ISSN 0002-306Х. Изв. НАН РА и ГИУА. Сер. ТН. 2002. Т. LV, № 3.

УДК 621.81.002.22

МАШИНОСТРОЕНИЕ

М.Г. СТАКЯН, А.Р. ДЕМИРХАНЯН

УРАВНЕНИЕ КРИВОЙ УСТАЛОСТИ С УЧЕТОМ ПОРОГА ЧУВСТВИТЕЛЬНОСТИ ПО ДОЛГОВЕЧНОСТЯМ

Сообщение 1. Исследование порога чувствительности

С целью повышения точности статистических характеристик долговечностей разработана новая методика определения порога чувствительности и получена система линейных корреляционных уравнений. Используя данную систему, построена номограмма для их графического определения. Для выполнения расчетных и графических процедур разработан программный пакет.

Ключевые слова: испытания на усталость, порог чувствительности, циклическая долговечность, номограмма.

обработке результатов При испытаний на усталость возникает необходимость решения одно- и многомерных статистических задач для повышения точности вероятностных оценок показателей сопротивления применения усталости. Поэтому, помимо традиционных методов, в вычислительный процесс вводят оптимизационные процедуры и приемы, преследующие цель:

- a) приведения результатов испытаний к виду, наиболее соответствующему принятому закону распределения;
- б) выявления многомерных связей между показателями сопротивления усталости;
- в) разработки усовершенствованной математической модели усталости.

Первая группа задач решается трехуровневыми оптимизационными процедурами [1]. На первом уровне производится оптимальное разбиение размаха варьирования данных $R = x_n - x_1$ на интервалы и комплексные проверки нормальности распределения по критериям согласия λ , ω^2 , χ^2 [2], на втором уровне – оптимальные преобразования вариационных рядов долговечностей по логарифмическим, степенным и экспоненциальным функциям, повышающим действительный уровень значимости α_{Φ} , рассчитанный по критерию согласия χ^2 , а на третьем уровне – рассмотрение опытных данных как сумм случайных и детерминированных составляющих [3] и "фильтрация" второй составляющей.

Одновременно или раздельно действующие на процесс усталостного разрушения многочисленные и разнообразные факторы меняют не только средние значения и статистические характеристики долговечностей деталей, но и закон распределения этих данных, вызывая отклонения от нормальности даже при их логарифмическом преобразовании – асимметрию, эксцесс, многомодальность и

композиции законов распределения. Это, в конечном итоге, существенно влияет на точность вероятностных оценок исследуемых параметров из-за невозможности эффективного использования математического аппарата нормированных функций нормального распределения (интегральных и дифференциальных), что вызывает необходимость разделения второй составляющей циклической долговечности, названной порогом чувствительности - N_{oi} , и рассмотрения нормальности распределения логарифма разности - $lg(N_{ii} - N_{oi})$, где N_{ii} - полная долговечность, полученная в ходе эксперимента. Значение N_{оі} имеет физический смысл и является той частью долговечности, которая соответствует начальному, инкубационному периоду накопления циклических повреждений, в течение которого даже при очень высоких уровнях вероятности практически невозможно наступление окончательного разрушения [4]. Дальнейшие массовые испытания на усталость подтвердили наличие порога чувствительности и ее зависимость от уровня циклических перенапряжений σ_i . Систематические исследования в этой области не были проведены, и в результате полностью не выявлены закономерности изменения значений N_{oi}, что затрудняет их ввод в уточненные расчеты на долговечность ответственных деталей машин и несущих конструкций инженерных сооружений.

Между тем, участившиеся случаи крупных аварий и происшествий техногенного характера в транспорте и инфраструктуре, которые в большинстве случаев обнаруживают усталостную природу (особенно в авиации и ракетостроении), требуют уточнения показателей сопротивления усталости на новом уровне.

Вторая установлению группа задач относится к оптимальных корреляционных связей статистическими характеристиками между долговечностей, максимальным значением коэффициента оцениваемых корреляции г_{тах}, который получается оптимальным подбором преобразующих координатных систем (U, V), обеспечивающих наилучшую линеаризацию этих связей. Подобный подход обеспечит формирование системы линейных уравнений, обобщающих результаты испытаний, и получение показателей сопротивления усталости расчетным путем без длительных и дорогостоящих испытаний.

