УДК 621.391.1

РАДИОЭЛЕКТРОНИКА

Ю.О. АВЕТИСЯН, А.А. АХУМЯН, В.Р. ТАТЕВОСЯН, А.К. МЕЛИКЯН

ЧАСТОТНО - СКАНИРУЮЩАЯ АНТЕННА НА ОСНОВЕ ЗЕРКАЛЬНОГО ДИЭЛЕКТРИЧЕСКОГО ВОЛНОВОДА С ПЕРИОДИЧЕСКИМИ ШЕЛЯМИ

Разработана новая антенна с частотным управлением направления основного излучения, основанная на применении зеркального волновода с периодическими неоднородностями. Изменением частоты в диапазоне 36...54 ГГц достигнуто сканирование главного лепестка в пределах 70°. При этом угловая ширина лепестка не превосходила 2°в Е-плоскости. Экспериментальные данные находятся в хорошем согласии с расчетными.

Ключевые слова: антенна, миллиметровый диапазон, зеркальный волновод.

В последние годы в связи с задачей создания радиолокаторов с высокой разрешающей способностью резко возрос интерес к разработке антенн миллиметрового диапазона волн (ММДВ) с быстрым сканированием диаграммы направленности (ДН). Как правило, в радиолокационных системах слежения движущихся объектов сканирование производится либо механическим поворотом антенны, либо с помощью электрически управляемых фазовращателей в составе антенной решетки. Основным недостатком первого способа является малое быстродействие, а практическая реализация антенных решеток ММДВ связана с известными трудностями ввиду больших потерь в микрополосковых и металлических волноводах [1]. В настоящее время развитие полупроводниковой техники позволило создать целый ряд широкополосных приемо-передающих устройств ММДВ. В этой связи представляет интерес разработка новых антенн ММДВ с управлением направления главного лепестка ДН путем изменения частоты сигнала. Очевидно, что такие антенны могут бытъ выполнены на основе волноводов с сильной дисперсией. В настоящее время в ММДВ широко применяются диэлектрические волноводы (ДВ), в которых распространение волны сопровождается достаточно низким затуханием за использования диэлектриков с малыми потерями, и, кроме того, определенная часть электромагнитного поля распространяется в приграничной воздушной области. Частотносканирующая антенна на основе ДВ с дифракционной решеткой была исследована в работе [2]. Угол сканирования составлял около 40(и ограничивался условием одномодовости распространения волны в ДВ.

В настоящей работе нами предлагается использовать зеркальный диэлектрический волновод (ЗДВ), который, как известно [3, 4], имеет достаточно разряженный модовый состав и обладает тем достоинством, что металлическое зеркало волновода способно выполнять роль опоры и теплоотвода. Для эффективного испускания волны с поверхности ЗДВ (т.е. для обеспечения утечки волны из волноводной моды в радиационную) в металлическом основании волновода выполняются периодические неоднородности –

вырезаются поперечные щели глубиной порядка $\lambda_0/4$, где λ_0 - средняя длина в рабочем диапазоне частот. Картина ЗДВ с периодическими щелями в металлическом основании представлена на рис. 1.

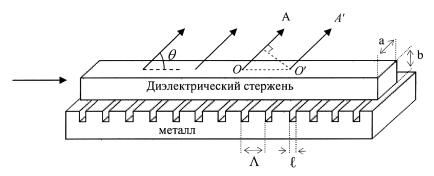


Рис. 1. Схематическое изображение ЗДВ с периодическими неоднородностями

Для определения условия излучения поле в периодическом ЗДВ представим в виде суммы пространственных гармоник [5]:

$$E = \sum_{p} E_{p}(x, y)e^{i(\omega t - \beta_{p}z)}, \qquad (1)$$

где направление z выбрано вдоль оси волновода, и

$$\beta_{p} = \beta_{0} + \frac{2\pi}{\Lambda} p$$
, $p = 0, \pm 1, \pm 2 ...,$ (2)

р - номер пространственной гармоники; β_0 - фазовая постоянная основной пространственной гармоники; Λ - период повторения неоднородностей.

