(2.3) ∥A∗
S(σ1[0,1))∥L2,∞(w) ∼ [w]

3/2
A2

∥σ1[0,1)∥L2(w).

The square of the right-hand side of (2.3) equals 1
(2−α)α3 . On the other hand,

∥A∗
S(σ1[0,1))∥2L2,∞(w) ≥

1

α2
w{A∗

S(σ1[0,1)) >
1

α
}

=
1

α2
w{

∞∑
k=1

1[0,2−k) ≳
1

α
} =

1

α2
w([0, 2−

c
α )) ∼ 2−

c
αα

α3
.

So the proof of Theorem 1.1 is complete.

3. The lower bound of Theorem 1.2

3.1. Construction of the weight. Let 0 < α < 1 be small enough integer power

of 2, i.e. α = 2−a for large enough integer a. Let us define the weight σ : R → [0,∞)

to be even and

(3.1)

σ(x) :=


22k(1−α)

α (x− 2−(k+1))1−α, x ∈ [2−(k+1), (1 + α)2−(k+1)) for k ∈ N
xα−1, x ∈ [(1 + α)2−(k+1)), (1− α)2−k) for k ∈ N
22k(1−α)

α (2−k − x)1−α, x ∈ [(1− α)2−k, 2−k) for k ∈ N
xα−1, x ∈ [ 12 ,∞).

The dual weight to σ is w(x) := σ(x)−1. We will prove that

(3.2) sup
I

1

|I|2
( ∫

I

w
)
·
( ∫

I

σ
)
∼ 1

α
,

that is, σ ∈ A2 with [σ]A2 ∼ 1
α .

First, we show that (3.2) holds for dyadic intervals. Let us partition all dyadic

intervals into three groups.
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a. I = [0, 2−k) for some k ∈ N0. Then, we compute

2−k∫
2−(k+1)

w(x)dx =

(1−α)2−k∫
(1+α)2−(k+1)

x1−αdx+ α22k(α−1)

2−k∫
(1−α)2−k

(2−k − x)α−1dx

+ α22k(α−1)

(1+α)2−(k+1)∫
2−(k+1)

(x− 2−(k+1))α−1dx

=
(1− α)2−α2−(2−α)k − (1 + α)2−α2−(2−α)(k+1)

2− α

+ α22k(α−1) · α
α(2−kα + 2−(k+1)α)

α
= c(α)2−k(2−α).(3.3)

In the above computations and below c(α) is a constant depending on α

absolutely bounded and away from 0. It will be different at each occurence.

Next, we have

(3.4)
2−k∫
0

w(x)dx =

∞∑
j=k

2−j∫
2−(j+1)

w(x)dx =

∞∑
j=k

c(α)2−j(2−α) = c(α) · 2−k(2−α).

For σ we have

2−k∫
2−(k+1)

σ(x)dx =

(1−α)2−k∫
(1+α)2−(k+1)

σ(x)dx+

2−k∫
(1−α)2−k

σ(x)dx+

(1+α)2−(k+1)∫
2−(k+1)

σ(x)dx

=
(1− α)α2−kα − (1 + α)α2−(k+1)α

α
+

22k(1−α)

α
·

·

 2−k∫
2−k(1−α)

(2−k − x)1−αdx+

(1+α)2−(k+1)∫
2−(k+1)

(x− 2−(k+1))1−αdx


= c(α)2−kα +

22k(1−α)

α
· α

2−α(2−k(2−α) + 2−(k+1)(2−α))

2− α

= c(α)
2−kα

α
+ α2−kα = c(α)

2−kα

α
.(3.5)

Then, we have

(3.6)
2−k∫
0

σ(x)dx =

∞∑
j=k

2−j∫
2−(j+1)

σ(x)dx =

∞∑
j=k

c(α)
2−jα

α
= c(α)

2−kα

α
.

Combining the two computations above, we have for (3.2)

(3.7) 22k
( 2−k∫

0

w
)
·
( 2−k∫

0

σ
)
= c(α)22k2−k(2−α) 2

−kα

α
∼ 1

α
.
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b. One of the following holds: for some k ∈ N0, I ⊂ [2−(k+1), (1 + α)2−(k+1)),

I ⊂ [(1+α)2−(k+1), (1−α)2−k) or I ⊂ [(1−α)2−k, 2−k). On these intervals,

the weights w and σ are just rescaled versions of the power weights. Thus,

we immediately have

(3.8)
1

|I|2
( ∫

I

w
)
·
( ∫

I

σ
)
≲

1

α
,

by the A2 characteristic of the power weights (2.2).

