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MODELLING SYSTEM RELIABILITY OF
FAULT-TOLERANT SYSTEMS WITH THE
SEMI-MARKOV STATE SPACE APPROACH

Fault-tolerant systems can be analyzed by Markov state space approach but for more sophisticated and
large systems, there should be some other means to estimate the system parameters. Here we extend the
Bounding Theorem, we use it in software developements of ultrareliable computer systems to Fire & Gas
systems which is a new approach in their safety parameter calculations.
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Introduction. Traditionally, the reliability analysis of a complex system has been
accomplished with combinatorial mathematics. The standard fault-tree method of reliability
analysis is based on such mathematics. Unfortunately, the fault-tree approach is incapable
of analyzing systems in which reconfiguration is possible. Basically, a fault tree can be
used to model a system with :

1. Only permanent faults (no transient or intermittent).

2. No reconfiguration.

3. No time or sequence failure dependencies.

4. No state-dependent behavior.

Because fault trees are easier to solve than Markov models, fault trees should be used
wherever these fundamental assumptions are not violated.
In reconfigurable systems the critical factor often becomes the effectiveness of the
dynamic reconfiguration process. It is necessary to model such systems by using more
powerful Markov modelling technique. A Markov process is a stochastic process whose
behavior depends only upon the current state of the system. Markov state-space models
have four main categories:

1. Discrete space and discrete time.

2. Discrete space and continuous time.

3. Continuous space and discrete time.

4. Continous space and continuous time.

The second category is the one most useful for modelling fault-tolerant systems. Only
models that contain a finite number of states will be used. However, the transition time
between the states is not discrete and can take on any real value.

Reliability Modelling. The first step in modelling a system with a discrete space and
continuous-time Markov model is to represent the state of the system with a vector of
attributes that change over time. These attributes are typically system characteristics such
as the number of working processors, the number of spare units or the number of faulty
units that have not been removed. The more attributes in the model, the more complex the
model, thus, the smallest set of
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attributes that can accurately describe the fault-tolerant behavior of the system is typically
chosen. The next step in the modelling process is to characterize the transition time from
one state to another. Because this transition time is rarely deterministic, they are
described by a probability distribution.

Typically, the transitions of a fault-tolerant system model fall into two categories;
slow failure and fast recovery transitions. We will start modelling with two major types of
systems; no reconfigurable and configurable systems.

Let T be a random variable representing the time to failure of the system. Next, we have to
define a distribution for T, say F(t). typically electronic component and consequently
systems are assumed to fail according to exponential distribution [1]:

F(t)=Prob[T <t]=1-e".

Then the important concept in reliability modelling the hazard rate, h(t) is defined

as:

ht)=F'(t)/[1-F()]=4,
which is the failure rate itself. The exponential distribution is the only distribution with a
constant hazard rate. The Markov model representing this system is as follows.

Fig. 1. Model of simplex system

In this Markov model, state 1 represents the operational state in which our system
works, state 2 represents the system failure state in which the simplex system has failed,
and the transition from state 1 to state 2 represents the occurrence of the failure.

For reliability modelling purposes, electronic components are generally assumed to
fail according to the exponential distribution . Some handbooks offer a more complete
discussion on the problem of estimating the reliability of electronic components. Once the
reliability of each component in a system is known, the failure rate of the system is simply
the sum of the failure rates of the individual components.

For example, suppose A+, A2, ..., Anrepresent the failure rates of the components,
letting T be a random variable representing the time of failure of the system and T,
i=1,2,...,n, representing the time of the i th component of failure, the distribution of failure
for the system F.(t) is determined as follows [2] :

F.(t)y=Prob [T <t]=
= Prob[ min{T},T,,....T,} <t |=
=1-Prob [T, >¢, T, >t,...,T, > t].
And if we assume that the components fail independently, then :
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F.(t)=1-]]Prob [T, >1]=
i=1
=1—Hexp(—li )=
i=1

=1-exp+ {— anli tj,

i=1

which is an exponential distribution with failure rate :

2=,
i=l

Modelling Static Redundant Systems. The triple modular redundant (TMR) is
one of the simplest fault tolerant architectures and the more sophisticated model of this
kind which can be called NMR (N modular redundant). The computers are assumed to be
physically isolated, so that a failed computer cannot affect another working computer. This
means that they are assumed to fail independently.