Комплексный расчетный алгоритм и составленный на его основе программный пакет являются реализацией не только первых двух, но и третьей задачи - создания новой, более усовершенствованной математической модели для описания семейств квантильных кривых усталости и их доверительных границ.

В качестве экспериментальных данных использованы результаты массовых испытаний на усталость образцов (d = 7,62 мм), изготовленных из среднеуглеродистой низколегированной (хромомолибденовой) конструкционной стали, испытанных при круговом изгибе на 6 уровнях σ_i =392,0, 411,6, 441,0, 470,4, 499,8, 529,2 *МПа* (на каждом уровне σ_i - по 100 образцов) [5].

1.Определениепорогачувствительностиподолговечностям.Первоначально составляют вариационные ряды x_{ij} поуровням y_i (рис. 1): $y_i = \lg \sigma_i$, $i = \overline{1, m}$, $x_{ij} = \lg N_{ij}$, $j = \overline{1, n_i}$, гдеm, σ_i -количествои уровень перенапряжений; N_{ij} - долговечностьj-го образца на i -ом уровне σ_i ; n_i - количество испытаний на i -ом уровне: $x_{i1}, x_{i2}, x_{i3}, \dots, x_{ij}, \dots, x_{ini}$.

Далее определяют среднее значение \overline{x}_i , дисперсию s_i^2 , среднее квадратическое отклонение s_i и коэффициент вариации v_i на каждом i-ом уровне σ_i :

$$\overline{\mathbf{x}}_{i} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \mathbf{x}_{ij}, \qquad s_{i}^{2} = \frac{1}{n-1} \sum_{j=1}^{n_{i}} \left(\mathbf{x}_{ij} - \overline{\mathbf{x}}_{i} \right)^{2}, \qquad \mathbf{v}_{i} = \frac{s_{i}}{\overline{\mathbf{x}}_{i}}, \qquad (1)$$

а также коэффициенты асимметрии $\,s_{ki}\,$ и эксцесса $\,E_{ki}\,:$

$$s_{ki} = \frac{1}{n_i s_i^3} \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^3, \qquad E_{ki} = \frac{1}{n_i s_i^4} \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^4 - 3.$$
(2)

Рис. 1

Нормальность распределения вариационных рядов x_{ij} проверяют по критериям согласия $\chi^2,\,\lambda,\,\omega^2$ и определяют уровень значимости α_{max} :

$$\begin{split} \lambda &= \max \Big[D_{n}^{+}, D_{n}^{-} \left[\sqrt{n} - 0, 01 + \frac{0,85}{\sqrt{n}} \right] \leq \lambda_{\alpha}, \\ W^{2} &= \omega^{2} \left(1 + \frac{1}{2n} \right) \leq W_{\alpha}^{2}, \\ \omega^{2} &= \frac{1}{12n} + \sum_{i=1}^{n} \Big[W(x_{i}) - \Phi(z_{i}) \Big]^{2}, \\ \alpha_{\max} &= \max \Big[P(\chi^{2} > \chi_{1}^{2}) \Big] = \\ &= \max \Bigg[2^{k/2} \Gamma(k/2)^{-1} \int_{\chi_{1}^{2}}^{\infty} (\chi^{2})^{\frac{k}{2} - 1} \exp\left(-\frac{\chi^{2}}{2} \right) d\chi^{2} \Bigg]. \end{split}$$
(3)

Порог чувствительности N_{oi} определяют методом подбора, для чего назначают: $N_{oi} = kN_{i1}$, где N_{i1} - первый член i-го вариационного ряда, а $k = 0,05, 0,10, 0,15, \ldots, 0,95$. Для каждого значения k составляют новые вариационные ряды x'_{ij} :

x'_{i1}, x'_{i2}, x'_{i3},..., x'_{ij},..., x'_{ini}, где

 $\mathbf{x}'_{ij} = \log \mathbf{N}'_{ij}, \mathbf{N}'_{ij} = (\mathbf{N}_{ij} - \mathbf{N}_{oi}) = (\mathbf{N}_{ij} - k\mathbf{N}_{i1}).$