c. I ⊂ [2−(k+1), 2−k) and either [(1 − α)2−k, 2−k) ⊊ I or [2−(k+1), (1 +

α)2−(k+1)) ⊊ I for some k ∈ N0. This is the intermediate case between

the above two. The computation for the choice of the last two conditions

is identical, so we consider only one of them. Let |I| = 2−m so that

I = [2−k − 2−m, 2−k) and k+2 ≤ m < k+ a, where we recall α = 2−a. We

start calculating

2−k∫
2−k−2−m

w(x)dx =

(1−α)2−k∫
2−k−2−m

x1−αdx+ α22k(α−1)

2−k∫
(1−α)2−k

(2−k − x)α−1dx

=
(1− 2−a)2−α2−(2−α)k − 2−(2−α)k(1− 2k−m)2−α

2− α

+ α · 22k(α−1)

2−k∫
2−k(1−α)

(2−k − x)α−1dx

= c(α,m)2−k(2−α)
(
(1 +

2k−m − 2−a

1− 2k−m
)2−α − 1

)
+ αα2−k(2−α)

= c(α,m)2−k(2−α)2k−m + αα2−k(2−α) = c(α,m)2−k(2−α).

As before c(α,m) is a positive constant bounded from above and away from

0. For σ we write

2−k∫
2−k−2−m

σ(x)dx =

(1−α)2−k∫
2−k−2−m

σ(x)dx+

2−k∫
(1−α)2−k

σ(x)dx

=
(1− α)α2−kα − 2−kα(1− 2k−m)α

α

+
22k(1−α)

α

2−k∫
2−k(1−α)

(2−k − x)1−αdx

= c(α,m)2−kα
(1 + 2k−m−2−a

1−2k−m )α − 1

α
+ α2−kα

= c(α,m)2−kα · 2k−m + 2−a · 2−kα = c(α,m)2−kα+k−m.
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Here, in the penultimate equality we used the the Taylor expansion

(3.9) (1 + x)β − 1 ∼ βx, for 0 < x < 1.

Thus, for (3.2) we have
1

|I|2
( ∫

I

w
)
·
( ∫

I

σ
)
= 22m · c(α,m)2−kα+k−m · 2−k(2−α) ∼ 2m−k ≲ 2a =

1

α
.

We conclude, that the dyadic A2 characteristic of w is c
α . It is important here,

that the supremum is attained at a large number of dyadic intervals and not only

on one chain.

We turn to the case of a general interval I. First of all, the arguments for the case

b are also true for all intervals I due to the A2 characteristic of power weights. On

the other hand, if I can be covered by a dyadic interval of a comparable size, then

again (3.8) holds. Otherwise, let k be such that I ⊂ [0, 2−(k−1)), I ̸⊂ [0, 2−(k+1))

and |I| ≲ 2−k. We distinguish two cases.

(i) One of the following holds: (1+α)2−(k+1) ∈ I, (1−α)2−k ∈ I, (1+α)2−k ∈
I, (1 − α)2−(k−1) ∈ I. All four cases are similar, so we only consider the

second one. For σ we have

(3.10)
∫
I

σ(x)dx ∼ 2−k(α−1)|I|.

As for w we write

(3.11)
∫
I

w(x)dx ∼
(
(1− α)2−k − l(I)

)
2−k(1−α) +

∫ r(I)

(1−α)2−k

w(x)dx,

where l(I) and r(I) are the left and right endpoints of I.

(i.1) If r(I) < (1− α)2−k + α2−(k+1), then we have

(3.12)
∫
I

w(x)dx ∼ |I|2−k(1−α),

and so

(3.13)
1

|I|2
( ∫

I

w
)
·
( ∫

I

σ
)
≲ 1.

(i.2) If (1 − α)2−k + α2−(k+1) < r(I), then using the computation in (3.3), we

have

(3.14)
∫ r(I)

(1−α)2−k

w(x)dx ≲ 2−k(2−α).

Hence, we obtain

1

|I|2
( ∫

I

w
)
·
( ∫

I

σ
)
≲

1

|I|2
2−k(2−α) · |I|2−k(1−α) ≲

2−k

|I|
≲

1

α
,

where the last step is due to l(r) < (1− α)2−k < (1− α)2−k + α2−(k+1) <

r(I).
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(ii) Let us have (1 − α)2−k /∈ I, (1 + α)2−k /∈ I and 2−k ∈ I. Without loss

of generality we can assume r(I)− 2−k ≤ 2−k − l(I). Then, we have |I| ∼
(2−k − l(I)). Furthermore,∫

I

σ(x)dx ∼
2−k∫

l(I)

σ(x)dx, and
∫
I

w(x)dx ∼
2−k∫

l(I)

w(x)dx.

Thus, as w and σ are just power weights on [(1−α)2−k, 2k), and the estimate

(3.2) holds.

