УДК 621.762:621.78:620.22

МАТЕРИАЛОВЕДЕНИЕ

С.Г. МАМЯН, А.В. АНДРИАСЯН

ИССЛЕДОВАНИЕ ВОДОРОДНОГО ОХРУПЧИВАНИЯ ПРИ ВЫСОКОТЕМПЕРАТУРНОЙ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКЕ (ВТМО) ПОРОШКОВЫХ СТАЛЕЙ

Установлено, что при прямой ВТМО порошковых сталей общее количество водорода, находящегося в виде твердого раствора и в молярном состоянии, аккумулированного в порах, может достигнуть $10...20~cm^3/100~r$ металла. Это приводит к флокенообразованию и ухудшению механических свойств, особенно при жестких методах испытаний.

Ключевые слова: водородное охрупчивание, термомеханическая обработка, флокенообразование, интеркристаллитная хрупкость, обезводораживание.

При получении высокопрочных (σ_B =1500...2400 *МПа*) конструкционных деталей и инструментов из порошковых стальных заготовок путем спекания в водородной среде и последующей горячей пластической деформации (ковка, штамповка, экструзия, динамическое горячее прессование) часто встречаются явления водородного охрупчивания [1-4], в связи с чем исследование особенностей водородного охрупчивания при ВТМО порошковых сталей имеет важное научнопрактическое значение.

Водород в сталях находится в твердом растворе или скапливается в порах – на границах зерен и на дислокациях. Хрупкость стали проявляется тем резче, чем выше ее прочность. Сильное охрупчивание наблюдается в закаленных сталях с мартенситной структурой [5].

Растворимость водорода в техническом железе зависит от состава сплава, температуры и давления водорода (рис. 1). При 910° С растворимость водорода в у-Fe составляет 6,5 $cm^3/100$ r, а при температуре спекания 1150° С - 8 $cm^3/100$ r. При обычных температурах, порядка комнатной, кажущаяся повышенная растворимость может быть обусловлена образованием соединений или выделением водорода в порах и на дефектах строения.

Из образцов сравнительно небольшого сечения, охлаждаемых медленно в печи или на воздухе, растворенный при высоких температурах водород удаляется почти полностью. В больших образцах, естественно, остается много водорода. О влиянии различных легирующих элементов на растворимость водорода имеется мало данных. Никель, марганец и кобальт повышают растворимость, а углерод, хром, алюминий и, по - видимому, кремний снижают ее.

Из всех известных элементов водород диффундирует в железо сравнительно быстро, т.к. атомный диаметр водорода наименьший. В [5] на основании вычислений даны следующие уравнения для коэффициента диффузии:

$$D_{H}(\alpha) = 2.2 \cdot 10^{-3} e^{-2900/RT} c_{M}^{2}/c, D_{H}(\gamma) = 1.1 \cdot 10^{-2} e^{-2900/RT} c_{M}^{2}/c.$$

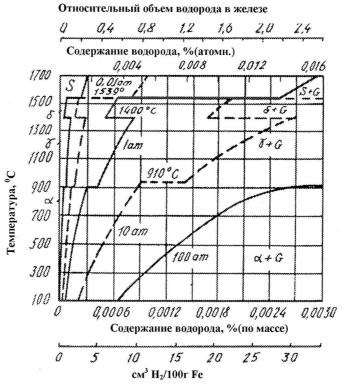


Рис. 1. Растворимость водорода в железе при различных давлениях

Следует различать диффузию и способность к проникновению (или выхода). Если для процесса диффузии определяющим является градиент концентрации внутри металла, то для способности к проникновению существенное значение имеют реакции на поверхности материала.

При обычных режимах спекания в водородосодержащих средах, кроме атомарного водорода, находящегося в твердом растворе, значительное его количество аккумулируется в порах. С точки зрения экономичности и технологичности, формирование деталей методом горячей деформации часто осуществляется непосредственно с температуры спекания (рис. 2). При этом происходит захлопывание пор, в которых имеется значительное количество водорода, что является причиной флокенообразования после ковки, штамповки и экструзии, приводящего к резкому снижению пластичности и характерному интеркристаллитному излому.

