ISSN 0002-306Х. Изв. НАН РА и ГИУА. Сер. ТН. 2003. Т. LVI, № 2.

УДК 621.315.592

РАДИОЭЛЕКТРОНИКА

С.Х. ХУДАВЕРДЯН, А.А. АРУТЮНЯН, Ж.Г. ДОХОЛЯН, А.А. КОЧАРЯН

О ВОЗМОЖНОСТИ ОПРЕДЕЛЕНИЯ ШИРИНЫ ОПЗ В ДВУХБАРЬЕРНЫХ СТРУКТУРАХ

Рассматриваются вольт-амперные характеристики и спектральное распределение фототоков двухбарьерных структур с высокоомной прослойкой при наличии и отсутствии длинноволновых потерь. Показана возможность определения ширины областей пространственных зарядов (ОПЗ) переходов путем измерения длины волны инверсии спектрального фототока.

Ключевые слова: спектральная характеристика, фотогенерированные носители, область пространственных зарядов, тыловой барьер.

В [1] теоретически изучена спектральная характеристика двухбарьерных структур с высокоомной прослойкой между барьерами в области собственного и коротковолнового поглощения с учетом отражающих свойств контактов. На рис.1 приведена энергетическая зонная диаграмма исследуемых силицид-силициум-силицид структур.

Рис.1. Энергетическая зонная диаграмма структуры NiSi-n-Si-TiSi2

Фототоки, обусловленные переходами в рассматриваемых структурах, как видно из рисунка, имеют противоположные направления. Фототок $I_{\varphi 1}$, индуцируемый на участке 0-Х_т первого барьера, равен

$$I_{\Phi_1} = qS\beta S_0 (1 - R_1) (e^{\alpha Xm} - 1) (e^{-\alpha Xm} + R_2 e^{-2\alpha d}) (1 + R_1 R_2 e^{-2\alpha d} + R_1^2 R_2^2 e^{-4\alpha d} + ...)$$
(1)

$$I_{\Phi_2} = qS\beta S_0 (1 - R_1)(1 - e^{-\alpha(d - Xm)})(e^{-\alpha Xm} + R_2 e^{-\alpha d})(1 + R_1 R_2 e^{-2\alpha d} + R_1^2 R_2^2 e^{-4\alpha d} + ...)$$
(2)

Фототоки I_{ф1} и I_{ф2} направлены навстречу друг другу. Исходя из (1) и (2), можно вычислить результирующий фототок I_ф в структуре по формуле

$$I_{\Phi} = qS\beta S_0 \frac{1 - R_1}{1 - R_1 R_2 e^{-2\alpha d}} \left[\left(1 + e^{-\alpha d} \right) \left(1 - R_2 e^{-\alpha d} \right) - 2e^{-\alpha Xm} \left(1 - R_2 e^{-2\alpha (d - Xm)} \right) \right],$$
(3)

где q - заряд электрона; S - площадь светочувствительной поверхности; β- квантовый выход; J₀ - интенсивность падающего излучения; R₁ и R₂ - коэффициенты отражения от первого и второго барьеров, имеющих ОПЗ соответственно с толщиной X_m и d-X_m; d - толщина базы; α - коэффициент поглощения.

При отсутствии отражений (R1=R2=0) получим

$$I_{\Phi} = qS\beta S_0 \left[\left(1 + e^{-\alpha d} \right) - 2e^{-\alpha Xm} \right].$$
(4)

Результирующий темновой ток также обусловлен разницей темновых токов двух переходов [2] :

$$I_{T} = I_{s1} \left(\exp \frac{qVX_{m}}{dkT} - 1 \right) - I_{s2} \left(\exp \frac{-qV(d - X_{m})}{dkT} - 1 \right).$$
(5)

Приведем общую вольт-амперную характеристику с учетом результирующего темнового (5) и светового (3) токов :

$$I = qS\beta S_{0} \frac{1 - R_{1}}{1 - R_{1}R_{2}e^{-2\alpha d}} \left[\left(1 + e^{-\alpha d} \right) \left(1 - R_{2}e^{-\alpha d} \right) - 2e^{-\alpha Xm} \left(1 - R_{2}e^{-2\alpha (d - Xm)} \right) \right] + I_{s1} \left(e^{(qVXm)/dkT} - 1 \right) - I_{s2} \left(e^{-qV(d - Xm)/dkT} - 1 \right).$$
(6)

Выражение (6) описывает связь между фототоком, напряжением внешнего смещения (V), длиной волны поглощения (через α) и разницей высот потенциальных барьеров ($\Delta \phi_k$), входящих в выражения для X_m [2].