Рассчитывают значения \overline{x}'_{i} , ${s'_{i}}^{2}$, ${s'_{i}}$, ${v'_{i}}$, ${s'_{ki}}$, E'_{ki} для каждого i-го ряда и для всех значений k = 0,05,...,0,95. При этом выбирают оптимальные значения $k_{i_{opt}}$, обеспечивающие $s'_{k \min}$ и $E'_{k \min}$, а с их помощью - $\max[\alpha_{\max}]$, определяемые согласно (3), чем и обосновывается окончательное значение $N_{oi} = k_{iopt}N_{il}$. Составляют таблицу предварительных расчетов и повторяют проверки нормальности распределения согласно (3) для новых рядов x'_{ij} (с учетом N_{oi} - табл.1).

Разделение порога чувствительности в значительной степени повысило нормальность распределения логарифмов долговечностей, о чем свидетельствуют возросшие значения α_{max} особенно на низких уровнях σ_i :

		σ_1 >	σ_2 >	σ ₃ >	σ_4 >	σ_5 >	$\sigma_{_6}$
α_{Φ}	до	0,779	0,696	0,456	0,273	0,148	0,079
	после	0,779	0,914	0,939	0,708	0,909	0,873
$k_{i_{\textit{opt}}}$		0	0,80	0,75	0,75	0,90	0,85
N _{oi}		0	0,22.105	0,47.105	0,93·10 ⁵	2,62·10 ⁵	4,34·10 ⁵ .

Аналогичное повышение зафиксировано и по критерию согласия W^2 : 0,058...0,225 и 0,016...0,05 – до и после разделения, и это повышение лишь незначительно по критерию λ - соответственно 0,388...0,572 и 0,366...0,550.

2. Исследование статистических характеристик и порога чувствительности. Известны многомерные связи статистических характеристик долговечностей от уровня σ_i и средних значений \overline{x}_i , \overline{x}'_i , где параметром является квантиль нормального распределения Z_p . Классификация всех вариантов параметрических связей приводит их к виду

$$\begin{split} &1.\ \hat{\overline{x}}_{Pi} = f_1\big(\sigma_i, z_P\big), &- &- \\ &2.\ \hat{\overline{x}}'_{Pi} = f_2\big(\sigma_i, z_P\big), &\hat{\overline{x}}'_{Pi} = \phi_1\big(\hat{\overline{x}}_{Pi}\big), &- \\ &3.\ x_{oi} = f_3\big(\sigma_i\big), &x_{oi} = \phi_2\big(\overline{x}_i, z_P\big), &x_{oi} = \psi_1\big(\overline{x}'_{Pi}, z_P\big), \\ &4.\ s_i^2 = f_4\big(\sigma_i\big), &s_i^2 = \phi_3\big(\overline{x}_i\big), &- &(4) \\ &5.\ v_i = f_5\big(\sigma_i\big), &v_i = \phi_4\big(\overline{x}_i\big), &- &(4) \\ &5.\ s_i'^2 = f_6\big(\sigma_i\big), &- &s_i'^2 = \psi_2\big(\overline{x}'_i\big), \\ &7.\ v_i' = f_7\big(\sigma_i\big), &- &v_i = \psi_3\big(\overline{x}_i\big), \\ &r_{\mathcal{I}\!e} &\hat{\overline{x}}_{Pi} = \overline{x}_i + z_P s_i, \\ &\hat{\overline{x}}'_{Pi} = \overline{x}'_i + z_P s'_i, \\ &x_{oi} = lg \, N_{oi}. \end{split}$$

Систему (4) можно оптимизировать, отобрать лишь важнейшие из них и представить в виде системы линейных корреляционных уравнений:

^,

1.
$$\mathbf{x}_{Pi} = \mathbf{a}_{1} + \mathbf{b}_{1} \lg \sigma_{i}$$
, $P = 0.5...0,999 \ (z_{P} = 0... - 3,09)$,
2. $\mathbf{x}_{oi} = \mathbf{a}_{2} + \mathbf{b}_{2} \lg \sigma_{i}$,
3. $\mathbf{s}_{i}^{\prime 2} = \mathbf{a}_{3} + \mathbf{b}_{3} \lg \sigma_{i}$,
4. $\mathbf{v}_{i}^{\prime} = \mathbf{a}_{4} + \mathbf{b}_{4} \lg \sigma_{i}$,
5. $\mathbf{x}_{oi} = \mathbf{a}_{5} + \mathbf{b}_{5} \hat{\mathbf{x}}_{Pi}$, $P = 0.5...0,999 \ (z_{P} = 0... - 3,09)$,
6. $\mathbf{s}_{i}^{2} = \mathbf{a}_{6} + \mathbf{b}_{6} \overline{\mathbf{x}}_{i}$,
7. $\mathbf{v}_{i}^{\prime} = \mathbf{a}_{7} + \mathbf{b}_{7} \overline{\mathbf{x}}_{i}$,