С целью изучения проблемы водородного охрупчивания с исключением остальных факторов (чистоты и дисперсности порошков) и создания наилучших условий при рентгеноструктурных анализах тонкого строения мартенсита исследования проводились на сталях П25, П35, ПУ8А, П40Х, П40ХН, П40ХНМ, П12ХНЗА, полученных на основе карбонильного железного порошка марок А2 и ЦНИИЧМ. С целью обеспечения гомогенности сталей шихта изготовлялась из

дисперсных порошков (<50 *мкм*) механическим высокоэнергетическим смешиванием в шаровых мельницах.

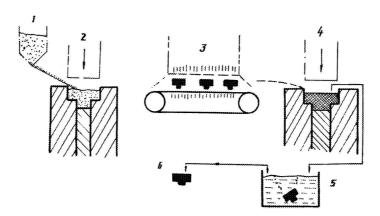
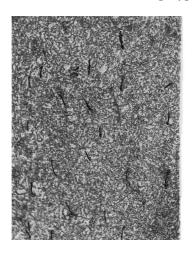


Рис.2. Схема получения высокопрочных порошковых деталей с применением ВТМО: 1-бункер с порошком, 2- прессование, 3 – нагрев заготовок в контролируемых атмосферах, 4 - горячая деформация (формирование деталей), 5- закалка, 6-отпуск

Спрессованные плоские и цилиндрические образцы пористотью 20...25% спекались в атмосфере водорода (точка росы – 27°С). Выбранные режимы обеспечивали получение гомогенных структур. Часть образцов пористостью 8...15% после спекания подстуживали до температуры 800...900°С и подвергали ВТМО экструзией с 6-кратным обжатием. Другую часть подвергали вакуумному отжигу при температуре 500...550°С (обезводораживание), после чего осуществляли ВТМО с аналогичными режимами. С целью выявления эффекта ТМО образцы после экструзии подвергали полному отжигу при 870°С в вакуумной печи с выдержкой 3 ч и дальнейшей закалке с отпуском – обычная термическая обработка (ОТО).


Для определения количества водорода и кислорода образцы подвергали газовому анализу методом вакуум – плавления.

Анализ результатов механических испытаний порошковых сталей показал, что при всех режимах термомеханического упрочнения по сравнению с ОТО наблюдается резкое повышение прочностных и одновременно пластических характеристик на 40...60%. Например, для стали ПУ8К, несмотря на промежуточный вакуумный обезводораживающий отжиг, механические свойства после ОТО получаются очень низкими: при 300° С - $\sigma_{\text{в}}$ = $1300 \ M\Pi a$, δ = 1...2%.

Согласно нашим исследованиям, а также по данным [2], содержание водорода в компактной высокопрочной порошковой стали после ВТМО с экструзией или динамического горячего прессования (при осуществлении горячей деформации непосредственно с температуры спекания) составляет в среднем $12...20\ cm^3/100\ r$ металла в зависимости от исходной пористости заготовки, в то время как содержание водорода в кислой мартеновской стали колеблется в пределах от 3...4 до $5...7\ cm^3/100\ r$ металла.

Проблема водородного охрупчивания заметно выявляется при изготовлении порошковых массивных деталей с использованием более жестких схем деформации: экструзии, ковки и штамповки.

Анализ механических свойств после ВТМО цилиндрических (Ф 40 мм) образцов (экструзия с 6-кратным обжатием) с исходной пористостью 15% показал, что обезводораживание перед ВТМО приводит к резкому повышению комплекса механических свойств (табл. 1). При осуществлении ВТМО непосредственно после спекания (содержание водорода $16 \ \textit{cm}^3/100\textit{r}$) из-за водородного охрупчивания наблюдалось флокенообразование (рис.3), приводящее к интеркристаллитному разрушению вплоть до высоких температур отпуска (400...500°C).