Рис.2. ВАХ структуры NiSi-n-Si-TiSi2. Кр. 1 - темновой ток; кр. 2 и 3 - фототоки при λ =0,4 *мкм* и λ =0,9 *мкм* соответственно. Интенсивность падающего излучения J0=10⁻⁷ кв/см²с

По формуле (6) была построена вольт-амперная характеристика (рис.2).

Приложенное отрицательное напряжение смещает обратно первый переход и прямо - тыловой. При смене полярности напряжения прямо смещается первый переход, а тыловой - обратно. При этом в диапазоне напряжений от -2,1 до +1,9 темновые токи меньше, чем 2×10⁻¹¹ *A* (кривая 1 на рис.2).

При освещении из коротковолновой области спектра ($\lambda = 0,4$ *мкм*) основная часть излучения поглощается вблизи первого перехода (рис.2, кривая 2). При освещении из длинноволновой области, по сравнению с коротковолновым излучением, возрастает число квантов, поглощенных у тылового барьера. При этом значительная часть квантов не поглощается в базовой области (из-за "хвостовых" потерь) и не вызывает больших изменений сопротивления первого обратно смещенного перехода (кривая 3).

В случае внешнего напряжения, когда первый барьер смещается прямо, а тыловой обратно, при любых значениях длин волн падающего излучения большее число квантов поглощается в области первого барьера, но разделение фотогенерированных носителей происходит полем второго барьера, следовательно, увеличивается ток тылового барьера $I_{\phi 2}$. В итоге, происходит уменьшение коротковолнового фототока, и, начиная с V~1,5 *B*, ток через структуру определяется тыловым обратно смещенным переходом.

Если в (2) принять, что ширина базы d стремится к бесконечности, то этим в выражении для фототока, протекающего через второй барьер, будет учтено влияние всех падающих на образец квантов. При этом выражение (2) примет следующий вид:

$$I'_{\Phi_2} = qS\beta S_0 (1 - R_1) e^{-\alpha Xm} .$$
 (7)

С учетом выражения фототока через первый барьер (1) результирующий фототок будет равен

$$I'_{\Phi} = I_{\Phi 1} - I'_{\Phi 2} = qS\beta S_0 (1 - R_1) (1 - 2e^{-\alpha Xm}).$$
(8)

С учетом темнового тока получим

$$I = I_{T} + qS\beta S_{0}(1 - R_{1})(1 - 2e^{-\alpha Xm}).$$
(9)

На рис.3 представлены расчетные спектральные кривые для структур NiSi-n-Si-TiSi₂ как с учетом "хвостовой" части поглощенных квантов, построенные по (9) (рис.3, кр. 4-6) для соответствующих значений V, так и без их учета, построенные по (4) (рис.3, кр. 1-3) при одинаковой мощности падающего излучения $P=4x10^{-9}$ *Br*. Нетрудно заметить, что закономерности для этих кривых сохраняются, однако точка смены знака фототока смещается в сторону коротких длин волн. Это объясняется тем, что число поглощенных квантов вдали от влияния поля первого барьера в области длинных волн увеличивается. Поэтому максимумы длинноволнового фототока значительно больше при учете "хвостовой" части и находятся в области собственного поглощения. Из сравнения кривых 1-3 и 4-6 видно также, что в случае, когда не создается внутреннее отражение от противоположных контактов,

приводящее к увеличению эффективности поглощения, структуры могут служить эффективными фотоприемниками коротковолнового излучения, т.к. при λ < 0,5 *мкм* падающее излучение

ПОЛНОСТЬЮ базе с толщиной 1 10E-09 -10E-09 -10E-00 -10E-09 -10E-00 -10E-00 -10E-00 -10E-00 -1

Рис.3. Спектральная характеристика NiSi-n-Si-TiSi₂ структур с учетом "хвостового" поглощения (кр. 1-3) и без их учета (кр 4-6). Мощность падающего излучения Р=4х10⁻⁹ *Br*. С увеличением нумерации кривых растет приложенное на контакте напряжение ("+" на Ni контакте)