Пользуясь понятием эффективного показателя преломления, формулу (2) представим в виде

$$n_{p} = n_{eff 0} + \frac{\lambda}{\Lambda} p$$
, $p = 0, \pm 1, \pm 2 ...,$ (3)

где $n_p = \beta_p / k_0$ - эффективный показатель преломления p - й пространственной гармоники; $k_0 = 2\pi / \lambda$ - волновое число в свободном пространстве; λ - длина волны.

Для определения направления возможного испускания волны рассмотрим взаимодействие лучей ОА и О'А' (рис. 1). Для конструктивной интерференции необходимо, чтобы разность фаз была равна нулю, т.е.

$$\beta_p \cdot OO' = k_0 \cdot OO' \cos\theta$$
 (4)

Отсюда следует, что угол распространения излучения определяется условием: $\cos\theta = \beta_p / k_0 = n_p$. Очевидно, что ответственными за излучение из волновода являются пространственные гармоники с $|n_p| < 1$. При проектировании

антенны целесообразно выбрать период Λ так, чтобы вышеуказанное условие удовлетворялось только для одной гармоники с возможно малым индексом р. Как видно из формулы

$$\cos \theta = n_p = n_{eff 0} + \frac{\lambda}{\Lambda} p , \qquad (5)$$

наименьшее возможное значение p = -1, поскольку, как правило, $n_{\rm eff\,0} > 1$.

Необходимо иметь в виду, что пространственные гармоники являются группой неотделимых волн, и, следовательно, излучение одной гармоники сопровождается излучением всего поля. Возможность частотного сканирования направлением главного максимума ДН явно следует из уравнения (5), а соответствующий график зависимости $\theta = \theta$ (λ)представлен на рис. 2.

Экспериментальные измерения частотно-сканирующей антенны на основе ЗДВ осуществлялись с помощью панорамного измерителя коэффициента стоячей волны (КСВ) и ослабления Р2-68. В качестве диэлектрика ЗДВ использовался поликорундовый (ε = 9,6 , tg δ = 10⁻³) стержень длиной L = 12,5 *см* с поперечными размерами а x b = 1,2 x 2,4 *мм*, определяющими одномодовый режим распространения волны E_{11}^y (ось у перпендикулярна плоскости основы) в диапазоне волн 5,5 ... 8 *мм*. Металлической основой ЗДВ служили алюминиевые пластины, в которых вырезались щели с периодом Λ = 2,5 *мм*, длинами ℓ = 0,5 *мм* и 1,25 *мм*.

Регистрация излучения, испускаемого с поверхности ЗДВ, проводилась с помощью рупорной антенны с коэффициентом усиления 20 дБ, установленной на поворотном устройстве. Результаты измерений в случаях $\ell = 0.5$ мм и $\ell = 1.25$ мм представлены на рис.2 соответственно в виде крестов и кружочков.

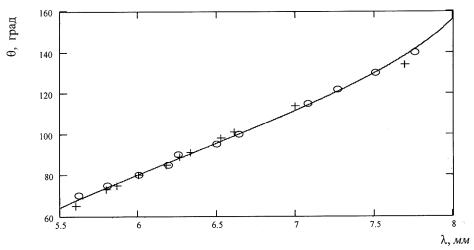


Рис.2. Зависимость угла испускания излучения от длины волны при длинах щелей $0.5 \ {\it mm} \, (+) \ {\it u} \, 1,25 \ {\it mm} \, ({\it o})$

Видно, что угловой интервал сканирования составляет 70(и имеет место хорошее согласование между экспериментальными и рассчитанными (сплошная кривая) данными. В расчетах были использованы численные значения n_{eff0} , полученные в результате решения дисперсионного уравнения однородного ЗДВ. Хотя такой подход кажется несправедливым при $\ell = 1,25$ мм (размер возмущенной области уже не является малым), однако в пределах погрешности эксперимента ($\Delta\theta \approx \pm 0,2^{\circ}$, $\Delta\lambda \approx 0,01$ мм) не было обнаружено расхождение между расчетными и экспериментальными данными.