A
Error! @n—b@ .................. ,@

Fig. 2. Model of NMR System

The solution of the Markov model is conceptually simple, although the details can
be cumbersome. The n-state Markov model leads to a system of n-coupled differential
equations. These equations may simply be represented with the vector notation. Let P
be a vector that gives the probability of being in each state at time t. The n-state Markov
model in Figure 2 [3] is

P (1) =[P,(1), P,(1),.... P,(1)].
The system of differential equations is given by :

P'(t)=P(1)A4,
where
[—ni nl 0 |
0 -(m-DA (m-DHA - 0
A=| 0 —-(n-2)4
' (n—-1A
L 0 0 i
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The matrix A4 is easily constructed by thinking of the Markov model in terms of flow
in and flow out. You can begin with the off-diagonal components. As there is a transition
from state 1 to state 2 the entry at a;2 is nonzero, and the value of ay; is the transition rate
ni . The diagonal entries are obtained by summing all non-diagonal entries on the same
row and negating it. The solution will be :

P(t) = P(0)e™

where

P(0)=[1,0,0]
is the initial state probability and the system begins in a fault free state. If the model is
changed in Figure 3, then the matrix 4 becomes:

—ni ni e 0
a —-n-DA-a (m-1)A4 0

A=| 0 -(n-2)4
— 0 0_

Fig. 3. Altered model

The probability of NMR system failure as a function of mission time and also as a
function of N is given in Figures 4 and 5.

-
a?
0 w190
Powg -
f
1wr20L
10720 L L L . s L ' 130 TR T S S S
w? 1! 10 10 10t 18 wf 10’ 2 4 & 8 10 12 14 16
Time, hr N
Fig. 4. As a function of mission time Fig. 5. As a function of N
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Modelling Reconfigurable Systems. Fault tolerant systems are often designed by
using a strategy of reconfiguration. Reconfiguration strategies come in many varieties, but
always involve the logical or physical removal of a faulty component. Two basic
reconfiguration strategies occur-degradation and replacements with spares. The
degradation method involves the permanent removal of a faulty component without
replacement. The reconfigured system continues with reduced set of components. The
replacement with spares method involves both the removal of faulty components and their
replacement with a spare.

Reliability Analysis Programs. Some reliability analysis programs have been
developed for ultra reliable computer/electronic system architectures. These methods
provide an efficient means for computing accurate upper and lower bounds for the state
probabilities of a large class of semi-Markov models. These programs distinguish between
fast and slow transitions. If the mean transition time p is small with respect to the mission
time T, that is u<T, then the transition is fast, otherwise it is slow. The mathematics on
which these reliability analysis programs are based is called "Bounding Theorem".

Path-Step Classification & Notation. The theorem provides bound on the death
state probabilities at a specified time. It is assumed that the system is initially in a single
state that is P(0) = 1. The programs find every path from the start state to a death state.
The contribution of each path to system failure is calculated separately by using the semi-
Markov bounding theorem of white.

Each state along the path can be classified into one of there classes that are
distinguished by the type of transitions leaving the state. A state and all transitions leaving
it will be referred to as a "path step". The transition on the path that is currently being
analyzed will be referred to as a "path step". The transition on the path that is currently
being analyzed will be referred to as the "on-path transition".

The remaining transitions will be referred to as the "off-path transitions". The
classification is made on the basis of whether on-path and off-path transitions are slow or
fast [4].

Class | path step ; Slow on path, slow off path . If all transitions leaving the state are slow,
then the path step is class 1. The rate of on-path exponential transition is A;.
(see fig 6).

Fig. 6. Class | path step
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An arbitrary number of slow off-path transitions can occur and the sum of their
exponential transition rates is A; .

Class 2 path step ; Fast on path, arbitrary off path . If the on-path transition is fast, the
path step is class 2. An arbitrary number of slow or fast off-path transitions may exist. As
before, the slow off-path, exponential transitions can be represented as a single transition
with a rate equal to the sum of all the slow off-path transitional rates. The distribution of
the fast on-path transition is F; ;.

The distributions of time for the kth fast transition from state i is referred to as F;, (the
probability that the next transition out of state i goes into state k and occurs within time t is
Fix) . Three measurable parameters must be specified for each fast transition. The
transition probability p(F* ), the conditional mean u(F*,), and the variance o® (F*,\), given
that this transition occurs. The asterisk is used to note that the parameters are defined in
terms of the conditional distributions combined with definition.