Закономерность смещения точки "0" при изменении $\Delta \phi_k$ или X_m без учета "хвостовой" части поглощения можно получить из условия I_{ϕ} = $I_{\phi 1}$ - $I_{\phi 2}$. Учитывая, что темновые токи составляют незначительную часть общего фототока и могут быть не учтены, приравнивая (1) и (2) (в точке инверсии спектрального фототока), при отсутствии отражения от контактов (R2=R1=0) можно получить зависимость X_m от коэффициента поглощения (, которая имеет вид

$$X_{\rm m} = (1/\alpha) \operatorname{Ln} 2 - (1/\alpha) \operatorname{Ln} (1 + e^{-\alpha d}) .$$
 (10)

С учетом "хвостовой части (αd>1) это выражение примет вид

$$X'_{m} = (1/\alpha)Ln2$$
 (11)

Зависимости ширины области объемного заряда первого перехода от тех длин волн, при которых происходит смена знака фототока, построенные для X_m и X_m ' по (10) и (11) соответственно, приведены на рис.4. С увеличением X_m точка инверсии смещается в сторону длинных волн. Резкое изменение точки "0" с учетом "хвостового" поглощения происходит в более широком диапазоне длин волн, чем без его учета. Это связано с тем, что диапазон $\lambda_{инв}$ увеличивается при увеличении эффективности поглощения длинноволнового излучения.

Таким образом, в двухбарьерных структурах, подобных рассматриваемым, экспериментально определяя длину волны, при которой происходит инверсия знака

ение коэффициента поглощения, можно рассчитать по (10) и (11) ширину областей объемных зарядов переходов.

б)

a) Рис.4. Зависимость точки инверсии фототока с учетом "хвостового" поглощения (а) и без его учета (б) от ширины области объемного заряда первого перехода

СПИСОК ЛИТЕРАТУРЫ

- 1. Khudaverdyan S.Kh. Photo-detecting characteristics of double barrier structures. // Nuclear Inst. and Methods in Physics Research, A. 2003. - V. 504/1-3. -P. 350-353.
- 2. Grigoryan G.E., Pogosyan L.N., Khudaverdyan S.Kh. Detectors of Electromagnetic Radiation Based on the Double-Barrier Structures. Appled Electromagnetism. - 1999. - V 2, N 2. - P. 43-50.
- ГИУА. Материал поступил в редакцию 02.04.2002.

Ս.Խ. ԽՈՒԴԱՎԵՐԴՅԱՆ, Հ.Հ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Ժ.Գ. ԴՈԽՈԼՅԱՆ, Ա.Ա. ՔՈՉԱՐՅԱՆ ԵՐԿԱՐԳԵԼՔ ԿԻՍԱՀԱՂՈՐԴՉԱՅԻՆ ԿԱՌՈՒՑՎԱԾՔՆԵՐՈՒՄ ԾԱՎԱԼԱՅԻՆ ԼԻՑՔԵՐՈՎ ՏԻՐՈՒՅԹԻ ԼԱՅՆՈՒԹՅԱՆ ՈՐՈՇՄԱՆ ՀՆԱՐԱՎՈՐՈՒԹՅԱՆ ՄԱՍԻՆ

Դիտարկվում են բարձր օհմային բազայով երկարգելք կառուցվածքների վոլտամպերային բնութագրերը և ֆոտոհոսանքների սպեկտրալ բաշխումը՝ երկարայիքային կորուստների առկայության և բացակայության պայմաններում։ Բերվում է տրված պոտենցիալ արգելքների ծավալային լիցքերով շերտերի լայնության որոշման եղանակ սպեկտրալ ֆոտոհոսանքի նշանափոխման կետի ալիքի երկարության չափման մեթոդով։

S.H. KHUDAVERDYAN, H.H. HARUTYUNYAN, J.G. DOKHOLYAN, A.A. KOCHARYAN ON OPPORTUNITY TO DEFINE THE WIDTH OF SPACE CHARGE REGION IN THE DOUBLE-BARRIER STRUCTURES

Current-voltage characteristics and spectral distribution of photocurrents of doublebarrier structures with high-resistance base are reviewed in the presence and absence of long-wave losses. There is an opportunity to define the width of space charge region of junctions by measuring the length of inversion wave of spectral photocurrent.