ISSN 0002-306X. Изв. НАН РА и ГИУА. Сер. ТН. 2004. Т. LVII, № 3.

Հ\$Դ. 621.81.002.22

ՄԵՔԵՆԱՇԻՆՈՒԹՅՈՒՆ

Մ.Գ. ՍՏԱԿՅԱՆ, Կ.Ց. ԻՍԱԽԱՆՅԱՆ

ՀԱՐԹ ԵՎ ԱՍՏԻՃԱՆԱՎՈՐ ԼԻՍԵՌՆԵՐԻ ՀՈԳՆԱԾԱՅԻՆ ԴԻՄԱԴՐՈՒԹՅԱՆ ՀԱՎԱՆԱԿԱՆ ԳՆԱՀԱՏՈՒՄԸ

Հաղորդում 2. Լիսեռների հոգնածային դիմադրության ցուցանիշների որոշման հաշվարկային մեթոդ

Фոփոխական բարդ բեռնավորման դեպքում $(T,\pm M)$ դիտարկված է լիսեռների հոգնածային դիմադրության ցուցանիշների վրա τ/σ ռեժիմային պարամետրի ազդեցությունը, որը հարթ և լարումների կուտակիչներով օժտված փորձանմուշների համար հիմնականում միալար նվազող բնույթ է կրում։ Դա թույլ է տվել, օգտագործելով լավարկային գծայնացնող (u-v) կոորդինատային համակարգեր, որոնք ապահովում են հարաբերակցական ընտրանքային գործակցի r_{\max} արժեքը, $F(\tau/\sigma,\sigma_{RN},N_G,m,C,s_m,s_{\lg Nr},s_C)=0$ կապը ներկայացնել ուղղագծային հետընթացային հավասարումների համակարգի տեսքով, որի պարամետրը նորմալ բաշխման z_P քվանտիլն է։ Ըստ առաջադրվող խնդրի բնույթի տրված են (u-v) կոորդինատային համակարգի ընտրման տարբերակները։

Առանցքային բառեր. հոգնածային դիմադրություն, գծայնացնող կոորդինատային համակարգ, հարաբերակցական գործակից։

Որակական տեսակետից և հանրագումարային առումով լիսեռների հոգնածային դիմադրության ցուցանիշների վրա հաստատուն շոշափող լարումների ազդեցությունն արտահայտվում է սահմանային լարումների մակերևույթների փոփոխականությամբ [1]։ Այդ ազդեցության քանակական գնահատման համար անհրաժեշտ է բացահայտել նշված ցուցանիշների և բեռնվածության τ/σ ռեժիմային պարամետրի միջև գործող կապերը, որոնք բազմապարամետրական բնույթ են կրում։ τ/σ -ն այս դեպքում հանդես է գալիս որպես մի գործոնային պարամետր, որը թույլ է տալիս այդ կապերը ներկայացնել երեք խումբ առնչությունների տեսքով.

ա) լիսեռի դիմացկունության սահմանի, ցիկլային երկարակեցությունների և քվանտիլային հոգնածության կորի շրջման կետի աբսցիսի միջև՝ բազմացիկլային հոգնածության ողջ տիրույթում ($N=10^5...10^7$)՝

$$\sigma_{RN} = f_1(N, z_p), \ \sigma_{RN} = f_2(\tau/\sigma, z_p), \ N_G = f_3(\tau/\sigma, z_p),$$
(1)

բ) քվանտիլային հոգնածային կորի թեքության ցուցչի և պարամետրի միջև՝

$$m = f_4(\tau / \sigma, z_p), \ C = f_5(\tau / \sigma, z_p), \ C = f_6(m, z_p),$$
(2)

գ) հոգնածային փորձարկումների տվյալների ցրման բնութագրերի միջև՝

$$s_m = f_7(\tau/\sigma) \quad , \ s_c = f_8(\tau/\sigma) \quad , \ s_{\lg Nr} = f_9(\tau/\sigma) :$$
(3)

(1)-(3) կապերը փաստորեն լիսեռների սահմանային լարումների մակերևույթների [1] մաթեմատիկական մոդելներն են, քանի որ բնութագրում են նշված մակերևույթների փոփոխականությունը, ներկայացնելով այդ կապերի և $\sigma_R oN$, $\sigma_R o\tau$, No τ կոորդինատային հարթությունների կամ դրանց զուգահեռ հարթությունների և սահմանային լարումների մակերևույթների հատումից առաջացած կորերի հավասարումների համակարգը, կամ էլ այդ կորերի պարամետրերի կախումը τ/σ -ից։