где a_1, \dots, a_7 и b_1, \dots, b_7 – параметры и коэффициенты медианных линий регрессии.

								Ta	блица 1				
i	\boldsymbol{y}_{i}	Вариационные ряды x'_{ij} ($i = \overline{1, m}$, $j = \overline{1, n_i}$)				n _i	\overline{x}_i^{\prime}	s' _i	v'_i				
1	<i>Y</i> ₁	$\mathbf{x}'_{11}, \mathbf{x}'_{12}, \mathbf{x}'_{13}, \dots, \mathbf{x}'_{1j}, \dots, \mathbf{x}'_{1n1}$			n ₁	$\overline{\mathbf{x}}'_1$	s' ₁	\mathbf{v}_1'					
2	<i>y</i> ₂		$\mathbf{x}'_{21}, \mathbf{x}'_{22}, \mathbf{x}'_{23}, \dots, \mathbf{x}'_{2j}, \dots, \mathbf{x}'_{2n2}$			n ₂	$\overline{x}_{2}^{\prime}$	s'_2	v'_2				
3	<i>Y</i> ₃		$x'_{31}, x'_{32}, x'_{33}, \dots, x'_{3j}, \dots, x'_{3n3}$			n ₃	\overline{x}'_{3}	s' ₃	v' ₃				
÷	÷		:		:	÷	÷	:					
i	y_i		$x'_{i1}, x'_{i2}, x'_{i3}, \dots, x'_{ij}, \dots, x'_{ini}$			n _i	\overline{x}_i^{\prime}	s'_i	v'_i				
÷	÷		÷		:	÷	÷	:					
m	\mathcal{Y}_m	Х	$x'_{m1}, x'_{m2}, x'_{m3}, \dots, x'_{mj}, \dots, x'_{mnm}$			n _m	$\overline{\mathbf{x}}'_{\mathrm{m}}$	s' _m	v'_m				
•					Продолжение табл.1								
							Прод	олжени	е табл.1				
s' ²	s'i	3	s' ⁴	s' _{kimin}	E' _{ki_{min}}	k _{iopt}	Прод	<i>олжени</i> »і	<i>те табл.1</i> N _{oi}				
$\frac{s_i^{\prime 2}}{s_1^{\prime 2}}$		³ ³	s' ⁴ s' ⁴	$s'_{ki_{min}}$ $s'_{k1_{min}}$	$E'_{ki_{min}} = E'_{k1_{min}}$	k _{iopt} k _{1opt}	Прод Х.	олжени ^{pi}	<i>те табл.1</i> N _{oi} N _{o1}				
$\frac{s_{i}^{\prime 2}}{s_{1}^{\prime 2}}$		73 1 73 1 73 2	s' ⁴ s' ⁴ s' ⁴ s' ⁴	$s'_{ki_{min}}$ $s'_{k1_{min}}$ $s'_{k2_{min}}$	$E'_{ki_{min}}$ $E'_{k1_{min}}$ $E'_{k2_{min}}$	k _{iopt} k _{1opt} k _{2opt}	Прод	олжени ^{Di}	<i>пе табл.1</i> N _{oi} N _{o1} N _{o2}				
$ \begin{array}{c} s_{i}^{\prime 2} \\ s_{1}^{\prime 2} \\ s_{2}^{\prime 2} \\ s_{3}^{\prime 2} \end{array} $	s'i s'1 s'2 s'2	r3 1 73 1 73 2 73 3	s' ⁴ s' ⁴ s' ⁴ s' ⁴ s' ⁴ s' ⁴	$s'_{ki_{min}}$ $s'_{k1_{min}}$ $s'_{k2_{min}}$ $s'_{k3_{min}}$	$E'_{ki_{min}}$ $E'_{k1_{min}}$ $E'_{k2_{min}}$ $E'_{k3_{min}}$	$f k_{iopt}$ $f k_{1opt}$ $f k_{2opt}$ $f k_{3opt}$	Прод Х.с Х.с Х.с Х.с	<i>олжени</i> ⁵¹ 1 2 3	<i>пе табл.1</i> N _{oi} N _{o1} N _{o2} N _{o3}				
