<u> Հ</u>ՏԴ 620.91

ՌԱԴԻՈԷԼԵԿՏՐՈՆԻԿԱ

Գ.Շ. ՇՄԱՎՈՆՅԱՆ

ՕՊՏԻԿԱԿԱՆ ՓՈԽԱՆՋԱՏՄԱՆ ԵՐԵՎՈԻՅԹԸ ՕՊՏԻԿԱԿԱՆ ՄԱՆՐԱԹԵԼԱՅԻՆ ՀԱՂՈՐԴԱԿՑՈՒԹՅԱՆ ՀԱՄԱԿԱՐԳԵՐՈՒՄ

Ուսումնասիրվել է ոչ հավասարաչափ բազմակի քվանտային հորեր ունեցող կիսահաղորդչային օպտիկական ուժեղարարում օպտիկական փոխանջատումը։ Առաջին անգամ փորձնականորեն ցույց է տրվել, որ ոչ հավասարաչափ բազմակի քվանտային հորեր ունեցող լայնաշերտ կիսահաղորդչային օպտիկական ուժեղարարում 1550 *նմ* և 1300 *նմ* տիրույթների միջև տեղի է ունենում օպտիկական փոխանջատում։ Փոխանջատման կառավարումը հնարավոր է կիսահաղորդչային օպտիկական ուժեղարարի ակտիվ շերտի քվանտային կառուցվածքի ոչ հավասարաչափ բազմակի քվանտային հորերի միջև լիցքակիրների վերաբաշխմամբ։

Առանցքային բառեր. կիսահաղորդչային օպտիկական ուժեղարար, բազմակի քվանտային հորեր, օպտիկական փոխանջատում, օպտիկական մանրաթելային հաղորդակցություն։

Ժամանակակից օպտիկական մանրաթելերը կիրառվում են ալիքի 1550 *նմ* և 1300 նմ երկարություններին մոտ գտնվող սպեկտրալ տիրույթներում, որտեղ կորուստները և դիսպերսիան նվազագույնն են։ Ներկայումս էրբիումով լեգիրացված մանրաթելային լայնաշերտ ուժեղարարը կարող է ուժեղացնել օպտիկական հաղորդակցության Cտիրույթը (1530 - 1565 *նմ*) և L-տիրույթը (1565 - 1610 *նմ*), սակայն չի կարող ուժեղացնել 1300 *նմ* ալիքի երկարություններին մոտ գտնվող սպեկտրալ տիրույթը [1]։ Օպտիկական մանրաթելերի սպեկտրալ լրիվ տիրույթը (1200 - 1600 *նմ*) օգտագործելու համար անհրաժեշտ է կիրառել այլ միջոցներ։ Կիսահաղորդչային օպտիկական ուժեղարարները (ԿՕՈւ) օպտիկական հաղորդակցության մանրաթելային համակարգերի համար համարվում են լավ թեկնածուներ, քանի որ ունեն փոքր չափեր, էլեկտրոնային բաղկացուցիչ մասերի հետ ուղղակի ինտեգրվելու հնարավորություն և կառավարելի ալիքի երկարություն։ Այնուամենայնիվ, սովորաբար յուրաքանչյուր ԿՕՈւ ունի 50 *նմ*-ից փոքր սպեկտրալ տիրույթ։ Օպտիկական մանրաթելի կիրառելի սպեկտրալ ամբողջ տիրույթն օգտագործելու համար անհրաժեշտ է կիրառել տարբեր սպեկտրալ տիրույթներ ունեցող մի քանի ԿՕՈւ [2-4]։

Աշխատանքում տեղեկացվում է, որ օգտագործելով InP տակդիրի վրա աձեցված ոչ հավասարաչափ բազմակի քվանտային հորեր (ՔՀ) ունեցող ԿՕՈւ, հաջողվել է մանրաթելային հաղորդակցության համակարգերում փորձնականորեն իրականացնել օպտիկական փոխանջատում՝ օգտագործելով միայն մեկ ԿՕՈւ։