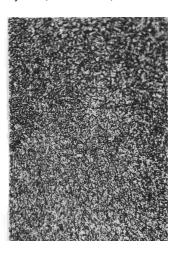


Рис. 3. Микроструктура порошковой стали ПУ8 после ВТМО: а - с температуры спекания (прессование + спекание при 1150° C + подстуживание до 900° C + закалка + отпуск при 200° C);

б - включающей обезводораживающий отжиг (прессование + спекание + охлаждение до комнатной температуры + обезводораживающий отжиг при 550°C + BTMO + отпуск при 200°C)

Как видно из табл. 1, после обезводораживания (содержание водорода не превышало 1,5 cm^3 / 100~r металла) значительно повышаются как прочностные, так и пластические свойства, особенно ударная вязкость (КСU) и работа распространения трещины (КСТ).

На примере У8К видно, что после BTMO вне зависимости от содержания водорода отмечается значительное повышение механических свойств по отношению с ОТО. В данном случае резкое повышение комплекса механических свойств можно объяснить как процессом обезводораживания, так и формированием развитой дислокационной субструктуры мартенсита в результате BTMO.

 Таблица 1

 Механические свойства порошковых сталей после ВТМО с экструзией

Марка	tотп.,	σв,	σ _{0.2} ,	δ,	ψ,	KCU,	KCT,
порошко- вой стали	°C	МПа	МПа	%	%	МДж /м²	МДж∕ м²
У8К	300	<u>2050</u> 1900	<u>1730</u> 1610	<u>8</u> 2,5	<u>20</u> 10	<u>0,35</u> 0,15	0,09 0,02
	400	<u>1400</u> 1250	<u>1220</u> 1050	<u>12</u> 6,0	<u>35</u> 10	<u>0,55</u> 0,20	0,15 0,02
40X	200	<u>1980</u> 1800	<u>1700</u> 1500	<u>8</u> 3	<u>24</u> 12	<u>0,62</u> 0,36	0,21 0,05
40XH	200	<u>2200</u> 1900	<u>1910</u> 1670	<u>6</u> 3	<u>20</u> 10	<u>0,60</u> 0,35	0,20 0,04
40XHM	200	<u>2400</u> 2100	<u>2190</u> 1870	<u>6</u> 1,2	<u>20</u> 8	<u>0,52</u> 0,32	0,24 0,12
	300	<u>1920</u> 1860	<u>1760</u> 1710	<u>10</u> 6	<u>40</u> 20	<u>0,60</u> 0,35	0,28 0,18
30	200	1800 1750	<u>1650</u> 1	<u>10</u> 5	<u>30</u> 10	0,45 0,14	0,15 0,10
	300	<u>1400</u> 1370	<u>1210</u> 1200	<u>16</u> 10	<u>40</u> 15	<u>0,8</u> 0,4	0,35 0,65

Примечание: в числителе – с обезводораживанием до BTMO, в знаменателе – BTMO непосредственно после спекания в водороде.

Установлено, что ВТМО снижает влияние водородного охрупчивания, однако обезводораживание спеченных заготовок приводит к значительному повышению комплекса механических свойств в высокопрочном состоянии.

Все исследованные стали после обезводораживания и термомеханической обработки имели более высокую вязкость по сравнению с контрольной обработкой во всем изученном интервале температур отпуска (200...600 $^{\circ}$ C). Прирост КСU достигает 0,3 ... 0,4 MДж/м², а КСТ – 0,2 ... 0,3 MДж/м².

Водородное охрупчивание значительно сказывается и на усталостную прочность, причиной которой является флокенообразование в процессе горячей деформации. Результаты влияния водородного охрупчивания на усталостную прочность цементованных сталей показали (табл. 2), что чем больше углерода в сердцевине, тем больше проявляется водородное охрупчивание на предел выносливости. Так, для стали П12ХНЗА предел выносливости снижается от 720 до 650 МПа, т.е. на 70 МПа, а для стали П30ХНЗА – от 960 до 790 МПа, т.е. на 170 МПа.

Микроструктурный анализ (рис. 3a) показал, что после BTMO с температуры спекания (при увеличении x340) образуются многочисленные флокены. О причинах водородной хрупкости стали нет еще ясного представления.

