ISSN 0002-306Х. Изв. НАН РА и ГИУА. Сер. ТН. 2005. Т. LVIII, № 2.

УДК 621.317

РАДИОЭЛЕКТРОНИКА

В.Г. АВЕТИСЯН

МЕТОДЫ ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК КОРОТКИХ МНОГОВОЛНОВЫХ ТРАКТОВ ИЗМЕРИТЕЛЬНОЙ ЛИНИЕЙ

Обсуждаются методы измерений характеристик коротких многоволновых передающих линий с помощью измерительной линии.

Ключевые слова: методы измерений, измерительная линия, многоволновые линии передачи.

К основным достоинствам методов измерения характеристик коротких трактов с помощью измерительной линии относятся широкая область практической применимости, простота и надежность [1,2]. В настоящей работе данные методы измерений рассматриваются применительно к определению характеристик многоволновой линии передачи от стационарной радиоаппаратуры к подвижному зонду при антенных измерениях по ближнему полю. В [3] предложено устройство с такой линией передачи, которая построена на подвижных относительно друг друга сверхразмерных волноводных сочленениях и в процессе измерений сохраняет неизменной свою полную геометрическую длину. В случае измерений по ближнему полю антенн исключительно важной является нестабильность передаточных характеристик линии передачи по фазе - $\Delta \xi_{\rm H}$ и по мощности - $\Delta \eta_{\rm H}$. Однако вначале необходимо знать, насколько правильно спроектирована эта линия, поскольку она имеет квазиоптический характер с возможностью распространения в ней, кроме основной возбуждаемой моды, также и паразитных мод, возбуждаемых на нерегулярностях такой линии передачи [4]. Процессы преобразований основной рабочей моды в паразитные и, наоборот, в многоволновой линии передачи могут существенно влиять на ее передаточные характеристики [5].

Критериями оценки соответствия проектируемой линии передачи цели ее назначения, помимо теоретических предпосылок, является также фактор степени нерегулярности предлагаемой линии, который обуславливает как степень наличия возбуждаемых паразитных мод, так и степень взаимодействия их между собой и с основной рабочей модой.

В настоящей работе излагаются методы измерений, позволяющие сначала качественно оценить вышеприведенный фактор, а затем количественно - нестабильность передаточных характеристик Δξ_н и Δη_н многоволновой линии передачи.

Качественная оценка базируется на измерении картины стоячих волн в месте расположения неподвижного зонда измерительной линии (ИЛ) при перемещении короткозамыкателя (КЗ), установленного на конце исследуемой линии передачи. Этот метод измерения широко применяется при исследовании одномодовых линий [6]. Известно [4], что вблизи плоскости Q сосредоточения нерегулярности в одномодовой линии поле содержит компоненты также в виде высших реактивных полей волновода, экспоненциально затухающих с расстоянием, а в области нерегулярности формируются отраженная и проходящая волны рабочей моды. Величина отраженной волны зависит от коэффициента отражения $\dot{\Gamma} = |\dot{\Gamma}| e^{j\varphi}$, а величина прошедшей волны - от коэффициента прохождения $\dot{C} = |\dot{C}| e^{j\psi}$. На рис. 1 изображены расположения элементов измерительного стенда при исследовании одномодовой линии для двух последовательных положений K3, отличающихся на величину $\Delta 1$.

Рис. 1

Без учета омических потерь и при условии идеального отражения на КЗ результирующее поле Ė в плоскости зонда ИЛ с учетом членов малости первого порядка ($|\dot{\Gamma}| << 1, |\dot{C}| \leq 1$), пренебрегая многократными отражениями, определится при втором положении КЗ выражениями

$$\dot{\mathbf{E}} = \dot{\mathbf{E}}_{0} e^{j\omega t} \left\{ \mathbf{l} + |\dot{\mathbf{C}}| e^{j[2\beta_{0}(\mathbf{L}_{2} + \Delta \mathbf{l}) + \psi + \pi]} + |\dot{\mathbf{\Gamma}}| e^{j[2\beta_{0}\mathbf{L}_{1} + \varphi]} \right\},$$
(1)
$$\dot{\mathbf{E}}(\Delta \mathbf{l}) = \dot{\mathbf{E}}_{0} e^{j\omega t} \left\{ \mathbf{l} + |\dot{\mathbf{C}}| e^{j(2\beta_{0}\Delta \mathbf{l} + \varepsilon)} + |\dot{\mathbf{\Gamma}}| e^{j\theta} \right\},$$
(2)