Նշված կորերը (նկ. 1, 2) հիմնականում միալար փոփոխման միտումներ են ցուցաբերում, ինչը հեշտացնում է վերջիններիս պարամետրերի որոշումը հարաբերակցական և հետընթացային վերլուծության մեթոդներով՝ օգտագործելով նաև լավարկող գծայնացման ձևափոխումներ [2]։ Այդ առթիվ գործնականորեն նպատակահարմար է դրանք ներկայացնել գծային հարաբերակցական հավասարումների համակարգի տեսքով, որոնց արգումենտները N-ը և τ / σ -ն են, իսկ պարամետրը՝ նորմալ բաշխման z_p քվանտիլը.

1.
$$\lg N_p = C_p - m_p \lg \sigma_{RNp}$$
, 6. $C_p = a_5 + b_5 v_5(m_p)$,
2. $\sigma_{RNp} = a_1 + b_1 v_1(\tau/\sigma)$, 7. $s_m = a_6 + b_6 v_6(\tau/\sigma)$,
3. $\lg N_{Gp} = a_2 + b_2 v_2(\tau/\sigma)$, 8. $s_c = a_7 + b_7 v_7(\tau/\sigma)$,
4. $m_p = a_3 + b_3 v_3(\tau/\sigma)$, 9. $s_{\lg Nr} = a_8 + b_8 v_8(\tau/\sigma)$:
5. $C_p = a_4 + b_4 v_4(\tau/\sigma)$, (4)

(4)–ում "p" ցուցիչով նշված են դիտարկվող ցուցանիշների հավանական արժեքները P = 0,1...0,999 ($z_p = 1,28...-3,09$) միջակայքում, իսկ $v_1(\tau/\sigma) - v_8(\tau/\sigma)$ -ն (u - v) կոորդինատային համակարգում v արգումենտի գծայնացնող ֆունկցիաներն են [2]:

(4) համակարգում 1-ը՝ հոգնածային կորի հավասարումն է, որով հնարավոր է որոշել հավանական դիմացկունության սահմանների արժեքները ցիկլային $(N = 10^5 ... 10^7)$: 2-pp huduuupniup երկարակեցությունների լայն տիրույթում ամրության տեսությունների ձևափոխված տարբերակն է, որում նորմալ և շոշափող լարումների համատեղ ազդեցության հաշվառմամբ որոշվում է $\sigma_{\scriptscriptstyle RNp}$ -ի արժեքը, որը համարժեք լարման իմաստ ունի, իսկ ամրության տեսությունը բնութագրող հավասարումը ներկայացվում է համեմատաբար պարզ գծային տեսքով։ 1-ին և 2-րդ հավասարումների համատեղ լուծումը ընդլայնում է ամրության տեսության կիրառման հնարավորությունները, դրանում ընդգրկելով նաև ցիկլային երկարակեցությունների ազդեցությունը, որն ամրության հայտնի տեսություններում հաշվի չի առնվում։ 3-րդ հավասարումը բնորոշում է հոգնածային կորի թեք և հորիզոնական հատվածների փոխադարձ դասավորությունը և ձևավորում է այդ կորի շրջման կետի աբսցիսի (N_{Gp}) և անսահմանափակ դիմացկունության սահմանի $(\sigma_{\scriptscriptstyle Rp})$ արժեքները, որոնք տրվում են տեղեկատու գրականության մեջ։

Նկ. 1. Հոգնածային դիմադրության վիձակագրական ցուցանիշների (u, p) և դիմացկունության սահմանների (գ) փոփոխականությունը τ/σ -ից՝ հարթ փորձանմուշների համար

Նկ.2. Նույնը` միջանցիկ անցքով փորձանմուշների համար

4-6 -րդ հավասարումները կապեր են հաստատում քվանտիլային հոգնածային կորերի պարամետրերի և au/σ -ի միջև։ m-ը և C-ն իրենց ներքին կառուցվածքի շնորհիվ