$\begin{array}{c c} s_{i}^{\prime 2} \\ s_{1}^{\prime 2} \\ s_{2}^{\prime 2} \\ s_{3}^{\prime 2} \\ \vdots \end{array}$	s'i s'1 s'2 s'2 s'2	r3 1 73 2 73 3		$s'_{ki_{min}}$ $s'_{k1_{min}}$ $s'_{k2_{min}}$ $s'_{k3_{min}}$ \vdots	$E'_{ki_{min}}$ $E'_{k1_{min}}$ $E'_{k2_{min}}$ $E'_{k3_{min}}$ \vdots	$\begin{array}{c} \mathbf{k_{i}}_{opt} \\ \mathbf{k_{1}}_{opt} \\ \mathbf{k_{2}}_{opt} \\ \mathbf{k_{3}}_{opt} \\ \vdots \end{array}$	Прод Х.с Х.с Х.с Х.с Х.с Х.с Х.с Х.с	олжени зі лі 2 3	те табл.1 N _{oi} N _{o1} N _{o2} N _{o3} :				
$\begin{array}{c c} s_{i}^{\prime 2} \\ \hline s_{1}^{\prime 2} \\ s_{2}^{\prime 2} \\ s_{3}^{\prime 2} \\ \hline s_{i}^{\prime 2} \\ \end{array}$	s'i s'i s'i s'i	r3 r3 2 r3 3 3 73		$s'_{ki_{min}}$ $s'_{k1_{min}}$ $s'_{k2_{min}}$ $s'_{k3_{min}}$ \vdots $s'_{ki_{min}}$	$E'_{ki_{min}}$ $E'_{k1_{min}}$ $E'_{k2_{min}}$ $E'_{k3_{min}}$ \vdots $E'_{ki_{min}}$	$\begin{array}{c} \mathbf{k_{i}}_{opt} \\ \mathbf{k_{1}}_{opt} \\ \mathbf{k_{2}}_{opt} \\ \mathbf{k_{3}}_{opt} \\ \vdots \\ \mathbf{k_{i}}_{opt} \end{array}$	Прод Х. Х. Х. Х. С. Х. С. Х. С. Х. С. Х. С. Х. С. Х. С. Х. С. Х. С. Х. С. Х. С. Х. С. Х. С. Х. С. С. Х. С. С. Х. С. С. Х. С. С. Х. С. С. Х. С. С. Х. С. С. Х. С. С. Х. С. С. С. С. С. С. С. С. С. С	олжени ^{ji} ll 2 3	<i>не табл.1</i> N _{oi} N _{o1} N _{o2} N _{o3} : N _{oi}				
$\begin{array}{c c} s_{i}^{\prime 2} \\ s_{1}^{\prime 2} \\ s_{2}^{\prime 2} \\ s_{3}^{\prime 2} \\ \vdots \\ s_{i}^{\prime 2} \\ \vdots \\ \end{array}$	s' _i s' ₁ s' ₂ s' ₁ s' ₂ s' ₁	r3 r3 r3 2 r3 3 r3 r3 r3		$s'_{ki_{min}}$ $s'_{k1_{min}}$ $s'_{k2_{min}}$ $s'_{k3_{min}}$ \vdots $s'_{ki_{min}}$	$E'_{ki_{min}}$ $E'_{k1_{min}}$ $E'_{k2_{min}}$ $E'_{k3_{min}}$ \vdots $E'_{ki_{min}}$ \vdots	$\begin{array}{c} \mathbf{k_{iopt}} \\ \mathbf{k_{1opt}} \\ \mathbf{k_{2opt}} \\ \mathbf{k_{3opt}} \\ \vdots \\ \mathbf{k_{iopt}} \\ \vdots \end{array}$	Прод Х. Х. Х. Х. С. С. Х. С. С. Х. С. С. Х. С. Х. С. Х. С. Х. С. Х. С. Х. С. С. Х. С. Х. С. Х. С. С. Х. С. Х. С. С. Х. С. С. Х. С. С. Х. С. С. Х. С. С. Х. С. С. С. Х. С. С. Х. С. С. Х. С. С. С. С. С. С. С. С. С. С	олжени ³¹ 2 3 3	ие табл.1 N _{oi} N _{o1} N _{o2} N _{o3} : N _{oi} :				