где $\beta_0 = 2 \pi / \Lambda_{B0}$; Λ_{BO} - длина волны в одномодовом волноводе; $\theta = 2 \beta_0 L_1 + \varphi$; $\varepsilon = 2 \beta_0 L_2 + \psi + \pi$ - величины постоянные при данной неоднородности; фаза величиной в π возникает при отражении от КЗ. Сопоставим каждому члену в фигурных скобках выражения (2) векторы следующим образом:

$$\overrightarrow{OO_1} = 1; \quad \overrightarrow{OO_2} = |\dot{\Gamma}| e^{j\theta}; \quad \overrightarrow{O_3O_4} = |\dot{C}| e^{j(2\beta_0\Delta I + \varepsilon)}.$$
(3)

Исключая из рассмотрения в данном случае несущественный временной множитель $e^{j\omega t}$ из (2) и обозначая $\dot{E}^{H}(\Delta l) = \dot{E}(\Delta l) / \dot{E}_{0}$, имеем

$$\overrightarrow{\dot{E}^{H}}(\Delta l) = \overrightarrow{OO_{1}} + \overrightarrow{OO_{2}} + \overrightarrow{O_{3}O_{4}}.$$
(4)

На рис. 2 представлена соответствующая известная векторная диаграмма, из которой следует, что вектор $\overrightarrow{O_3O_4}$, имеющий модуль $|\dot{C}| \leq 1$, с изменением Δl вращается вокруг точки O_3

При этом один оборот совершается при изменении расстояния Δl на величину $\Lambda_{\rm B0}/2$, поскольку при этом $2\beta_0\Delta l = 2\pi$. Максимумы и минимумы поля $|\dot{E}^{\rm H}|$ в плоскости зонда следуют

через последовательные перемещения КЗ, равные $\Lambda_{\rm B0}/4$, и их уровни будут неизменны. Учет омических потерь в (1), (2) приводит лишь к увеличению уровней минимумов поля и к уменьшению максимумов. При $\Delta l \ll L_2$ не сказывается затухание, введенное этим отрезком, и уровни максимумов и минимумов практически будут постоянными.

Рассмотрим измерение этого типа, когда зонд опять находится в одномодовом волноводе ИЛ, после которого следует возбудитель (В) основной рабочей моды, поступающей в многоволновую линию передачи (МЛП) с КЗ на конце, как изображено на рис. 3, где Г - генератор, АТТ - аттенюатор, ИП - индикатор перемещений, 3 - зонд ИЛ.

Рис. 3

Предположим, соотношение омических потерь и потерь преобразования основной волны в паразитные таково, что отсутствуют явления резонанса для паразитных мод, возбуждаемых на нерегулярности в МЛП. Причем возникающие на этой нерегулярности паразитные моды идут как к КЗ, так и в сторону ИЛ. Кроме этого, от этой нерегулярности возникает отраженная волна самой рабочей основной моды. С этой волной взаимодействуют как идущие к ИЛ паразитные моды, так и паразитные моды, которые, взаимодействуя с прошедшей через нерегулярность основной волной, отражаются вместе с ней на КЗ и идут обратно к ИЛ. Количественно оценить все эти взаимодействия хотя бы при заданной единственной нерегулярности не представляется возможным. Однако для качественного рассмотрения сути явлений в плоскости зонда поле в этой же плоскости, с учетом многомодовости МЛП, можно описать следующим образом.

Введем комплексные величины, имеющие следующий смысл в месте расположения зонда:

- $\dot{k}_1 = |\dot{k}_1| e^{j\alpha_1}$ - коэффициент, учитывающий преобразование в паразитные моды части основной моды, прошедшей через нерегулярность и далее отраженной КЗ обратно;

- $\dot{k}_2 = \dot{k}_2 | e^{j\alpha_2}$ - коэффициент, учитывающий преобразование в паразитные моды части основной моды, отраженной от нерегулярности в сторону ИЛ;

- $\dot{k}_3 = |\dot{k}_3| e^{j\alpha_3}$ - коэффициент, учитывающий долю основной моды в сечении зонда, которая образовалась в результате обратного преобразования паразитных волн в основную моду в МЛП и проникла в одномодовый волновод ИЛ.