3.2. Construction of the sparse family. Let us take the following sparse family:

(3.15) S := {[2−k − 2−j , 2−k) : for all k, j ∈ N and j ≥ a+ k}.

We also denote Bk,j := [2−k − 2−j , 2−k). Using (3.6), we have

(3.16) MBk,j
(σ) ∼ 2k

2−k∫
0

σ(x)dx ∼ 2k(1−α)

α
,

and the corresponding strong-sparse operator is

(3.17) A∗
Sf(x) :=

∞∑
k=1

2k(1−α)

α

∞∑
j=a+k

1Bj,k
(x).

3.3. The lower bound. We claim that

(3.18)
1∫

0

A∗
S(σ)(x)

2w(x)dx ∼ 1

α4

1∫
0

σ(x)dx.

By (3.17), we can write

(3.19)
1∫

0

S∗(σ)(x)2w(x)dx ∼
∞∑
k=1

22k(1−α)

α2

1∫
0

( ∞∑
j=k+a

1Bk,j
(x)
)2

w(x)dx.

We make a change of variables in the integral and see that it realizes the sharp

constant for the regular sparse operator. Putting y = x−(1−α)2−k

2−kα
, we can write

1∫
0

( ∞∑
j=k+a

1Bk,j
(x)
)2

w(x)dx = α2αk−2k

1∫
0

( ∞∑
j=1

1[0,2−j)(y)
)2

yα−1dy

∼ α2αk−2k · 1

α3
=

2αk−2k

α2
,

where the penultimate estimate is a direct computation. Plugging this into (3.19),

we obtain
1∫

0

A∗
S(σ)(x)

2w(x)dx ∼
∞∑
k=1

22k(1−α)

α2
· 2

αk−2k

α2
∼ 1

α5
∼ 1

α4

1∫
0

σ.

This finishes the proof of Theorem 1.2.
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4. Proof of Theorem 1.3

We can assume that the intervals in the sparse family are in some bounded

interval, and the general case will follow by a limiting argument. Let us enumerate

the intervals of the sparse family S.

B1 ⊃ B2 ⊃ · · · ⊃ Bk ⊃ · · · .

Let g ∈ L2(w). We inductively choose π(Bi) ⊃ Bi such that it is the largest

interval with MBi
(g) ≤ 2⟨g⟩π(Bi) and π(Bi) ⊂ π(Bi−1). We can enumerate {π(Bi)}

by A1 ⊋ A2 ⊋ . . . . Note, that there can be many Bi with π(Bi) = Aj . Moreover,

recalling that Ai are dyadic we see that {Ai}i is again a sparse family.

Consider the following function

g̃(x) =

{
1

|Ai\Ai+1|
∫
Ai\Ai+1

g, x ∈ Ai \Ai+1 for some i ∈ N,
g(x), otherwise.

First of all, it is clear that for all i

(4.1)
∫
Ai

g =

∫
Ai

g̃.

Let B ∈ S be such that Ai = π(B). Then, Ai+1 ⊊ B due to the choice of π(B).

Then, by (4.1) and by the definition of g̃, we have

⟨g⟩Ai
=

1

|Ai|

(∫
Ai+1

g +

∫
Ai\Ai+1

g
)
≲

1

|Ai|

∫
Ai+1

g̃ +
1

|B \Ai+1|

∫
B\Ai+1

g̃

≲
1

|B|

∫
B

g̃ = ⟨g̃⟩B .

We conclude, that for all x

(4.2) A∗
Sg(x) ≲ AS g̃(x).

We turn to the norm of g̃.∫
R
g̃2w =

∑
i

∫
Ai\Ai+1

g̃2w +

∫
R\∪(Ai\Ai+1)

g2w

≤
∑
i

(
1

|Ai \Ai+1|

∫
Ai\Ai+1

g

)2

w(Ai \Ai+1) +

∫
R\∪(Ai\Ai+1)

g2w

≤
∑
i

w(Ai \Ai+1) · σ(Ai \Ai+1)

|Ai \Ai+1|2

∫
Ai+1\Ai

g2w +

∫
R\∪(Ai\Ai+1)

g2w

≤
∑
i

w(Ai) · σ(Ai)

|Ai|2

∫
Ai+1\Ai

g2w +

∫
R\∪(Ai\Ai+1)

g2w ≲ [w]A2

∫
R
g2w.

Combining the last estimate, (4.2) and the sparse bound (1.6) we conclude

∥A∗
Sg∥L2(w) ≲ ∥AS g̃∥L2(w) ≲ [w]A2

∥g̃∥L2(w) ≲ [w]
3
2

A2
∥g∥L2(w).

And the proof of Theorem 1.3 is complete.
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