լիսեռների փաստորեն հոգնածային քայքայման գործընթացը բնութագրող հանրագումարային ցուցանիշներ են, որոնք ներառում են գերլարումների և ցիկլային երկարակեցությունների միջին և ցրման բնութագրերի փոփոխման առանձնահատկությունները։ Վերջիններս, իրենց հերթին, բազմացիկլային հոգնածության ձևավորում են հոգնածային փորձարկումների տվյալների ցրման տիրույթում ՝հարաբերակցական դաշտի" չափերը և դասավորվածությունը, ինչը թույլ է տալիս մեքենաների և տեխնոլոգիական սարքավորման հիմնավորված ժամկետներ նշանակել՝ հուսալիության տեսության հիմնադրույթների հաշվառմամբ։

7-9 -րդ հավասարումները բնորոշում են փորձնական տվյալների ցրման քանակական ցուցանիշների կախումը au/σ -ից, որը համեմատաբար քիչ հետազոտված բնագավառ է։ Այդ ցուցանիշներից յուրաքանչյուրը բնորոշում է հոգնածային փորձարկումների տվյալների ցրման 'հարաբերակցական դաշտի" ձևավորման որոշակի մի հայտանիշ. s_m - ը՝ այդ դաշտի ձառագայթաձև բացման չափը, $s_{\lg Nr}$ -ը՝ բաշխման կենտրոնում ցրման բացվածքը, իսկ s_c -ն՝ բազմացիկլային հոգնածության տիրույթում դաշտի տարածականության փոփոխությունը։ Դրա հետ մեկտեղ, այդ երեք ցուցանիշները ձևավորում են նաև քվանտիլային հոգնածային կորի C և m պարամետրերի արժեքները և դրանց փոփոխականությունը։ Դրանով հիմնավորվում է ոչ միայն փոփոխական բարդ բեռնավորման դեպքում հոգնածային դիմադրության ցուցանիշների բազմապարամետրական կապերի առկայությունը [3], այլ նաև նրանց փոխկապակցվածությունը, որն իր հերթին՝ ամրության և երկարակեցության հաշվարկային մեթոդներ մշակելիս առաջադրում է խնդրի լուծման համալիր մոտեցումներ։ Նման մոտեցումների իրականացումը թելադրված է տարաբնույթ գործոնների ազդեցությամբ և բազմապարամետրական կապերով բնութագրվող՝ հոգնածային գործընթացի քանակական գնահատման անհրաժեշտությամբ, որովհետև այդ գործոնների ազդեցությունը հաՃախ էվրիստիկ բնույթ է կրում և քանակական գնահատման դժվար է ենթարկվում այն դեպքերում, երբ անհրաժեշտ է այդ գնահատումները խմբավորել ըստ ամրության և երկարակեցության հատկանիշների, ինչն էլ անհնար է իրականացնել ամրության հայտնի տեսություններով։

(4) համակարգի հավասարումների պարամետրերի որոշումը լավարկող հարաբերակցական հաշվարկային ընթացակարգերի միջոցով հնարավորություն է ընձեռում լուծել երկու խումբ հարցեր.

ա) բացահայտել մինչ այդ անհայտ օրինաչափություններ լիսեռների ռեժիմային պարամետրերի և հոգնածային դիմադրության ցուցանիշների միջև, որը հետազոտական նպատակներից բացի, զուտ գործնական նշանակություն ունի՝ հիմնավորված և հավանական գնահատմամբ հաշվարկային ընթացակարգեր կազմակերպելիս,

բ) նշված օրինաչափությունները թույլ են տալիս ընդհանրացնել բավականին բարդ հոգնածային փորձարկումների արդյունքները։ Մեքենաշինության մեջ լայնորեն օգտագործվող և բնութագրիչ՝ միջին ածխածնային կառուցվածքային պողպատներից պատրաստված լիսեռների համար բեռնավորման հիմնավորված ռեժիմային պարամետրերի և լարումների կուտակիչների առավել տարածված տեսակների դեպքերում հնարավոր է ստանալ հոգնածային դիմադրության ցուցանիշների ընդհանրացրած արժեքները։

Նշված հարցերի լուծումը թույլ կտա առանց համեմատաբար բարդ իրագործվող հատուկ հոգնածային փորձարկումներ կատարելու, լիսեռների ամրության և երկարակեցության հաշվարկներում օգտագործել նախկին փորձարկումների արդյունքներից բացահայտված օրինաչափությունները և նրանց միջոցով ստացված հավանական մեծությունները։