Запишем поле в сечении неподвижного зонда для случая с МЛП в виде

$$\dot{\mathbf{E}}_{1}(\Delta \mathbf{l}) = \dot{\mathbf{E}}_{0} e^{j\omega t} \{ \mathbf{l} + |\dot{\mathbf{k}}_{1}| \times |\dot{\mathbf{C}}_{1}| e^{j(2\beta_{1}\Delta \mathbf{l}_{1} + \varepsilon_{1})} + |\dot{\mathbf{k}}_{2}| \times |\dot{\mathbf{\Gamma}}_{1}| e^{j\theta_{1}} + |\mathbf{k}_{3}| e^{j\alpha_{3}} \},$$
(5)

где $\beta_1 = 2 \pi / \Delta_{B1}$; Δ_{B1} - длина волны в многомодовом волноводе, в котором перемещается КЗ; $\dot{C}_1 = |\dot{C}_1| e^{j\psi_1}$ и $\dot{\Gamma}_1 = |\dot{\Gamma}_1| e^{j\phi_1}$ - соответственно коэффициенты прохождения и отражения основной рабочей моды в плоскости Q сосредоточения нерегулярности в МЛП; $\theta_1 = 2\beta_0 L_1^{(1)} + \gamma + 2\beta_1 L_1^{(3)} + \phi_1 + \alpha_2$, а величина γ представляет двойной фазовый набег рабочей моды на отрезке $L_1^{(2)}$, на котором постоянная распространения меняется от величины β_0 до β_1 ; $\varepsilon_1 = 2\beta_0 L_1^{(1)} + \gamma + 2\beta_1 L_1^{(3)} + 2\beta_1 (L_2 - L_1) + \psi_1 + \pi + \alpha_1; \Delta I_1$ - перемещение КЗ в МЛП.

При малых потерях рабочей моды на преобразование в паразитные моды в такой записи выражения (5) из физических соображений следует полагать, что $|\dot{k}_1| \le 1$, $|\dot{k}_2| \le 1$ и $|\dot{k}_3| << 1$. В зависимости от величины Δl_1 меняются условия взаимодействия между всеми волнами, которые есть в

исследуемой многоволновой электродинамической системе. Поэтому можно также предположить, что модули и фазы коэффициентов \dot{k}_1 , \dot{k}_2 , \dot{k}_3 , зависящие также от геометрии и электрических свойств многоволновой системы, будут флуктуировать относительно своих средних величин в зависимости от значения Δl_1 . Причем величина флуктуаций тем меньше, чем меньше возмущения, вызванные нерегулярностью. Тогда, очевидно, что $\varepsilon_1 u \theta_1$ будут также флуктуировать в зависимости от Δl_1 .

Аналогично случаю одномодовой системы, членам в фигурных скобках выражения (5) сопоставим векторы следующим образом:

$$\overrightarrow{OO}_{1} = 1 + |\dot{k}_{2}| \times |\dot{\Gamma}_{1}| e^{j\theta_{1}} + |\dot{k}_{3}| e^{j\alpha_{3}}; \quad \overrightarrow{O_{1}O}_{2} = |\dot{k}_{1}| \times |\dot{C}_{1}| e^{j(2\beta_{1}\Delta l_{1} + \varepsilon_{1})}.$$
(6)

Если обозначить $\dot{E}_1^{H}(\Delta l) = \dot{E}_1(\Delta l_1) / \dot{E}_0$, то будем иметь

$$\overrightarrow{\mathbf{E}}_{1}^{\mathrm{H}}(\Delta \mathbf{l}_{1}) = \overrightarrow{\mathbf{OO}}_{1} + \overrightarrow{\mathbf{O}}_{1}\overrightarrow{\mathbf{O}}_{2} = \overrightarrow{\mathbf{OO}}_{2}.$$
(7)