Mathematically, these parameters are defined as follows:

p(F)= TH [1-F, (0 ]aF,, .

u (F)) =ﬁ ] [1-F, ()] dF,, ).
o (F,-l)=#m er [1-F, 0] dF, () - > (F,).

Experimentally, these parameters correspond to the fraction of times that a fast
transition is successful and the mean and the variance of the conditional distribution given
that the transition occurs.

Fig. 7. Class 2 path step . Fast on path, arbitrary off path

Note, in any experiment where competing processes in a system are studied, the
observed empirical distributions will be conditional. The time it takes a system to transition
to the next state will only be observed when that transition occurs. These expressions are
defined independently of the exponential transitions e;.
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Consequently, the sum of the fast transition probabilities p(F*x) must be 1. In
particular, if only one fast transition occurs, its probability is | and the conditional mean is
equivalent to the unconditional mean. (The user does not have to deal explicitly with the
unconditional distributions Fx. However, to develop the mathematical theory, the
distribution must be used)

Class 3 path step : slow on path, fast off path. The on-path transition must be slow for a
path step to be categorized as class 3. Both slow and fast off-path transitions can exist;
however, at least one off-path transition must be fast (see Fig.7). The path step 2 3in
the moﬂa of the triad plus one spare shown in Figure 8 are in this class. The slow on-path
transition rate is o, The sum of the slow off-path transition rates in ;. As in class2, the
transition probability p(G*«) , the conditional mean u(G*x), and the conditional variance
o *ix) must be given for each fast off-path transition with distribution Gj. Two letters are
used to help track whether the transition is a class 2 (labeled F) or class 3 (labelled G) in
the current path.

Fig. 8. Class 3 path step. Slow on path, fast off path

In either case, the analyst supplies the conditional mean, the conditional standard
deviation, and the transition probability. Although, the parameters described above suffice
to specify a class 3 path step, the mathematical theory is more easily expressed in terms
of the holding time in a state. It is the time the system remains in the state before it
transitions to some other state. The bounding theorem is expressed by using a slightly
different holding time, which will be referred to as "recovery holding time" to prevent
confusion. The recovery holding time is the holding time in the state with the slow
exponential distributions removed. Because the slow exponential transitions occur at a
rate many orders of magnitude less than the fast transitions, the recovery holding time is
approximately equal to the traditional holding time. Let H; represent the distribution of the
recovery holding time in state j:

Hj(z)=1—ﬁ[1—Gj!k(z)] .

Then the following parameters are used in the theorem :
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utt )= [T11-6,, )

k=1

o*(H ) =2[t[[[1-G,, @ Jar—p* 1 ).
0 k=1
These parameters are the mean and the variance of the holding time in state j
without consideration for slow exponential transitions (i.e., with the slow exponential
transition removed) . These parameters do not have to be supplied to the programs. The
program derives these parameters from the other available inputs, such as p(G¥«),
u( *j,k), and 02( *j,k) 02( *j,k) , as follows [4]:

u(H )= Zp(G;,k)u(G;,k )

o’ (H )= {"Zp(G;,k)[az(G;,k)+ WG] ).

The parameters p(G*x), n(G*«) , and c*(G*) are defined exactly as the class 2
path step parameters.

Although the fast distributions are specified without consideration of the competing
slow exponential transitions, the theorem gives bounds that are correct in the presence of
such exponential transitions . The parameters were defined in this manner to simplify the
process of specifying a model . throughout the paper, the holding time in a state in which
the slow transitions have been removed will be referred to as "recovery holding time." For
convenience, when referring to a specific path in the model, the distribution of a fast on-
path transition will be indicated by a single subscript that specified the source stat. For
example, if the transition with distribution Fj is the on-path transition from state j, then it
can be referred to as F;, where Fjis the kth fast transition from state j and F; is the on-path
fast transition from state j.

Let us formulate the result. Let D(T) be the probability of entering a particular
death state within the mission time T, following a path with k class1, m class 2 and n
class 3 path steps.

LB < D(T)<UB,

where

UB = o[ | pF)] T, (),

LB = Q(T—A)ﬁ p(g*){l_giy(ﬂ*)_ uz(F,-*):ZGZ(F,-*)}><

i=1 i

2 S .

J

xﬁa,{y(}].)_("j +ﬁj)[#2(H,-)+02(Hj)]_ yz(Hj)Jraz(Hj)}
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forallrp,s;>0with A=ry+r...+r+s+s,...+s, and Q(T) = the probability of
traversing a path consisting of only the class 1 path steps within time T.