Բազմակի ՔՀ-եր և թեք ալիքատար ունեցող ԿՕՈւ-ները նախագծվել են ՔՀ-երի տեխնիկայի միջոցով և պատրաստվել մետաղ-օրգանական գոլորշու նստեցման եղանակով, իսկ ԿՕՈւ-ի թեք ալիքատարը՝ ռեակտիվ իոնային խածատման եղանակով [2]։ ԿՕՈւ-ի երկարությունը և լայնությունը համապատասխանաբար հավասար են 500 *մկմ*-ի ու 300 *մկմ*-ի։ ԿՕՈՒ-ի ալիքատարն ունի 200 *մկմ* թեքված մաս, իսկ երկարությունը և լայնությունը համապատասխանաբար հավասար են 500 *մկմ*-ի ու 5 *մկմ*-ի։

ԿՕՈւ-ի քվանտային կառուցվածքը բաղկացած է 6,0 *նմ* լայնությամբ Ino.67Gao.33Aso.72Po.28 եռակի ՔՀ-երից (ՔՀ1) և 8,7 *նմ* լայնությամբ Ino.53Gao.47As երկակի ՔՀ-երից (ՔՀ2), ընդ որում` ՔՀ1 և ՔՀ2 ՔՀ-երը դասավորված են հաջորդաբար (նկ. 1)։

Նկ. 1. Թեք ալիքատար ունեցող ԿՕՈւ-ի ակտիվ շերտի քվանտային կառուցվածքը

6,0 ud (Ino.67Gao.33Aso.72Po.28) և 8,7 ud (Ino.53Gao.47As) լայնությամբ ՔՀ-երն առանձնացված են 15 ud լայնությամբ Ino.86Gao.14Aso.3Po.7 քվանտային արգելքներով (ՔԱ)։ Առանձնացված սահմանափակման հետերոանցման շերտ (ԱՍՀՇ) (Ino.86Gao.14Aso.3Po.7) է առաջանում 6,0 ud և 8,7 ud լայնությամբ ՔՀ-երի միջն։

150 *մԱ* ինժեկցիոն հոսանքի դեպքում ԿՕՈւ-ի թեք ալիքատարով լույս անցնելիս ԿՕՈւ-ի օպտիկական ուժեղացումը և աղմուկը համապատասխանաբար կազմում են 28 *Դբ*և 7 *Դբ*։

Յածր ինժեկցիոն հոսանքների դեպքում (0,05 *Ա* - 0,6 *Ա*) ԿՕՈւ-ի Ճառագայթման ինտենսիվությունն ունի մեկ առավելագույն արժեք (նկ. 3)։ Նկ. 3-ում բերված են ԿՕՈւ-ի Ճառագայթման սպեկտրերը տարբեր ինժեկցիոն հոսանքների դեպքում։

Նկ. 2

0,05 *Ա* ինժեկցիոն հոսանքի դեպքում ԿՕՈւ-ն ձառագայթում է 1540 *նմ* ալիքի երկարությունում։ Ինժեկցիոն հոսանքի մեծացմանը զուգընթաց ձառագայթման ինտենսիվության առավելագույն արժեքը տեղաշարժվում է դեպի կարձ ալիքներ։ 0,8 *Ա* ինժեկցիոն հոսանքի դեպքում, երբ ձառագայթման ինտենսիվության երկար

այիթային առավելագույն արժեքն արդեն տեղաշարժված է կարձ այիքների կողմը (1480 *նմ*), կարձ ալիքալին տիրույթում առաջանում է ձառագալթման ինտենսիվության երկրորդ առավելագույն արժեքը (1378 *նմ*)։ Ինժեկցիոն հոսանքների աՃին զուգընթաց երկար և կարձ ալիքային առավելագույն արժեքները տեղաշարժվում են դեպի կարձ ալիքներ, համապատասխանաբար, 100 *նմ* և 40 *նմ*։ Ալդ տեղաշարժի հետ միաժամանակ փոփոխվում են կարձ և երկար ալիքային երկարությունների ձառագայթման առավելագույն արժեքների ինտենսիվությունները։ Կարձ և երկար ալիքային տիրույթների մառագայթման առավելագույն արժեքների ինտենսիվությունները համապատասխանաբար մեծանում և փոքրանում են։ Կարձ և երկար այիքային երկարությունների Ճառագայթման առավելագույն արժեքների ինտենսիվությունների հարաբերությունը մեծանում է 7 անգամ, երբ ինժեկզիոն հոսանքը 0,6 U-իզ դառնում է 1,6 *Ա* (նկ. 3)։ Նկ. 3-ում բերված են կարձ և երկար ալիքի երկարությունների ձառագայթման ինտենսիվությունների առավելագույն արժեքների հարաբերությունը՝ արտահայտված տոկոսներով։