Результаты многочисленных исследований в связи с образованием флокенов не всегда сравнимы и противоречивы. Известные на сегодня механизмы, посредством которых водород ухудшает свойства конструкционных сталей, можно разделить на следующие категории: 1) взаимодействие с дислокациями; 2) взаимодействие с межатомными связями в решетке; 3) создание очагов внутреннего давления; 4) образование гидридов.

Таблица 2 Влияние водородного охрупчивания на предел выносливости квазицементованных сталей

Обработка	σ -1 на базе 107 циклов, <i>МПа</i>								
после спекания	Материал сердцевины								
после спекания	П20	П30	П12ХНЗА	П20ХН3А	П30ХН3А				
Обезводораживание, ВТМО	740	820	720	870	960				
ВТМО с температу- ры спекания	630	690	650	700	790				
КТО	590	620	620	680	740				

При определенных условиях водород может пагубно влиять на характеристики разрушения большинства конструкционных сплавов. Классический пример – водородное охрупчивание высокопрочной мартенситной стали, являющееся результатом высокой концентрации водорода в металле. Со временем этот водород образует пузыри и трещины по внутренним поверхностям раздела границ зерен или включений и вызывает замедленное разрушение.

Этот вид охрупчивания, вызываемого водородом, находящимся в период пребывания сплава под действием внешней нагрузки (например, при горячей деформации в процессе BTMO), называют внутренним водородным охрупчиванием. Оно характерно для большинства сплавов, используемых в машиностроении.

Неизбежность и специфика водородного охрупчивания при прямой ВТМО (деформация непосредственно с температуры спекания) заключается в следующем: при спекании (1150...1200 $^{\circ}$ C) спрессованного брикета с пористостью 15...30% при избыточном атмосферном давлении водород растворяется в аустените (Fe_Y) и одновременно в молекулярном состоянии аккумулируется в порах.

Влияние водорода становится заметным в начальный момент пластической деформации и не сказывается в упругой области. Следует принять за основу явления, происходящие в результате совместного действия диффузии водорода и движения дислокаций. Водород образует твердый раствор внедрения, атомы его, подобно атомам углерода, располагаются в решетке преимущественно в местах ее нарушения, особенно в дислокациях. Пластическая деформация при комнатной температуре настолько ускоряет диффузию водорода, что он мигрирует за дислокациями и концентрируется в местах их скопления. При высоких напряжениях (нагрузках) водород выделяется в молекулярное состояние, причем давление его достигает большой величины. Таким путем водород облегчает в этих участках развитие разрыва металла до образования шейки на образце. В соответствии с этим с повышением содержания водорода относительное сужение уменьшается. Из табл. 1 видно, что для исследуемых сталей относительное сужение уменьшается в среднем в два раза.

Наиболее вероятными местами зарождения трещин считаются области объемного растяжения, сконцентрированные в вершинах мартенситных кристаллов, которые являются водородными ловушками с повышенной энергией взаимодействия по сравнению с границами зерен и дислокациями [6].

На флокеночувствительность сталей существенное влияние оказывают структурное состояние матрицы, в которой происходит распад остаточного аустенита, и содержание в ней водорода. Наиболее благоприятной структурой для образования микротрещин является мартенсит. В нем сохраняется наибольшее количество водорода, растворенного в стали при высоких температурах, а также обеспечивается максимальная подвижность при комнатной температуре. Вследствие этого напряженные объемы в мартенситной структуре, какими могут быть области объемного растяжения и другие дефекты, легко обогащаются водородом. Разрушение в таких случаях, как правило, происходит по границам зерен, где в основном концентрируются эти дефекты.

Эти гипотезы позволяют объяснить зависимость охрупчивания от температуры и скорости деформирования.

Если скорость деформирования настолько велика, что атомы водорода не могут больше следовать за распространением дислокаций, то охрупчивание не должно проявиться. При испытаниях, например, литых – компактных сталей на ударный разрыв охрупчивание вообще едва заметно.