Հոգնածային փորձարկումներից ընտրենք առավել բնութագրիչ՝ հարթ և սուր (միջանցիկ շառավղային անցքով) լարումների կուտակիչներ ունեցող փորձանմուշների փորձարկման շարքերը և դրանց համար դիտարկենք (4) համակարգի 2-9-րդ հավասարումների պարամետրերի ստացման հաշվարկային ընթացակարգերը։

Հարթ փորձան/ուշներ։ Նախօրոք անհայտ (1)-(3) ֆունկցիաների տեսքի որոշ/ան համար (նկ.1) անհրաժեշտ է իրականացնել գծայնացնող (u - v) կոորդինատային համակարգերի այլընտրանքային տարբերակների լավարկված ընտրություն [2]։ Դիտարկենք $\sigma_{_{RN_{P}}}$ դիմացկունության սահմանի առնչությունը τ/σ -ից՝ բազմացիկլային հոգնածության տիրույթի բնութագրիչ կետերի համար ($N = 10^5$, 10^6 , $\overline{\mathrm{N}}_{\mathrm{G}}$), չքայքայ/ան հավանականության P(N) = 0.1, 0.5 և 0,999 մակարդակներով, որոնք փաստորեն ընդգրկում են $\sigma_{_{RN_{P}}}$ -ի հավանական արժեքների գործնական տիրույթը (նկ. 1գ)։

 $\begin{aligned} & \text{Qluuhnluh}_{2} \ (u-v) \ \ (u-v) \$

Հաշվարկային տվյալների 2-րդ խումբը նկարագրված է (2) ֆունկցիաներով, որոնք կապեր են հաստատում քվանտիլային հոգնածային կորերի և բեռնվածության ռեժիմի պարամետրերի (նկ. 1բ), ինչպես նաև միմյանց միջն։ Նման կապերի բացահայտումը կարևոր է հոգնածային փորձարկումների ծավալների կրձատման տեսակետից, քանի որ այդ կապերի առկայության դեպքում ստանդարտ (պտտական ծռում) փորձարկումների արդյունքով, միջին ածխածնային պողպատներից պատրաստված լիսեռների համար հաշվարկային եղանակով $\tau/\sigma = 0...1,65$ տիրույթում կարելի է որոշել քվանտիլային հոգնածային կորերի C, m պարամետրերը։ Քանի որ C, m պարամետրերի ներքին կառուցվածքները համանման են, N-ի և P(N)-ի դիտարկվող տիրույթներում r_{max} արժեքներն ապահովում է(($\lg y$)¹⁰ – x¹⁰) համակարգը՝ r = 0,9897...0,9950:

Այլընտրանքային են նաև $(y - x^n), n = 2, 9, 10$ (r = 0,9851...0,9951) և $(\lg y - x^7)$ (r = 0,9781...0,9909) կոորդինատային համակարգերը (աղ. 1)։ Նույն պատճառով $C = f_6(m, z_p)$ -ն ուղիղ գիծ է (y - x) համակարգում՝ r = 0,9996, չնայած $(e^x - e^y)$ համակարգն ապահովում է $r_{\max} = 0,9999...1,0000$ արժեքներ։

Նշված դեպքերի համար (u - v)ընդհանրացնող համակարգի տարբերակները աղ.1 - 3 - ում ստվերապատված են։

Cumulpupli dhewighl wiggend ψηρλωύσμες Lupentűberh unte hertowické kurácie a serie a serie