Այսպիսով, հաջողվեց առաջին անգամ փորձնականորեն դիտել օպտիկական փոխանջատման երևույթը օպտիկական մանրաթելային հաղորդակցության համակարգերում կիրառվող ԿՕՈւ-ում։

Փոխանջատման երևույթը կարելի է բացատրել հետևյալ կերպ. Ցածր ինժեկցիոն հոսանքների դեպքում լիցքակիրները գրավվում են ԿՕՈւ-ի ակտիվ շերտի 8,7 *նմ* լայնությամբ երկու ՔՀ-երի կողմից (ՔՀ2), որի արդյունքում ձառագայթման սպեկտրի երկար ալիքային տիրույթում դիտվում է ձառագայթման ինտենսիվության միայն մեկ առավելագույն արժեք (նկ. 2, կորեր 1-4)։ Ինժեկցիոն հոսանքի մեծացմանը զուգընթաց, լիցքակիրները գրավվում են ոչ միայն 8,7 *նմ* լայնությամբ երկու ՔՀ-երի կողմից (ՔՀ2), այլ նաև 6,0 *նմ* լայնությամբ երեք ՔՀ-երի (ՔՀ1), որի արդյունքում ձառագայթման սպեկտրի կարձ ալիքային տիրույթում դիտվում է ձառագայթման ինտենսիվության երկրորդ առավելագույն արժեքը (նկ. 2, կորեր 5-6)։ Ինժեկցիոն հոսանքի հետագա մեծացմանը զուգընթաց, լիցքակիրները սկսում են վերաբաշխվել և գերակշռում են 6,0 *նմ* լայնությամբ ՔՀ-երում, որի արդյունքում կարձ ալիքային ձառագայթման ինտենսիվությունը մի քանի անգամ գերազանցում է երկար ալիքային Ճառագայթման ինտենսիվությանը (նկ. 2, կորեր 7-10 և նկ. 3)։ 1,6 *Ա* ինժեկցիոն հոսանքի դեպքում կարձ ալիքային Ճառագայթման ինտենսիվությունը 7 անգամ գերազանցում է երկար ալիքային Ճառագայթման ինտենսիվությանը (նկ. 2, կոր 10 և նկ. 3)։

Այսպիսով, հաջողվեց բազմակի ՔՀ-երի տեխնիկայի միջոցով նախագծել և պատրաստել լայնաշերտ բնութագրեր ունեցող ԿՕՈւ-ներ [5-8] և առաջին անգամ փորձնականորեն դիտել օպտիկական փոխանջատման երևույթը օպտիկական մանրաթելային հաղորդակցության համակարգերում [9]։ Փոխանջատման կառավարումը հնարավոր է ոչ հավասարաչափ բազմակի ՔՀ-երի միջև լիցքակիրների վերաբաշխմամբ։ Վերջինս հնարավորություն է տալիս, որ ԿՕՈւ-ները ոչ միայն միաժամանակ Ճառագայթեն երկու ալիքի երկարություններում, այլ նաև փոխանջատեն օպտիկական հաղորդակցության մի ալիքի երկարությունը մեկ այլ ալիքի երկարության՝ կիրառելով միայն մեկ ԿՕՈւ (երկու կամ ավելի ԿՕՈւ-ների փոխարեն)։

