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MODELLING SYSTEM RELIABILITY OF  

FAULT-TOLERANT SYSTEMS WITH THE  
SEMI-MARKOV STATE SPACE APPROACH 

 
Fault-tolerant systems can be analyzed by Markov state space approach but for more sophisticated and 

large systems, there should be some other means to estimate the system parameters. Here we extend the 
Bounding Theorem, we use it in software developements of ultrareliable computer systems to Fire & Gas 
systems which is a new approach in their safety parameter calculations. 
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Introduction. Traditionally, the reliability analysis of a complex system has been 

accomplished with combinatorial mathematics. The standard fault-tree method of reliability 
analysis is based on such mathematics. Unfortunately, the fault-tree approach is incapable 
of analyzing systems in which reconfiguration is possible. Basically, a fault tree can be 
used to model a system with : 

1. Only permanent faults (no transient or intermittent).  
2. No reconfiguration. 
3. No time or sequence failure dependencies. 
4. No state-dependent behavior. 
Because fault trees are easier to solve than Markov models, fault trees should be used 

wherever these fundamental assumptions are not violated. 
In reconfigurable systems the critical factor often becomes the effectiveness of the 
dynamic reconfiguration process. It is necessary to model such systems by using  more 
powerful Markov modelling technique. A Markov process is a stochastic process whose 
behavior depends only upon the current state of the system. Markov state-space models 
have four main categories:  

1. Discrete  space and discrete time. 
2. Discrete space and continuous time. 
3. Continuous space and discrete time. 
4. Continous space and continuous time. 
The second category is the one most useful for modelling fault-tolerant systems. Only 

models that contain a finite number of states will be used. However, the transition time 
between the states is not discrete and can take on any real value. 
 
        Reliability Modelling. The first step in modelling a system with a discrete space and 
continuous-time Markov model is to represent the state of the system with a vector of 
attributes that change over time. These attributes are typically system characteristics such 
as the number of working processors, the number of spare units or the number of faulty 
units that have not been removed. The more attributes in the model, the more complex the 
model, thus, the smallest set of  
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attributes that can accurately describe the fault-tolerant behavior of the system is typically 
chosen. The next step in the modelling process is to characterize the transition time from 
one state to another. Because this transition time is rarely deterministic, they are 
described by a probability distribution. 

Typically, the transitions of a fault-tolerant system model fall into two categories; 
slow failure and fast recovery transitions. We will start modelling with two major types of 
systems; no reconfigurable and configurable systems.  
Let T be a random variable representing the time to failure of the system. Next, we have to 
define a distribution for T, say F(t). typically electronic component and consequently 
systems are assumed to fail according to exponential distribution [1]: 

tetTtF  1][Prob)( . 
Then the important concept in reliability modelling the hazard rate, h(t) is defined 

as: 
 )](1[/)()( tFtFth , 

which is the failure rate itself. The exponential distribution is the only distribution with a 
constant hazard rate. The Markov model representing this system is as follows. 

 
Fig. 1. Model of simplex system 

 
In this Markov model, state 1 represents the operational state in which our system 

works, state 2 represents the system failure state in which the simplex system has failed, 
and the transition from state 1 to  state 2 represents the occurrence of the failure. 

For reliability modelling purposes, electronic components are generally assumed to 
fail according to the exponential distribution . Some handbooks offer a more complete 
discussion on the problem of estimating the reliability of electronic components. Once the 
reliability of each component in a system is known, the failure rate of the system is simply 
the sum of the failure rates of the individual components.  

For example, suppose 1, 2, …, n represent the failure rates of the components, 
letting T be a random variable representing the time of failure of the system and Ti, 
i=1,2,...,n,  representing the time of the i th component of failure, the distribution of failure 
for the system Fc(t) is determined as follows [2] :  

 
 

]....,,,[Prob1
},...,,{minProb

Prob)(

21

21

tTtTtT
tTTT

tTtF

n

n

c






 

And if we assume that the components fail independently, then : 
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which is an exponential distribution with failure rate :  
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Modelling Static Redundant Systems. The triple modular redundant (TMR) is 
one of the simplest fault tolerant architectures and the more sophisticated model of this 
kind which can be called NMR (N modular redundant). The computers are assumed to be 
physically isolated, so that a failed computer cannot affect another working computer. This 
means that they are assumed to fail independently. 
         