Աղյուսակ 1

Յուցանիշ		P(N) = 0,1		P(N) = 0,5		P(N) = 0,999	
		<i>u</i> - <i>v</i>	r	u-v	r	<i>u</i> - <i>v</i>	r
	$N = 10^{5}$	$y - x^2$	-0,9816	$y - x^2$	-0,9856	$y^{-3} - x^{3}$	0,9975
		$y^2 - x^2$	-0,9816	$y^2 - x^2$	-0,9855	$(\lg y)^{-3} - x^3$	0,9951
		$(\lg y)^2 \cdot x^2$	-0,9813	$(\lg y)^2 \cdot x^2$	-0,9854	$y^2 - x^2$	-0,9945
		$lgy-x^2$	-0,9812	$lgy-x^2$	-0,9853	$e^{y} - x^{2}$	-0,9953
$\sigma_{RN} = f_2(\tau/\sigma, z_p)$		$e^{y}-x^{2}$	-0,9797	$e^{y}-x^{2}$	-0,9835	$lgy-x^3$	-0,9936
	$N = 10^{6}$	$y^{10} - x$	-0,9835	$y^{-2} - x^2$	0,9899	$y^{-2} - x^2$	0,9977
		$y^{-2} - x^2$	0,9832	$(\lg y)^{-2} - x^2$	0,9872	$(\lg y)^{-2} - x^2$	0,9975
		$(\lg y)^{-2} \cdot x^2$	0,9814	$y^{10} - x$	-0,9866	$lgy-x^2$	-0,9970
		$lgy-x^2$	-0,9805	$lgy-x^2$	-0,9859	$y^2 - e^x$	-0,9968
		$y-x^2$	-0,9784	$y - e^x$	-0,9851	$y-x^2$	-0,9957
	$\overline{N} = N_G$	<i>y</i> ¹⁰ - <i>x</i>	-0,9645	<i>y</i> ¹⁰ - <i>x</i>	-0,9641	$y^{-2} - x^2$	0,9102
		$y^5 - e^x$	-0,9438	$y^4 - e^x$	-0,9431	$(\lg y)^{-2} - x^2$	0,9084
		$y^{-2} - x^2$	0,9414	$y^{-2} - x^2$	0,9405	$lgy - x^2$	-0,9077
		$lgy-x^2$	-0,9406	$lgy-x^2$	-0,9393	$y - e^x$	-0,9070
		$y - x^2$	-0,9399	$y - x^2$	-0,9385	$y - x^2$	-0,9064
		$(\lg y)^{10} - x^{10}$	0,9950	$(\lg y)^{10} - x^{10}$	0,9937	$y - x^{IO}$	0,9951
	$m=f_4(\tau/\sigma,z_p)$	$y-x^2$	0,9905	$y - x^9$	0,9923	$lgy-x^8$	0,9900
		$y^{10} - x^{10}$	0,9823	$lgy - x^7$	0,9829	$(\lg y)^{10} - x^{10}$	0,9897
		$e^{y} - x^{10}$	0,9819	$y^{10} - x^{10}$	0,9821	$y^{10} - x^{10}$	0,9819
		$lgy-x^7$	0,9790	$e^{y} - x^{10}$	0,9819	$e^{y} - x^{10}$	0,9819
	$C=f_{\delta}(m,z_p) \qquad \qquad C=f_{5}(\tau/\sigma,z_p)$	$(\lg y)^{10} - x^{10}$	0,9948	$(\lg y)^{10} - x^{10}$	0,9949	$y - x^{10}$	0,9948
		$y - x^9$	0,9895	$y - x^{10}$	0,9921	$(\lg y)^{10} - x^{10}$	0,9924
		$y^{10} - x^{10}$	0,9825	$lgy-x^8$	0,9835	$lgy-x^9$	0,9909
		$e^{y} - x^{10}$	0,9819	$y^{10} - x^{10}$	0,9823	$y^{10} - x^{10}$	0,9820
		$lgy-x^8$	0,9781	$e^{y} - x^{10}$	0,9819	$e^{y} - x^{10}$	0,9819
		$e^{y} - e^{x}$	0,9999	$e^{y} - e^{x}$	0,9999	$e^{y} - e^{x}$	1,0000
		$y^{10} - x^{10}$	0,9999	$y^{10} - x^{10}$	0,9999	$y^{10} - x^{10}$	0,9999
		<i>y</i> - <i>x</i>	0,9996	<i>y</i> - <i>x</i>	0,9996	<i>y</i> - <i>x</i>	0,9996
		$y - (\lg x)^4$	0,9995	$y - (\lg x)^4$	0,9996	$y - (\lg x)^4$	0,9998
		lgy-x	0,9955	lgy-x	0,9961	lgy-x	0,9975

Հավարկող $\left(u-v
ight)$ կոորդինատային համակարգի ընտրությունը. հարթ փորձանմու2ներ