Для выявления связей (5) определены расчетные значения изучаемых параметров на всех уровнях σ_i и вероятности неразрушения $P = 0, 5 \dots 0, 999$. При этом составлены двумерные корреляционные таблицы данных согласно (5), а для их линеаризации использованы преобразующие системы координат (u, v). При этом определяют параметры медианной линии регрессии:

$$u_{v} = \overline{u} + r \frac{s_{u}}{s_{v}} (v - \overline{v}) = a + b_{u/v} v, \qquad (6)$$

где

$$a = \overline{u} - b_{u/v} \overline{v}, \quad b_{u/v} = r \frac{s_u}{s_v}, \quad r = \frac{\mu}{s_u s_v}, \quad \mu = \frac{1}{m-1} \sum_{i=1}^m (v_i - \overline{v}) (u_i - \overline{u}), \\ s_u = \sqrt{\frac{1}{m-1} \sum_{i=1}^m (u_i - \overline{u})^2}, \quad s_v = \sqrt{\frac{1}{m-1} \sum_{i=1}^m (v_i - \overline{v})^2}.$$
(7)

В табл. 2 приведены наиболее известные типы преобразующих координатных систем (60 групп, 248 наименований), которые сгруппированы по виду преобразующих функций и их параметров, реализующих процесс с высоким, умеренным и низким градиентами линеаризации. Попеременно для каждого вида и параметра функции производится преобразование значений y_i , x_i на u_i , v_i и расчет величины r_i . Затем из каждой группы преобразований выбирают те координатные системы (u, v), которые обеспечивают $|\mathbf{r}_{max_i}|$, и составляют их таблицу - $|\mathbf{r}_{max1}| > |\mathbf{r}_{max2}| > > |\mathbf{r}_{max3}| > \cdots > |\mathbf{r}_{max60}|$ с указанием кода и вида преобразующих координат (u, v) (табл. 2). Окончательно выбирают оптимальную преобразующую систему координат (u_{opt} , v_{opt}), обеспечивающую $\max[|\mathbf{r}_{max}|]$ или удобную систему (u, v) для дальнейшей унификации расчетов согласно (6).

3. Построение номограммы $\sigma_i - \hat{x}_{p_i} - \hat{x}'_{p_i} - x_{o_i} - s_i - s'_i - v_i - v'_i - z_p$.

Система уравнений (5), где в качестве основного аргумента выступает уровень перенапряжений σ_i , а параметром является квантиль нормального распределения Z_p (P = 0, 5...0, 999), в полной мере отражает взаимосвязь основных статистик процесса усталостного разрушения, позволяет сравнительно простыми процедурами, расчетным путем определить эти статистики. Но наиболее наглядным является графический метод определения этих величин с помощью номограммы (рис.2), позволяющей последовательными графическими процедурами решить систему уравнений (5) для интересующих нас интервалов варьирования этих статистик. Номограмма обладает также другим важным преимуществом – с ее помощью можно решить широкий спектр статистических задач с разными предварительными условиями, диктующими стартовый ход графических процедур. В качестве стартового параметра принят уровень перенапряжений, и с его помощью определены остальные статистики. Для реализации указанных расчетных и графических процедур на алгоритмическом языке *Borland Pascal 7.0* составлен программный пакет *SMDA4* (25 *кБт*).