Error!  
 

Fig. 2. Model of NMR System 
 

The solution of the Markov model is conceptually simple, although the details can 
be cumbersome. The n-state Markov model leads to a system of n-coupled differential 
equations. These equations may simply be represented with the vector notation. Let P(t) 
be a vector that gives the probability of being in each state at time t. The n-state Markov 
model in Figure 2 [3]  is 
     )(),...,(),()( 21 tttt nPPPP  .    

The system of differential equations is given by :  
    APP )()( tt   ,    
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The matrix A is easily constructed by thinking of the Markov model in terms of flow 
in and flow out. You can begin with the off-diagonal components. As there is a transition 
from state 1 to state 2 the entry at a12 is nonzero, and the value of a12 is the transition rate 
n . The diagonal entries are obtained by summing all non-diagonal entries on the same 
row and negating it. The solution will be :  
 

AtePtP )0()(  , 
where 

]0,0,1[)0( P  
is the initial state probability and the system begins in a fault free state. If the model is 
changed in  Figure 3, then the matrix A becomes:  
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Fig. 3. Altered model 

 
 

The probability of NMR system failure as a function of mission time and also as a 
function of N is given in Figures 4 and 5. 
 
 

 
Fig. 4. As a function of mission time   Fig. 5. As a function of N 
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Modelling Reconfigurable Systems. Fault tolerant systems are often designed by 
using a strategy of reconfiguration. Reconfiguration strategies come in many varieties, but 
always involve the logical or physical removal of a faulty component. Two basic 
reconfiguration strategies occurdegradation and replacements with spares. The 
degradation method involves the permanent removal of a faulty component without 
replacement. The reconfigured system continues with reduced set of components. The 
replacement with spares method involves both the removal of faulty components and their 
replacement with a spare. 
 

Reliability Analysis Programs. Some reliability analysis programs have been 
developed for ultra reliable computer/electronic system architectures. These  methods 
provide an efficient means for computing accurate upper and lower bounds for the state 
probabilities of a large class of semi-Markov models. These programs distinguish between 
fast and slow transitions. If the mean transition time   is small with respect to the mission 
time T, that is <T, then the transition is fast, otherwise it is slow. The mathematics on 
which these reliability analysis programs are based is called  "Bounding Theorem".  
 

Path-Step Classification & Notation. The theorem provides bound on the death 
state probabilities at a specified time. It is assumed that the system is initially in a single 
state that is P(o) = 1. The programs find every path from the start state to a death state. 
The contribution of each path to system failure is calculated separately by using the semi-
Markov bounding theorem of white. 

Each state along the path can be classified into one of there classes that are 
distinguished by the type of transitions  leaving the state. A state and all transitions leaving 
it will be referred to as a "path step". The transition on the path that is currently being 
analyzed will be referred to as a "path step". The transition on the path that is currently 
being analyzed will be referred to as the "on-path transition".  

The remaining transitions will be referred to as the "off-path transitions". The 
classification is made on the basis of whether on-path and off-path transitions are slow or 
fast [4]. 
 
Class I path step ; Slow on path, slow off path .  If all transitions leaving the state are slow, 
then the path step is class 1. The rate of on-path exponential transition is i.  
(see fig 6). 
 

 
Fig. 6.  Class I path step 
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An arbitrary number of slow off-path transitions can occur and the sum of their 

exponential transition rates is i . 
 