Աղյուսակ 2

Յուցանիշ	<i>u</i> - <i>v</i>	r	Ցուցանիշ	<i>u</i> - <i>v</i>	r			
Հարթ փորձանմուշներ								
	$y^{10} - x^{10}$	0,9605		$(\lg y)^{-10} - (\lg x)^{-10}$	0,9966			
	$(lgy)^{10} - x^{10}$	0,9399		$y^{-10} - (1gx)^{-10}$	0,9918			
$\overline{N}_G = f_3(\tau/\sigma)$	$e^{y} - x^{10}$	0,8372	$s_C = f_8(\tau/\sigma)$	$\lg y - (\lg x)^{-1}$	-0,7898			
	$y - x^{10}$	0,6281		$y - (\lg x)^{-1}$	-0,7445			
	$y^{10} - e^x$	0,6267		$(\lg y)^2 - (\lg x)^{-2}$	-0,7378			
	$y^{-10} - (1gx)^{-10}$	0,8520		$y^{-10} - x^{-10}$	0,9741			
	$(\lg y)^{-3} - (\lg x)^{-3}$	-0,6382		$(lgy)^{10} - x^{10}$	0,9368			
$s_m = f_7(\tau/\sigma)$	$\lg y - (\lg x)^{-2}$	-0,6007	$s_{lgNr}=f_9(\tau/\sigma)$	$lgy-x^{10}$	-0,7743			
	$y - (1gx)^{-2}$	-0,5646		$y - x^{10}$	-0,7214			
	$y^2 - (\lg x)^{-2}$	-0,5287		$e^{y} - x^{10}$	-0,7121			
Շառավղային անցքով փորձանմուշներ								
	y^{10} -(1gx) ¹⁰	0,9999		$(\lg y)^{10} - (\lg x)^{-10}$	0,9999			
	$y^{10}-x^{-10}$	0,9999		$y^{-10} - (1gx)^{-10}$	0,9994			
$\overline{N}_G = f_3(\tau/\sigma)$	$(1gy)^{10} - x^{-10}$	0,9992	$s_C = f_8(\tau/\sigma)$	$y^{-10} - x^{10}$	0,9981			
	$(\lg y)^{10} - (\lg x)^{10}$	0,9992		$(1gy)^{10} - x^{10}$	0,9958			
	<i>y</i> - <i>x</i>	-0,9504		$y - x^5$	-0,8683			
$s_m = f_7(\tau/\sigma)$	$(lgy)^{10} - x^{10}$	0,9991		$y^{-10} - (1gx)^{-10}$	0,9999			
	$y^{-10} - x^{10}$	0,9991		$(\lg y)^{10} - (\lg x)^{-10}$	0,9989			
	$y^{-10} - (1gx)^{-10}$	0,9985	$s_{lgNr}=f_9(\tau/\sigma)$	$\lg y - (\lg x)^{-1}$	-0,9959			
	$(\lg y)^{10} - (\lg x)^{-10}$	0,9927		$y^{-10} - x^{10}$	-0,9951			
	$y - x^5$	-0,7920		$y - x^{10}$	-0,9729			

Նույնը` հարթ և շառավղային միջանցիկ անցքով փորձանմուշների համար

Ընդհանրացնող է համարվում $(y - x^n)$, n = 1, 2, 5, 6 համակարգը, որի դեպքում r-ը փոփոխվում է |r| = 0,6716...0,9997 սահմաններում: $\overline{N}_G = f_3(\tau/\sigma)$ և s_m , s_C , $s_{\lg N_r} = f_{7,8,9}(\tau/\sigma)$ ֆունկցիաների համար, նախորդ դեպքի նման, r = 0,9991...0,9999 արժեքները համապատասխանում են $(y^{\pm n} - (\lg x)^{\pm n})$, $((\lg y)^{\pm n} - (\lg x)^{\pm n})$, n = 10 համակարգերին։ Ընդհանրացնող կոորդինատային համակարգ է ընդունված $(y - x^n)$, n = 1, 5, 10, որի դեպքում r = 0,7920...0,9728 (աղ. 2):