Աշխատանքն իրականացվել է ՆԱՏՕ-ի FEL.RIG980772 վերամիավորման դրամաշնորհի շրջանակներում։

ԳՐԱԿԱՆՈՒԹՅԱՆ ՑԱՆԿ

- 1. Stern T.E, Bala K. Multiwavelength Optical Networks // Chapter 4. Addison-Wesley, MA. 1999. P. 193-199.
- Lin C.-F., Tsai C.-W., Chang Y.-C., Chen C.-H., Shmavonyan G.Sh., Su Y.-S. Extremely broadband superluminescent diodes/Semiconductor Optical Amplifiers in Optical Communication band // SPIE Proceedings, San Jose, USA. – 2003. - Vol. 4989. - P. 69-77.
- Lin C.-F., Tsai C.-W., Chang Y.-C., Chen C.-H., Shmavonyan G.Sh., Su Y.-S. Semiconductor lasers/optical amplifiers in optical communication band with very broadband property // IEEE Proceedings, Australia. - 2003. – P. 1068.
- Tsai C.-W., Shmavonyan G.Sh., Lin C.-F. Extremely broadband InGaAsP/InP superluminescent diodes // Proceedings of OPTO'2003. – P. 556 -559.
- Yu D.-K., Shmavonyan G.Sh., Su Y.-S., Lin C.-F. Peculiarities of emission characteristics of semiconductor optical amplifier with multiple quantum wells // SPIE Proceedings. – 2003. - V. 4986. - P. 405-412.
- Tsai C.-W, Shmavonyan G.Sh., Su Y.S., Lin C.-F. Extremely broadband superluminsecent diodes/semiconductor optical amplifiers in optical communication band // Proc. CLEO/PR2003. – 2003. – V. 1. - P. 54.
- Lin C.-F., Tsai C.-W., Su Y.-S., Shmavonyan G.Sh. Extremely broadband InGaAsP/InP superluminescent diode/semiconductor optical amplifiers with emission spectrum covering from 1250 nm to 1650 nm // Technical Digest of 2003 Optical Amplifiers and Their Applications. – 2003. - P. 121 - 123.
- Lin C.-F., Su Y.-S., Wu C.-H., Shmavonyan G.Sh. Influence of separate confinement heterostructure on emission bandwidth of InGaAsP superluminescent diodes/semiconductor optical amplifiers with nonidentical multiple quantum wells // IEEE Photonics Technology Letters. – 2004. - V. 16. - P. 1441-1443.
- Shmavonyan G.Sh. An optical switching effect in optical communication system using one semiconductor optical amplifier // APS Bulletin, Montreal, Quebec, Canada. – 2004. H39.007.

ՀՊՃՀ։ Նյութը ներկայացվել է խմբագրություն 17.05.2004։

Г.Ш. ШМАВОНЯН

НОВОЕ ЯВЛЕНИЕ ОПТИЧЕСКОГО ПЕРЕКЛЮЧЕНИЯ В ОПТИКО-ВОЛОКОННЫХ КОММУНИКАЦИОННЫХ СИСТЕМАХ

Исследовано оптическое переключение в полупроводниковых оптических усилителях с неодинаковыми многочисленными квантовыми ямами. Впервые экспериментально обнаружено, что в полупроводниковых оптических усилителях с неодинаковыми многочисленными квантовыми ямами происходит переключение длин волн между областями 1550 *нм* и 1300 *нм*. Контроль переключения возможен из-за перераспределения носителей заряда между неодинаковыми многочисленными квантовыми ямами активного слоя полупроводниковых оптических усилителей.

G.SH. SHMAVONYAN

A NEW OPTICAL SWITCHING EFFECT IN OPTICAL FIBER COMMUNICATION SYSTEMS

An optical switching in semiconductor optical amplifiers with non-identical multiple quantum wells is investigated. The switch of wavelength between 1550 *nm* and 1300 *nm* bands is experimentally discovered for the first time in semiconductor optical amplifiers. The control of switching is possible due to carrier redistribution among non-identical multiple quantum wells of the active layer of the semiconductor optical amplifier.