Использование длинных щелей ($\ell=1,25$ мм, т.е. ℓ / (=0,5) интересно тем, что эффективность излучения (отношение мощности испускаемого излучения к мощности на выходе ЗДВ) в этом случае высока. Согласно измерениям, эффективность излучения при $\ell=1,25$ мм на 5 дБ превосходит случай, когда $\ell=0,5$ мм, и составляет ≈ 10 дБ. Последнее означает, что около 90 % мощности на входе ЗДВ излучается в свободное пространство, если не принимать в расчет джоулевские потери и рассогласование на входе (КСВ <1,2). Диаграмма направленности антенны имела веерообразный вид; угловая ширина главного максимума (на уровне 3 дБ) составляла примерно 2° , что хорошо согласуется с теоретической оценкой.

В заключение отметим, что при замене в периодическом ЗДВ линейного диэлектрика на нелинейный можно получить генерацию излучения миллиметрового и субмиллиметрового диапазонов длин волн посредством генерации разностной частоты (ГРЧ) двух частотно-расстроенных лазеров. В предлагаемой конструкции можно ожидать достаточно высокоэффективную ГРЧ, поскольку генерируемая волна испускается с поверхности нелинейного кристалла, и, следовательно, она практически не испытывает материального поглощения в нелинейной среде [6].

Таким образом, на основе ЗДВ с периодическими неоднородностями можно создать антенну с частотным управлением направления основного излучения. Предложена простая теоретическая модель, хорошо объясняющая экспериментальные данные. Результаты проведенного исследования свидетельствуют о перспективности разработанной антенны в задачах радиолокации и построения изображений в ММДВ.

СПИСОК ЛИТЕРАТУРЫ

- Marino R.A. A Novel Tapered Slot PCS Antenna Array and Model //Microwave Journal.- 1999.- V. 42, N1. -P. 90-100.
- 2. **Klohn K.L., Horn R.E., Jacobe H., Freibergs E.** Silicon Waveguide Frequency Scanning Linear Array Antenna //IEEE Trans. Microwave Theory Tech.-1978.-V.26,N10. -P. 764-773.
- 3. Ishii T. K. //Handbook of Microwave Technology. -1995. V. 1, Academic press.
- 4. **Solbach K., Wolff I.** The Electromagnetic Field and the Phase Constants of Dielectric Image Lines //IEEE Trans. Microwave Theory Tech.- 1978. -V. 26, N4. -P. 266-274.
- 5. **Peng S.T., Tamir T., Bertoni H. L.** Theory of Periodic Dielectric Waveguides //IEEE Trans. on Microwave Theory and Tech. –1975. V. 26. -P. 123-133.
- Avetisyan Yu., Hakhoumian A., Melikyan H., Tatevosyan V., Ito H., Sasaki Y. A New Scheme of THz-Wave Difference-Frequency Generation In Highly-Absorbing Cubic Nonlinear Crystal //Tech. Dig. CLEO. -2005 (to be published).

ЕГУ. Материал поступил в редакцию 10.10.2004.

ՅՈՒ.Հ. ԱՎԵՏԻՍՅԱՆ, Ա.Ա. ՀԱԽՈՒՄՅԱՆ, Վ.Ռ. ԹԱԴԵՎՈՍՅԱՆ, Հ.Կ. ՄԵԼՒՔՅԱՆ

ՀԱՃԱԽԱՅԻՆ ՃՈՃՔՈՎ ԱԼԵԱՐՁԱԿ՝ ՊԱՐԲԵՐԱԿԱՆ ՃԵՂՔԵՐՈՎ ՀԱՅԵԼԱՅԻՆ ԴԻԷԼԵԿՏՐԻԿ ԱԼԻՔԱՏԱՐԻ ՀԻՄԱՆ ՎՐԱ

Yu.H. AVETISYAN, A.A. HAKHOUMIAN, V.R. TADEVOSYAN, H.K. MELIKYAN

FREQUENCY SCANNING ANTENNA BASED ON DIELECTRIC IMAGE WAVEGUIDE WITH PERIODICAL SLOTS

A new frequency scanning antenna based on dielectric image waveguide with periodical slots is suggested. In the frequency range 36 \dots 54 GHz the angle of scanning within 70° has been realized, and the angular width of the main lobe did not exceed 2° in the E- plane. Experimental data are in good agreement with calculations.