Ցուցանիշ		P(N) = 0,1		P(N) = 0,5		P(N) = 0,999	
		u-v	r	u-v	r	u-v	r
	$N = 10^5$	$y^{-10} - (1gx)^{-10}$	0,9103	$y^{10} - x^{-10}$	0,9711	$y^{10} - x^{-10}$	0,9929
		$y^{-10} - x^{10}$	0,8876	$y^{10} - (\lg x)^{10}$	0,9711	$y^{10} - (\lg x)^{10}$	0,9929
		$(\lg y)^{-10} - (\lg x)^{-10}$	0,7009	y^{10} -1gx	-0,9682	y^{10} -1gx	-0,9896
		$y^{-10} - e^x$	0,6998	$y^{10} - e^{-x}$	0,9405	$y^{10} - e^{-x}$	0,9602
(<i>d</i>		$lgy-x^{10}$	-0,5319	lgy-x	-0,8235	lgy-x	-0,8884
	$N = 10^{6}$	$e^{-y} - x^{10}$	0,9957	$y^{10} - x^{-10}$	0,9990	$y^{10} - x^{-10}$	0,9998
σ, 2		$y^{-10} - (1gx)^{-10}$	0,9957	$y^{10} - (\lg x)^{10}$	0,9990	$y^{10} - (\lg x)^{10}$	0,9998
$\frac{1}{2}(\tau)$		$y^{-10} - x^{10}$	0,9616	y^8 -lgx	-0,9980	$y^3 - \lg x$	0,9996
N = f		$(\lg y)^{-10} - (\lg x)^{-10}$	0,8106	$y^{3} - e^{-x}$	0,9864	y-1g <i>x</i>	0,9986
σ_{R}		$lgy - x^{10}$	0,6417	lgy-x	-0,9756	lgy-x	-0,9692
	$N = \overline{N}_G$	$e^{-y} - x^{10}$	0,9957	lgy-x	-0,9999	$y^{10} - x^{-10}$	0,9988
	0	$y^{-10} - (1gx)^{-10}$	0,9858	$(\lg y)^2 - x$	-0,9999	$y^{10} - (\lg x)^{10}$	0,9988
		$y^{-10} - x^{10}$	0,9732	y^9 -lgx	-0,9999	y^{10} -lgx	-0,9962
		$(\lg y)^{-10} - (\lg x)^{-10}$	0,8525	$y^{3} - e^{-x}$	0,9999	y-lgx	-0,9485
		$lgy-x^{10}$	-0,6787	<i>y</i> - <i>x</i>	0,9990	lgy-x	-0,8803
	$m=f_4(\tau/\sigma,z_p)$	$e^{y}-x^{2}$	-0,7778	$y^{10} - e^x$	-0,8400	y^{10} -1gx	-0,9225
		$y^{10} - e^x$	-0,7765	$y^{10} - x$	-0,8283	$y^{10} - (\lg x)^{10}$	0,9180
		$e^{y} - e^{x}$	-0,7578	$y^{10} - e^{-x}$	0,7980	$y^{10} - x^{-10}$	0,9180
		$y^{10} - x$	-0,7400	$e^{y} - e^{x}$	-0,7882	$y^{10} - e^{-x}$	0,9067
		$y - x^2$	-0,6852	<i>y</i> - <i>x</i>	-0,6716	<i>y</i> - <i>x</i>	-0,6070
	$C=f_5(\tau/\sigma,z_p)$	$e^{y}-x$	-0,9640	$e^{y} - e^{-x}$	0,9796	$e^{y} - e^{-x}$	0,9638
		$e^{y} - e^{-x}$	0,9579	$e^{y}-x$	-0,9718	y^{10} -lgx	-0,9558
		$e^{y} - e^{x}$	-0,9489	e^{y} - e^{x}	-0,9413	$y^{10} - (\lg x)^{10}$	0,9517
		$y^{10} - x$	-0,9083	$y^{10} - x$	-0,9355	$y^{10} - x$	0,9517
		<i>y</i> - <i>x</i>	-0,7903	<i>y</i> - <i>x</i>	-0,8172	<i>y</i> - <i>x</i>	-0,7489
	$C=f_6(\tau/\sigma,z_p)$	$e^{-y} - x^{-9}$	0,9999	$e^{-y} - x^{-6}$	0,9998	$y^{-10} - e^{-x}$	0,9999
		$y^{-10} - e^{-x}$	0,9991	$e^{-y} - e^{-x}$	0,9988	$e^2 - e^x$	0,9998
		$y^{-10} - (\lg x)^{-10}$	0,9979	y^{-7} -1gx	-0,9985	$y^{-4}-x$	-0,9998
		y^{-4} -1gx	-0,9952	$y^{-6} - x$	-0,9978	$lgy-x^4$	0,9998
		$y - x^3$	0,9860	$y - x^6$	0,9910	$y - x^5$	0,9997