The theorem is true of any r>0 and s>0 provided that A < T. Different choices of
these parameters will lead to different bounds. The SURE program uses the following
values of r;and s;.

1/3

r =Rl (FH+ o (FD],

[ wayorw)]|
s, =1T .
! p(H ;)

These values have been found to give very close bounds in practice and are
usually very near the optimal choice [1].
Two simple algebraic approximations for Q(T) were given. One approximation
overestimates and one approximation underestimates, and are given respectively as
Ay Ay TF

O(T) < 0,(T) = A2t Qabgabgﬂ{k552@+m}

k
Both Qu(T) and Q/(T) are close to Q(T) as long as Z(Ai +y)T issmall, thatis,
i=1
as long as the mission time is short compared with the average lifetime of the
components. Some programs use the following slightly improved upper bound on Q(T) [4]:
R 1
oM <0, (N) =[],
|S] s
where
S={i|AT<1}.
This bound is obtained by removing all the fast exponential transitions from the

Q(T) model. Because the path is short, the probability of reaching the death state is larger
than that of the original Q(T) model.
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r. ouUs2NhY

MUOULNRULELE VHUSUUUR HhUUSUNRL ZUUTYU QO Z0RUULPNRESUL UNYELUMNCNRUL
YhUUU U UNYSUL YhXUY LG SUCMUONRESUL ORSUSRNOUUUR

whwimdubph  tuundwdp phdwgynit hwdwlwupgbpp Jupnn B dipmsyl;  Uwpyndub
Jhdwlubph wwpwdmput oquwugnpsdwdp, uwluyt, btpp hwdwlupgbpp pajulwbwswth pupn b,
wbhpudton L oquuugnpst) wy bEnuwbwlubp' JEpehtttphu wwpwdbnpbpp hwodupllnt tyuwnwlny:
Zujuiwluwimpnibutph wbumpjut  jEonpniwfwt  swhdwbught piopidh - hhdwt Jpu dowljdus
Uninkgnudp, npp [4] wpiwnwbpmd oqunuugnpdytky k ghppuipdn hnuwhnippudp odinws pndthyniphpughl
hwdwljupgbph Spugpuhtt wmywhnynidubph dpwljuwb dwudwbwl, tkpju wohuwnwipnd wnwpusynud k
hwljwhpnthwjhtt hntuw hnpjwt wwpwdtnpbph quuhwndwy piuqujunh Ypu:

Unwigpuypl punkp. Jhd&wlutph wwpwsnipnil, puhwinidwinhdwgyn, hntuwhnieiniy, dhoht
wpdtp, nhuykipuhu:

P. IAMYYK

MOJEINPOBAHUE HAZNEXHOCTHU TOJIEPAHTHBIX OTHOCUTEJIBHO OTKA3OB CUCTEM C
IIPUMEHEHUEM ITOJTYMAPKOBCKUX ITPOCTPAHCTB COCTOAHUMI

TonepaHTHEIE OTHOCHTENBPHO OTKAa30B CHUCTEMBI MOTYT OBITh MCCIeJOBAaHBI HA OCHOBE IPHUMEHEHMT
TIOJTlyMapKOBCKMX IPOCTPAHCTB cocTofHumil. OfHAKO B CiIydasx, KOTJa CHCTeMBI JOCTATOYHO CJIOXKHBI, HEOOXOZMMO
BOCIIO/IB30BAThCA OPYTMMHU METOJAMU C LIeJIbI0 BBIYMCJIEHHUsS IapaMeTpoB Takux cucreM. ITomaxon, paspaGoTaHHBIH Ha
OCHOBe IEHTPAJbHOM IpefeNbHOM TeopeMbl TEOPUM BePOATHOCTEH M TpPHUMeHeHHBIH B [4] mpu paspaGorke
TIPOTPaMMHOTO OGecIieyeHHs KOMIIBIOTEPHbBIX CHCTEM, B HACTOANIEH paboTe PacIpOCTpaHAeTCS Ha 06JIaCTh Olle HUBAHUIL
TTapaMeTpPOB Ha/IeKHOCTHU MMPOTUBOMOKAPHEIX CHCTEM.

Kimoyessre c10Ba: IpOCTPAHCTBO COCTOSHMM, TOJEPAHTHBIM OTHOCHUTEIBPHO OTKA30B, HaJeXHOCTh, CpelHee
3HaYeHMe, JUCIePCHU.
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