Class 2 path step ; Fast on path, arbitrary off path . If the on-path transition is fast, the 
path step is class 2. An arbitrary number of slow or fast off-path transitions may exist. As 
before, the slow off-path, exponential transitions can be represented as a single transition 
with a rate equal to the sum of all the slow off-path transitional rates. The distribution of 
the fast on-path transition is Fi,1. 
The distributions of time for the kth fast transition from state i is referred to as Fi,k (the 
probability that the next transition out of state i goes into state k and occurs within time t is 
Fi,k) . Three measurable parameters must be specified for each fast transition. The 
transition probability (F*i,k), the conditional mean (F*i,k), and the variance 2 (F*i,k), given 
that this transition occurs. The asterisk is used to note that the parameters are defined in 
terms of the conditional distributions combined with definition. 

Mathematically, these parameters are defined as follows: 
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Experimentally, these parameters correspond to the fraction of times that a fast 

transition is successful and the mean and the variance of the conditional distribution given 
that the transition occurs. 
 

     
Fig. 7.  Class 2 path step . Fast on path, arbitrary off path 

 
Note, in any experiment where competing processes in a system are studied, the 

observed empirical distributions will be conditional. The time it takes a system to transition 
to the next state will only be observed when that transition occurs. These expressions are 
defined independently of the exponential transitions j.  
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Consequently, the sum of the fast transition probabilities (F*i,k) must be 1. In 
particular, if only one fast transition occurs, its probability is I and the conditional mean is 
equivalent to the unconditional mean. (The user does not have to deal explicitly with the 
unconditional distributions Fi,k. However, to develop the mathematical theory, the 
distribution must be used) 
 
Class 3 path step : slow on path, fast off path. The on-path transition must be slow for a 
path step to be categorized as class 3. Both slow and fast off-path transitions can exist; 
however, at least one off-path transition must be fast (see Fig.7). The path step 2        3 in 
the model of the triad plus one spare shown in Figure 8 are in this class. The slow on-path 
transition rate is j. The sum of the slow off-path transition rates in  j . As in class2, the 
transition probability (G*j,k) , the conditional mean (G*j,k), and the conditional variance 
2(G*j,k) must be given for each fast off-path transition with distribution Gj,k. Two letters are 
used to help track whether the transition is a class 2 (labeled F) or class 3 (labelled G) in 
the current path. 
     

 
Fig. 8.  Class 3 path step. Slow on path, fast off path 

 
In either case, the analyst supplies the conditional mean, the conditional standard 

deviation, and the transition probability. Although, the parameters described above suffice 
to specify a class 3 path step, the mathematical theory is more easily expressed in terms 
of the holding time in a state. It is the time the system remains in the state before it 
transitions to some other state. The bounding theorem is expressed by using a slightly 
different holding time, which will be referred to as "recovery holding time" to prevent 
confusion. The recovery holding time is the holding time in the state with the slow 
exponential distributions removed. Because the slow exponential transitions occur at a 
rate many orders of magnitude less than the fast transitions, the recovery holding time is 
approximately equal to the traditional holding time. Let Hj represent the distribution of the 
recovery holding time in state j: 
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These parameters are the mean and the variance of the holding time in state j 
without consideration for slow exponential transitions (i.e., with the slow exponential 
transition removed) . These parameters do not have to be supplied to the programs. The 
program derives these parameters from the other available inputs, such as (G*j,k), 
(G*j,k), and 2(G*j,k) 2(G*j,k) , as follows  [4]: 
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The parameters (G*j,k), (G*j,k) , and 2(G*j,k) are defined exactly as the class 2 
path step parameters. 

Although the fast distributions are specified without consideration of the competing 
slow exponential transitions, the theorem gives bounds that are correct in the presence of 
such exponential transitions . The parameters were defined in this manner to simplify the 
process of specifying a model . throughout the paper, the holding time in a state in which 
the slow transitions have been removed will be referred to as "recovery holding time." For 
convenience, when referring to a specific path in the model, the distribution of a fast on-
path transition will be indicated by a single subscript that specified the source stat. For 
example, if the transition with distribution Fj,k is the on-path transition from  state j , then it 
can be referred to as Fj, where Fj,k is the kth fast transition from state j and Fj is the on-path 
fast transition from state j.  