Таблица 2

N⁰	Степенные	Логарифмическо-степенные					
1	$y - x^{n}$, n = 15 1,1	$y - (\lg x)^n,$ n = 15 2,1	$lg y - x^{n}$, n = 15 3,1	$lg y - (lg x)^n$, n = 15 4,1			
2	$y - 1/x^{n}$, n = 15 1,2	$y - 1/(lg x)^n$, n = 15 2,2	$lg y - 1/x^{n}$, n = 15 3,2	$lg y - 1/(lg x)^n$, n = 15 4,2			
3	$y^{n} - x,$ n = 25 1,3	$y^{n} - \lg x,$ n = 25 2,3	$(\lg y)^n - x,$ n = 25 3,3	$(\lg y)^n - \lg x,$ n = 25 4,3			
4	$1/y^{n} - x,$ n = 15 1,4	$\frac{1}{y^{n}} - \lg x,$ n = 15 2,4	$1/(\lg y)^n - x,$ n = 15 3,4	$1/(\lg y)^n - \lg x,$ n = 15 4,4			
5	$y^{n} - x^{n},$ n = 25 1,5	$y^{n} - (\lg x)^{n},$ n = 25 2,5	$(\lg y)^n - x^n,$ n = 25 3,5	$(\lg y)^n - (\lg x)^n,$ n = 25 4,5			
6	$1/y^{n} - 1/x^{n}$, n = 15 1,6	$1/y^{n} - 1/(lg x)$ n = 15 2,6	$1/(\log y)^n - 1/x$ n = 15 3,6	$1/(\lg y)^n - 1/(\lg x)^n$, n = 15 4,6			
7	$y^{n} - 1/x^{n}$, n = 25 1,7	$y^{n} - 1/(\lg x)^{n}$, n = 25 2,7	$(\lg y)^n - 1/x^n$, n = 25 3,7	$(\lg y)^n - 1/(\lg x)^n$, n = 25 4,7			
8	$1/y^{n} - x^{n},$ n = 25 1,8	$1/y^{n} - (\lg x)^{n},$ n = 25 2,8	$1/(\lg y)^n - x^n,$ n = 25 3,8	$1/(\lg y)^n - (\lg x)^n,$ n = 25 4,8			

Преобразующие системы координат

Продолжение табл.2

	Экспо- ненц.				
$y - \lg x^{n},$ $n = 25 \qquad 5,1$	-	6,1	$lg y - lg x^{n},$ n = 25 7,	$ \begin{array}{c c} y^{n} - e^{x}, \\ n = 15 \\ 8,1 \end{array} $	
$y - 1/\log x^{n}$, n = 25 5,2	-	6,2	$lg y - 1/lg x^{n},$ n = 25 7,	$ \begin{array}{c c} y^{n} - 1/e^{x}, \\ n = 15 \\ 8.2 \end{array} $	
- 5,3	$lg y^{n} - x,$ n = 25	6,3	$lg y^{n} - lg x,$ n = 25 7,	$ \begin{array}{c} e^{y} - x^{n}, \\ n = 15 \\ 8,3 \end{array} $	
- 5,4	$\frac{1}{\lg y^n - x},$ n = 25	6,4	$1/\log y^{n} - \log x,$ n = 25 7,	4 $1/e^{y} - x^{n}$, n = 15 8,4	
$y^{n} - \lg x^{n},$ n = 25 5,5	$lg y^{n} - x^{n},$ n = 25	6,5	$lg y^{n} - lg x^{n}, n = 25 7,$	$e^{y} - e^{x},$ 5 8,5	
$1/y^{n} - 1/\lg x^{n}$, n = 25 5,6	$\frac{1}{\lg y^n - 1}x^n$ $n = 2\dots 5$	¹ , 6,6	$\frac{1}{\lg y^{n} - 1} \frac{1}{\lg x^{n}},$ n = 25 7,	$ \begin{array}{c} \frac{1}{e^{y}} - \frac{1}{e^{x}} \\ 8,6 \end{array} $	
$y^{n} - 1/\lg x^{n}$, n = 25 5,7	$lg y^n - 1/x^n,$ n = 25	6,7	$\frac{\lg y^{n} - 1}{\lg x^{n}}, \\ n = 25 7,$	$e^{y} - 1/e^{x},$ 7 8,7	
$1/y^{n} - \lg x^{n},$ n = 25 5,8	$1/\lg y^n - x^n,$ n = 25	6,8	$\begin{vmatrix} 1/\lg y^n - \lg x^n, \\ n = 25 \\ 7, \end{vmatrix}$	$\begin{array}{c c} 1/e^{y}-e^{x},\\ 8,8 \end{array}$	
Примечания: 1. $u = y, 1/y^n, y^n, (\lg y)^n, \lg y^n, 1/(\lg y)^n, 1/\lg y^n$ и т. д. 2. $v = x, 1/x^n, x^n, (\lg x)^n, \lg x^n, 1/(\lg x)^n, 1/\lg x^n$ и т. д.					