На рис. 4 показана векторная диаграмма $\vec{E}_1^H(\Delta l_1)$ для этого случая при двух различных положениях КЗ - $\Delta l_1 u \Delta l'_1$. Вектор $\overrightarrow{OO_1}$ при изменении Δl_1 из-за флуктуаций модулей и фаз величин $\dot{k}_2 u \dot{k}_3$ будет флуктуировать как по модулю, так и по фазе (точки $O_1 u O'_1$) относительно единичного вектора. Вектор же $\overrightarrow{O_1O_2}$ при изменении Δl_1 из-за флуктуаций модуля величины \dot{k}_1 будет флуктуировать по модулю, вращаясь вокруг точки O_1 неравномерно из-за флуктуации фазы величины \dot{k}_1 , но повторяя свое направление, в среднем, через последовательные перемещения КЗ, равные $\Lambda_{\rm Bl}/2$.

Рис. 4

В результате суммарное поле, характеризуемое вектором OO_2 , в отличие от предыдущего случая одномодовой системы, при монотонном изменении Δl_1 будет иметь максимумы и минимумы уже через отрезки перемещений КЗ, приблизительно равные $\Lambda_{\rm B1}/4$. Причем уровни максимумов и минимумов будут изменяться на картине стоячих волн, регистрируемых неподвижным зондом одномодовой ИЛ, а на скатах кривой картины стоячих волн будут всплески. Величина и количество всплесков, а также величина изменения относительных уровней максимумов и, особенно, минимумов характеризуют степень наличия паразитных высших мод в МЛП. Чем менее нерегулярна МЛП, тем менее будут выражены указанные факторы. Тем самым определяется качественно степень наличия паразитных мод, а значит, и степень нерегулярности исследуемой МЛП.

Приведенные выше критерии качественной оценки нерегулярности МЛП подтверждаются экспериментальными данными. В качестве исследуемой многомодовой системы использовался телескопический фазовращатель с подвижным оконечным закороченным сверхразмерным волноводом с внутренним сечением 56(32 *мм*². В него входило рупорное окончание (сечением 55,2(31,2 *мм*²) неподвижного волновода фазовращателя с входным фланцем внутреннего сечения 48(24 *мм*², соединенным с выходным фланцем пирамидального возбудителя рабочей волны моды H_{10} . Рупорное окончание неподвижного волновода фазовращателя было отформовано впрессовкой соответствующей оправы в отожженный конец этого волновода. Угол раскрыва рупора, так же как и пирамидального возбудителя, составлял значение $2\omega_0 = 10^0$. Входной фланец возбудителя с внутренним сечением 7,2(3,4 *мм*² был соединен с выходным фланцем ИЛ типа P1–12 диапазона $\lambda \approx 8$ *мм*. Длина парамидального возбудителя равна 300 *мм*. Он был изготовлен из соответствующего раскроя листовой латуни толщиной 2 *мм* с последующей пайкой стыка на одном из его ребер.

В соответствии с рис. З применялись: генератор Г типа Г4 - 156, поляризационный аттенюатор АТТ типа ДЗ - 36А, микровольтметр μ V типа В6 - 9, индикаторы перемещений ИП часового типа с ценой деления 0,01 *мм*. Частота измерений f = 33 *ГТц* (λ = 9,09 *мм*, параметр квазиоптического приближения ka = $2\pi a/\lambda \approx 33$). На рис. 5 представлены измеренные картины стоячих волн для двух случаев измерений с телескопическим фазовращателем: без фильтра типов волн и с фильтром. Фильтр был изготовлен по подобию фильтра [7] с пятью слюдяными пластинами, напыленными нихромом. Плоскость пластины параллельна широкой стенке волновода, т.е. перпендикулярна вектору \vec{E} основной моды H₁₀. Фильтр был установлен в неподвижном волноводе фазовращателя у входа его рупорного окончания. Заметим, что такой фильтр обеспечивает эффективное подавление высших мод H_{mn}, E_{mn}, но практически не действует на моды H_{m0} (m = 1,2...). Сравнение измеренных картин стоячих волн подтверждает

вышеизложенные соображения. При наличии фильтра, когда паразитных мод меньше, наблюдается меньший перепад уровней минимумов, меньшее количество всплесков и их меньшие уровни. Повышение уровня минимумов стоячих волн при наличии фильтра обусловлено вносимыми им потерями, как и следовало ожидать.

Таким образом, изложенный выше метод измерения картины стоячих волн позволяет качественно оценить, насколько правильно спроектирована МЛП.