Let us formulate the result.  Let D(T) be the probability of entering a particular 
death state within the mission time T, following a path with k class1, m class 2 and  n  
class 3 path steps.  
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for all rj , sj > 0 with   = r1 + r2 … + rn + s1 + s2 … + sn  and Q(T) = the probability of 
traversing a path consisting of only the class 1 path steps within time T. 
 

The theorem is true of any rj>0 and sj>0 provided that  < T. Different choices of 
these parameters will lead to different bounds. The SURE program uses the following 
values of rj and sj: 
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These values have been found to give very close bounds in practice and are 
usually very near the optimal choice [1]. 

Two simple algebraic approximations for Q(T) were given. One approximation 
overestimates and one approximation underestimates, and are given respectively as  
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Both Qu(T)  and QI(T) are close to Q(T) as long as 
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)(    is small, that is, 

as long as the mission time is short compared with the average lifetime of the 
components. Some programs use the following slightly improved upper bound on Q(T) [4]: 
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}1{  TiS i . 

This bound  is obtained by removing all the fast exponential transitions from the 
Q(T)  model. Because the path is short, the probability of reaching the death state is larger 
than that of the original Q(T)  model. 
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Ր. ՓԱՅՉՈՒԿ 
 

ԽԱՓԱՆՈՒՄՆԵՐԻ ՆԿԱՏՄԱՄԲ ԴԻՄԱՑԿՈՒՆ ՀԱՄԱԿԱՐԳԵՐԻ ՀՈՒՍԱԼԻՈՒԹՅԱՆ ՄՈԴԵԼԱՎՈՐՈՒՄԸ 
ԿԻՍԱՄԱՐԿՈՎՅԱՆ ՎԻՃԱԿՆԵՐԻ ՏԱՐԱԾՈՒԹՅԱՆ ՕԳՏԱԳՈՐԾՄԱՄԲ 

 
Խափանումների նկատմամբ դիմացկուն համակարգերը կարող են վերլուծվել Մարկովյան 

վիճակների տարածության օգտագործմամբ, սակայն, երբ համակարգերը բավականաչափ բարդ են, 
անհրաժեշտ է օգտագործել այլ եղանակներ` վերջիններիս պարամետրերը հաշվարկելու նպատակով: 
Հավանականությունների տեսության կենտրոնական սահմանային թեորեմի  հիման վրա մշակված 
մոտեցումը, որը [4] աշխատանքում օգտագործվել է գերբարձր հուսալիությամբ օժտված քոմփյութերային 
համակարգերի ծրագրային ապահովումների մշակման ժամանակ, ներկա աշխատանքում տարածվում է 
հակահրդեհային հուսալիության պարամետրերի գնահատման բնագավառի վրա:  

Առանցքային բառեր. վիճակների տարածություն, խափանումանդիմացկուն, հուսալիություն, միջին 
արժեք, դիսպերսիա: 
   

 
 

Р. ПАЙЧУК 
 

МОДЕЛИРОВАНИЕ НАДЕЖНОСТИ ТОЛЕРАНТНЫХ ОТНОСИТЕЛЬНО ОТКАЗОВ СИСТЕМ С 
ПРИМЕНЕНИЕМ ПОЛУМАРКОВСКИХ ПРОСТРАНСТВ СОСТОЯНИЙ 

 
 Толерантные относительно отказов системы могут быть исследованы на основе применения 
полумарковских пространств состояний. Однако в случаях, когда системы достаточно сложны, необходимо 
воспользоваться другими методами с целью вычисления параметров таких систем. Подход, разработанный на 
основе центральной предельной теоремы теории вероятностей и примененный в [4] при разработке 
программного обеспечения компьютерных систем, в настоящей работе распространяется на область оценивания 
параметров надежности противопожарных систем. 

Ключевые слова: пространство состояний, толерантный относительно отказов, надежность, среднее 
значение, дисперсия. 
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