Рис. 2. Номограмма $F(\sigma_i, \hat{\overline{x}}_{p_i}, \hat{\overline{x}}'_{p_i}, x_{oi}, s'^2_i, v'_i, s^2_i, v_i, z_p) = 0$. Зависимости: $A - \hat{\overline{x}}_{p_i} = f_2(\sigma_i, z_p), \quad B - x_{oi} = f_3(\sigma_i), \quad C - s'^2_i = f_4(\sigma_i), \quad D - v'_i = f_7(\sigma_i),$ $E - x_{oi} = \phi_2(\hat{\overline{x}}'_i, z_p), \quad F - s^2_i = \phi_3(\overline{x}_i), \quad I - v_i = \psi(\overline{x}_i).$

Линии 1-5 соответствуют вероятностям P = 0,5, 0,9, 0,95, 0,99 и 0,999.

СПИСОК ЛИТЕРАТУРЫ

- 1. Стакян М.Г., Демирханян А.Р. Модифицированный метод проверки нормальности распределения результатов механических испытаний // Изв. НАН РА и ГИУА. Сер. ТН.- 2000.- Т.53, №3.- С.271-280.
- 2. **Степнов М.Н.** Статистические методы обработки результатов механических испытаний: Справ. М.: Машиностр., 1985. 232 с.
- 3. Айвазян С.А. Прикладная статистика. Исследование зависимостей: Справ. М.: Финансы и статистика, 1985. - 487 с.
- 4. Когаев В.П., Махутов М.А., Гусенков А.П. Расчеты деталей машин и конструкций на прочность и долговечность: Справ. М.: Машиностр., 1985. 223 с.
- 5. Бастенер Ф., Бастьен М., Поме Ж. Статистический анализ результатов новых усталостных испытаний // Усталость и выносливость металлов: Сб. ст. М.: ИЛ, 1963. С.390-406.

ГИУА. Материал поступил в редакцию 30.01.2002.

Մ.Գ. ՍՏԱԿՅԱՆ, Ա.Ռ. ԴԵՄԻՐԽԱՆՅԱՆ

ՀՈԳՆԱԾԱՅԻՆ ԿՈՐԻ ՀԱՎԱՍԱՐՈՒՄԸ ԵՐԿԱՐԱԿԵՑՈՒԹՅՈՒՆՆԵՐԻ ԶԳԱՅՆՈՒԹՅԱՆ ՇԵՄԻ ՀԱՇՎԱՌՄԱՄԲ

Հաղորդում 1. Զգայնության շեմի հետազոտումը

Երկարակեցությունների վիճակագրական բնութագրերի ճշտությունը բարձրացնելու նպատակով մշակված է երկարակեցությունների զգայնության շեմի որոշման նոր մեթոդիկա։ Կատարված է զգայնության շեմի վիճակագրական հետազոտություն և ստացված է այդ բնութագրերի որոշման համար անհրաժեշտ գծային հարաբերակցական հավասարումների համակարգ։ Նշված համակարգի կիրարկմամբ կառուցված է նոմոգրամ՝ բնութագրերի գրաֆիկական որոշման համար։ Հաշվարկային և գրաֆիկական ընթացակարգերի կատարման համար մշակված է ծրագրային փաթեթ։

M.G. STAKYAN, A.R. DEMIRKHANYAN

EQUATION OF STRESS-CYCLE DIAGRAM WITH ACCOUNT OF LONGEVITY SENSITIVITY THRESHOLD

REPORT 1. INVESTIGATION OF SENSITIVITY THRESHOLD

In order to improve the longevities of statistical character accuracy, a new method for determining sensitivity theshold is developed, and a system of correlation equations for these characteristics determination is found out. Using these system a nomograph is constructed for their graphical determination. For realization of graphical and calculation procedures software is elaborated.