Следующий метод измерения позволяет количественно определить нестабильность $\Delta \xi_{\rm H}$ фазовой передаточной характеристики МЛП. Стенд измерений такой же, как на рис. 3, а метод базируется на измерении смещения минимума стоячих волн в ИЛ при перемещении КЗ в оконечном волноводе МЛП, либо перемещении оконечного короткозамкнутого волновода исследуемой МЛП.

Из техники СВЧ измерений для случая исследования одномодовой линии передачи известно [6], что при перемещении КЗ в одномодовой линии на величину Δl минимум стоячей волны ИЛ сместится на ту же величину $\Delta l_0 = \Delta l$ при отсутствии отражений ($\dot{\Gamma} = 0$) в линии. Поскольку линия однородна, то созданному перемещением КЗ дополнительному фазовому набегу $\Delta \xi = 2\beta_0 \Delta l = 4 \pi \Delta l / \Lambda_{B0}$ будет соответствовать эквивалентно – сопоставляемый фазовый набег, обусловленный смещением зонда ИЛ на величину Δl_0 и равный $\Delta \xi_0 = 2\beta_0 \Delta l_0 = 4 \pi \Delta l_0 / \Lambda_{B0}$. При наличии отражения в линии $\Delta l_0 \neq \Delta l$ и $\Delta \xi_0 \neq \Delta \xi$, т.е. возникает расхождение в фазовых набегах [6].

Рассмотрим измерение такого рода применительно к МЛП. Предположим, схема измерения удовлетворяет идеальным условиям, т.е. имеет место полное согласование и отсутствие преобразования мод. Тогда при перемещении короткозамкнутого оконечного волновода МЛП или находящегося в нем КЗ на величину Δl_{1i} соответствующее смещение Δl_{0i} минимума стоячей волны в ИЛ не равно перемещению КЗ, т.е. $\Delta l_{1i} \neq \Delta l_{0i}$, из-за

отличия постоянных распространения β_0 и β_1 , соответственно, в одномодовом волноводе ИЛ и сверхразмерном волноводе МЛП. Однако из физических соображений ясно, что сопоставляемые смещениям Δl_{1i} и Δl_{0i} фазовые набеги, соответственно $\Delta \xi_{1i}$ и $\Delta \xi_{0i}$, должны быть равны, т.е.

$$\Delta \xi_{1i} = 2 \beta_1 \Delta l_{1i} = 4 \pi \Delta l_{1i} / \Lambda_{B1} = \Delta \xi_{0i} = 2 \beta_0 \Delta l_{0i} = 4 \pi \Delta l_{0i} / \Lambda_{B0}.$$
 (8)

При реальных условиях, т.е. при наличии нерегулярностей в МЛП и процессов возбуждения высших мод и преобразования волн друг в друга, условие (8) нарушается. При идеальных условиях смещения Δl_{0i} минимума стоячей волны в ИЛ в зависимости от смещений Δl_{1i} КЗ в МЛП получаются из (8) и равны $\Delta l_{0i} = \Delta l_{1i} \Lambda_{B0} / \Lambda_{B1}$. При реальных условиях измеренные смещения l_{0i}^{u} минимума стоячей волны в ИЛ расходятся на величину δl_{i} от Δl_{0i} , что и определяет расхождение $\delta \xi_{i}$ в сопоставимых им фазовых набегах $\Delta \xi_{0i}^{u}$ и $\Delta \xi_{0i}$, т.е.

$$\delta\xi_{i} = \Delta\xi_{0i}^{u} - \Delta\xi_{0i} = 2\beta_{0}\delta l_{i} = 2\beta_{0}\left(\Delta l_{0i}^{u} - \Delta l_{0i}\right) = \frac{4\pi}{\Lambda_{B0}}\left(\Delta l_{0i}^{u} - \Delta l_{1i}\frac{\Lambda_{B0}}{\Lambda_{B1}}\right).$$
(9)

Нестабильность $\Delta \xi_{\rm H}$ фазовой передаточной характеристики исследуемого стенда с МЛП сводится к определению размаха $\Delta \xi_{\rm p}$ величины $\delta \xi_{\rm i}$. Причем

$$\Delta \xi_{\rm H} = \pm \frac{1}{2} \left| \Delta \xi_{\rm p} \right| = \pm \frac{1}{2} \left| \delta \xi_{\rm i}^{\rm max} - \delta \xi_{\rm i}^{\rm min} \right|. \tag{10}$$