Механизм водородного охрупчивания и его воздействие на структуру и свойства порошковых высокопрочных сталей имеет свои особенности и резко отличается от существующих закономерностей литых сталей. Основное воздействие на свойства оказывает не водород, находящийся в твердом растворе, а молекулярный водород, аккумулированный в порах. Естественно, механизм водородного охрупчивания порошковых сталей требует дальнейшего глубокого изучения.

выводы

- 1. Исследованы механизм и кинетика водородного охрупчивания при создании высокопрочных порошковых сталей, в частности цементованных.
- 2. Установлено, что при прямой ВТМО порошковых сталей общее количество водорода, находящегося в виде твердого раствора внедрения и в молярном состоянии, аккумулированного в порах, может достигнуть 12...20 см³/100 г металла. Это приводит к флокенообразованию (что подтверждают металлографические исследования) и ухудшению механических свойств, особенно при жестких методах испытаний:

ПЗ5 после $KTO-KCU=0.25~M_{\mbox{\it M}}/M^2,~KCT=0.08~M_{\mbox{\it M}}/M^2,$ После $BTMO-KCU=0.4~M_{\mbox{\it M}}/M^2,~KCT=0.2~M_{\mbox{\it M}}/M^2,$ BTMO после обезводораживания - $KCU=0.6~M_{\mbox{\it M}}/M^2,~KCT=0.4~M_{\mbox{\it M}}/M^2.$ Аналогичные результаты получены для стали $\Pi Y8.$

СПИСОК ЛИТЕРАТУРЫ

- 1. **Дорофеев Ю.Г., Гасанов Б.Г.** и др. Промышленная технология горячего прессования порошковых изделий. М.: Металлургия, 1990. 206 с.
- 2. **Дорофеев Ю.Г.** Динамическое горячее прессование пористых порошковых заготовок. М.: Металлургия, 1977. 216 с.
- 3. **Баглюк Г.А.** Уплотнение пористого материала при горячей штамповке в закрытом штампе с компенсатором // Порошковая металлургия.- 1998.- N 5 / 6.
- 4. **Johnson P.K.** Powder metallurgy technology review 1991 //Int. I. Powder Metallurgy. 1991. V. 27, N 2.- P.163-167.
- 5. **Гудреман Э.** Специальные стали. Т. 1, 2. М.: Металлургия, 1966. 1273с.
- 6. **Декаменко В.М.** Механизм локального разрушения конструкционных сталей, содержащих водород //Интеркристаллитная хрупкость сталей и сплавов: Сб. науч. трудов / УНЦАН СССР. Свердловск, 1987. –С. 145-149

ГИУА. Материал поступил в редакцию 4.11.2003.

Ս.Գ. ՄԱՄՅԱՆ, Ա.Վ. ԱՆԴՐԻԱՍՅԱՆ

ԶՐԱԾՆԱՅԻՆ ԲԵԿՈՒՆՈՒԹՅԱՆ ՀԵՏԱԶՈՏՈՒՄԸ ՓՈՇԵՊՈՂՊԱՏՆԵՐՈՒՄ ԲԱՐՁՐ ՋԵՐՄԱՄԵԽԱՆԻԿԱԿԱՆ ՄՇԱԿՄԱՆ (ԲՋՄՄ) ԺԱՄԱՆԱԿ

Մահմանված է, որ փոշեպողպատների անմիջական ԲՋՄՄ ժամանակ պինդ լուծույթում գտնվող և ծակոտիներում մոլեկուլյար վիձակում կուտակված ջրածնի ընդհանուր քանակությունը մետաղում կարող է հասնել 10...20սմ³/100 գրամ, ինչը հանգեցնում է ֆլոկենագոյացմանը և մեխանիկական հատկությունների վատացմանը՝ հատկապես կոշտ փորձարկման պայմաններում։

S.G. MAMYAN, A.V. ANDRIASYAN

INVESTIGATION OF CRISPING IN POWDER STEELS

It is established that in direct HTTMT powder steels the whole amount of hydrogen as a solid solution and in the molar state, accumulated in pores may reach 10· 20 cm³/100g of metal. It results in formation of flakes and decrease of mechanical properties, especially with rigid test methods.