Աղյուսակ 3 Նույնը` շառավղային միջանցիկ անցքով փորձանմուշների համար

ՎիՃակագրական վերլուծությունը վկայում է հետազոտվող ցուցանիշների միջև բազմապարամետրական կապերի մեծ տարրապատկերի առկայության մասին՝ աստիՃանային, լոգարիթմական, էքսպոնենտային ֆունկցիաներով և դրանց ցուցանիշներով բնորոշվող գծայնացնող ընթացակարգերով, ինչն զգալիորեն ընդլայնում է այդ կապերի բացահայտման մասին պատկերացումները։ Արդյունքների վիճակագրական մշակումից ստացված հոգնածային դիմադրության ցուցանիշների բազմազանությունը, որը ներառում է նաև $\sigma_{_{RN_P}}$ -ի m_P -ի և C_P -ի պարամետրական արժեքներն ըստ N-ի և P(N)-ի, դրա հետ մեկտեղ՝ 44 խումբ ձևափոխիչ ֆունկցիաների 388 տարատեսակների կիրառումը ենթադրում են ստացված տվյալների բազայի նկատմամբ համակարգային մոտեցումների և մեթոդաբանության մշակում։ Նման համակարգումը, հետազոտականից բացի նաև որոշակի գիտագործնական հետաքրքրություն է ներկայացնում, կիրառական բնույթ ունի և, ըստ առաջադրված խնդիրների եղանակների, կարող է իրականացվել տարբերակային ընթացակարգերով։

ԳՐԱԿԱՆՈՒԹՅԱՆ ՑԱՆԿ

- Ստակյան Մ.Հ., Իսախանյան Կ.Ց. Հարթ և աստիճանավոր լիսեռների հոգնածային դիմադրության հավանական գնահատումը։ Հաղորդում 1. Հարթ, տեխնոլոգիական և կառուցվածքային նշանակության լարումների կուտակիչներ ունեցող լիսեռների սահմանային լարումների մակերևույթները // ՀԳԱԱ և ՀՊՃՀ տեղեկագիր։ Տեխն. գիտ. սերիա.-2004.-Հատ.57, N2. - Էջ 215 – 221:
- Իսախանյան Կ.Յ. Հարթ և աստիճանավոր լիսեռների հոգնածային դիմադրության հավանական գնահատումը։ Տեխն. գիտ. թեկն. ատեն.: Ե.02.01 – Պաշտպ. 23.05.03. – 146 Էջ։
- 3. Олейник Н.В., Коноплев А.В. О связи между параметрами различных моделей кривых усталости //Надежность и долговечость машин и сооружений: Межвед. сб. науч. тр. – Киев: Наукова думка, 1991. - №19. - С. 41-42.
- ՀՊՃՀ։ Նյութը ներկայացվել է խմբագրություն 02.09.2003։

М.Г. СТАКЯН, К.Ц. ИСАХАНЯН

ВЕРОЯТНОСТНАЯ ОЦЕНКА СОПРОТИВЛЕНИЯ УСТАЛОСТИ ГЛАДКИХ И СТУПЕНЧАТЫХ ВАЛОВ

Сообщение 2. Расчетный метод определения показателей сопротивления усталости валов

Для случая переменного сложного нагружения $(T,\pm M)$ рассмотрено влияние режимного параметра τ/σ на показатели сопротивления усталости валов, которое для гладких образцов и при наличии концентраторов напряжения в основном носит монотонно убывающий характер. Это позволило, используя оптимальные линеаризующие координатные системы (u - v), обеспечить значения r_{\max} для выборочного коэффициента корреляции и представить связь $F(\tau/\sigma, \sigma_{RN}, N_G, m, C, s_m, s_{\lg Nr}, s_C) = 0$ в виде системы линейных регрессионных уравнений, где параметром является квантиль нормального распределения z_p . Согласно характеру представленной задачи, рассмотрены варианты выбора координатной системы (u - v).

M.G. STAKYAN, K.Ts. ISAKHANYAN

PROBABILITY ASSESSMENT OF SMOOTH AND STEPPED SHAFT FATIQUE RESISTANCE

Message 2. Design method of defining shaft fatigue resistance indices

For the alternating complex loading (T, ±M) case the operating parameter τ/σ effect on shaft fatique resistance indices having monotonically decreasing nature for smooth patterns and in the presence of stress concentrations is considered. Using optimal linearized coordinate systems (*u*-*v*) it permitted to provide r_{max} values to the optional coorelation coefficient and to present coupling $F(\tau/\sigma, \sigma_{RN}, N_G, m, C, s_m, s_{\lg Nr}, s_C) = 0$ in the form of a system, linear regressive equations, the parameter of which is normal distribution quiantile z_p . According to the character of the presented problem, the versions of coordinate system option (*u*-*v*) are demonstrated.