Измерение нестабильности $\Delta \eta_{\rm H}$ передаточной характеристики исследуемого стенда с МЛП можно выполнить по методу, изложенному в [5]. При последовательных перемещениях $\Delta l_{\rm li}$ определяются уровни $A_{\rm i}^{\rm max}$ (*дБ*) и $A_{\rm i}^{\rm min}$ (*дБ*), соответственно, максимумов и минимумов стоячей волны в ИЛ. По ним вычисляются значения коэффициента K_i стоячей волны в ИЛ по соотношению

$$K_{i} = 10^{\frac{A_{i}^{\max} - A_{i}^{\min}}{20}}.$$
 (11)

Затем вычисляются потери η_i в МЛП посредством выражения

$$\eta_{i} = 10 \lg \frac{K_{i} - 1}{K_{i} + 1}.$$
(12)

В значение η_i входят также потери на преобразование. Искомая величина $\Delta \eta_H$ определяется размахом η_p , определяемым, в свою очередь, из значений η_i для различных положений Δl_{1i} КЗ:

$$\Delta \eta_{\rm H} = \pm \frac{1}{2} \Delta \mid \eta_{\rm p} \mid = \pm \frac{1}{2} \mid \eta_{\rm i}^{\rm max} - \eta_{\rm i}^{\rm min} \mid.$$
(13)

Приведем замечания относительно указанных выше методов измерений:

практическим верхним пределом измеряемых потерь η_i является 10...12 дБ [5];

– при длине МЛП порядка 500 λ уход фазы волны, при двойном пробеге ею МЛП, в месте расположения зонда составит 1^0 при нестабильности генератора по частоте 0,3·10⁻⁵ ;

– ухудшение нестабильности приводит к тому, что значения K_i оказываются меньше истинных [5].

СПИСОК ЛИТЕРАТУРЫ

- 1. **Стариков В.Д.** Методы измерения на СВЧ с применением измерительных линий. М.: Сов.радио, 1972. 202 с.
- Измерения на миллиметровых и субмиллиметровых волнах / Под ред. Р.А. Валитова и Б.И. Макаренко. М.: Связь, 1984. - 295 с.
- Патент ¹ 2017164 РФ, МКИ G01R 29/08. Устройство для измерения распределения поля в раскрыве антенны / В.Г. Аветисян (РА). – Заявка ¹ 4952810, приоритет изобретения 30.04.91. Опубл. 30.07.94. Бюл. ¹ 14. – 7 с.
- 4. Никольский В.В. Электродинамика и распространение радиоволн. М.: Наука, 1973. 607 с.
- 5. Ваганов Р.Б., Матвеев Р.Ф., Мериакри В.В. Многоволновые волноводы со случайными нерегулярностями. М.: Сов. радио, 1972. 231 с.
- 6. Тишер Ф. Техника измерений на сверхвысоких частотах. М.: ГИФМЛ, 1963. -367 с.
- 7. Anderson T.N. State of the waveguide art // Microwave Journal. December 1982. P. 22-48.

ЗАО "РАО МАРС". Материал поступил в редакцию 26. 05. 2004.

Վ.Հ. ԱՎԵՏԻՍՅԱՆ

<u> 2ሀወኮ2 ዓወኮ ሆኮՋበ3በՎ ԲԱԶՄԱԼԻՔ ԿԱՐՃ ՏՐԱԿՏՆԵՐԻ ԲՆՈՒԹԱԳՐԵՐԻ 2ԱՓՄԱՆ ՄԵԹՈԴՆԵՐ</u>

Քննարկվում են չափիչ՝ գծի միջոցով չափման՝ մեթոդներ, որոնք կիրառվում են բազմալիք կարձ փոխանցման գծերի բնութագրերի որոշման համար։

V.H. AVETISSYAN MEASUREMENT TECHNIQUES OF OVERMODED SHORT TRACT CHARACTERISTICS BY LECHER LINE

Measurement techniques with the help of Lecher line for determination of characteristics of overmoded short transmission lines are discussed.