- Айвазян Г.Е., Скворцов А.М. Осевая деформация структуры подложка-пленка // Электронная техника. Сер. Микроэлектр. 1987.- Вып. 3.- С. 107-111.
- 6. Айвазян Г.Е., Багдасарян А.Б., Варданян А.А. Об определении остаточных напряжений в диффузионных слоях // Изв. АН Армении.- Сер. ТН.- 1993.-Т. 56, № 1.- С.34-37.

НПП "Транзистор"

02.05.1999

Изв. НАН РА и ГИУА. Сер. ТН. 2000. Т. LIII, № 1..

УДК 621.31

ЭЛЕКТРОТЕХНИКА

Ю.М. ШАХНАЗАРЯН, Р.Г. ТУМАНЯН

ТРЕХФАЗНАЯ ЦЕПЬ В РЕЖИМЕ ИСТОЧНИКА ТОКА

Դիտարկվում է չեզոք R_H հաղորդալարով ոչ սիմետրիկ եռաֆազ շղթա։ Ֆազերում միացված են R_A, X_B և X_C բեռներ։ Վերջին երկուսը մեծությամբ հավասար են, իսկ բնույթով՝ տարբեր։ Ցույց է տրված, որ R_A >>R_H պայմանի դեպքում բեռում հոսամքը կախված չէ R_H –ի մեծությունից, այսինքն, ամբողջ եռաֆազ շղթան R_H բեռի համեմատ կարելի է ներկայացնել որպես հոսանքի աղբյուր։

Рассматривается несимметричная трехфазная цепь с нейтральным проводом, в котором находится полезная активная нагрузка R_H . В фазы включены нагрузки R_A , X_B и X_C , равные между собой по величине, но разные по характеру. Показывается, что при $R_A >> R_H$ ток в нагрузке R_H не зависит от значения R_H , т.е. всю трехфазную цепь по отношению к нагрузке R_H можно представить источником тока.

Ил. 3. Табл.3. Библиогр.: 3 назв.

A nonbalanced three-phase circuit containing active resistance R_H in a neutral line is considered. The phases A, B, C contain, respectively, R_A , X_B , X_C . The reactances of X_B and X_C are different, but their modules are equal. It is shown that the current R_H does not depend upon the magnitude of R_H in case when $R_A >> R_H$. The entire three- phase circuit, relative to the resistance R_H , can be represented as a source of current.

I $\ell\ell$ 3. Tables 3. Ref. 3.

В последнее время в схемах автоматизированного электропривода с двигателями постоянного тока все чаще стали применяться источники питания в виде источников тока (ИТ) вместо общепринятых источников ЭДС. Этот вопрос подробно освещался в [1-3], где рассматривался индуктивно-емкостный ИТ, использующий конденсаторы, индуктивности и полупроводниковые вентили. При этом в якоре двигателя постоянного тока протекает неизменный и не зависящий от ЭДС ток, а электропривод приобретает новые свойства и характеристики.

В настоящей статье рассматриваются новые схемы трехфазного тока в отличие от схем, приведенных в [1 - 3], которые при определенных условиях приобретают свойства ИТ.

Рабочая активная нагрузка трехфазной цепи представлена резистором с сопротивлением R_H , включенным в нейтральный провод (рис.1). В фазу "А" включен резистор с сопротивлением R_A , величина которого взята большей по сравнению с сопротивлением R_H , $R_A >> R_H$. В две другие фазы включены катушка и конденсатор с равными по величине реактивными сопротивлениями $X = X_L = X_C$. Активными сопротивлениями этих элементов можно пренебречь.

Показано, что ток в нагрузке R_H при изменении величины R_H остается неизменным, а рассматриваемая трехфазная цепь может практически служить ИТ по отношению к нагрузке.

Используя метод эквивалентного генератора, заменим всю трехфазную цепь по отношению к зажимам нагрузки O'O одним эквивалентным генератором. Найдем величины $\dot{E}_{\Im K}$ и внутреннего сопротивления $\underline{Z}_{\Im K}$ этого генератора:

$$\dot{\mathrm{E}}_{\mathrm{SK}} = \left(1 - \sqrt{3} \frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{X}}\right) \mathrm{U}_{\mathrm{A}} \,, \tag{1}$$

$$\underline{Z}_{\mathcal{H}} = \mathbf{R}_{\mathbf{A}} \,. \tag{2}$$

Напряжение на зажимах нагрузки $R_{\rm H}$ равно

$$U_{0'0} = \frac{R_{\rm H}}{R_{\rm H} + R_{\rm A}} \left(1 - \sqrt{3} \frac{R_{\rm A}}{X} \right) U_{\rm A} = \frac{R_{\rm H}}{R_{\rm H} + R_{\rm A}} E_{\rm \Im K} .$$
(3)

Ток в нагрузке равен

$$I_{\rm H} = \frac{\left(1 - \sqrt{3} \frac{R_{\rm A}}{X}\right) U_{\rm A}}{R_{\rm H} + R_{\rm A}} = \frac{U_{\rm O'O}}{R_{\rm H}}.$$
(4)

Приведены эквивалентные схемы замещения трехфазной цепи в этом режиме (рис. 2a, б). Как видно, сопротивление резистора R_A больше по сравнению с сопротивлением нагрузки R_H , и изменение R_H в малом диапазоне незначительно влияет на величину тока в нагрузке (рис. 2a).

Величина тока ИТ и его внутреннее сопротивление (рис. 2б) равны

Считая резистор $R_{\rm H}$ в нейтральном проводе в качестве рабочей нагрузки, КПД в этой цепи определится как

$$\eta = P_{\rm H} / (P_{\rm H} + P_{\rm A}) . \tag{7}$$

Однако расчет КПД по этой зависимости неполный, так как не учитываются потери мощности в катушке и конденсаторе. Следует указать, что в качестве нагрузки в нейтральный провод можно включить и реактивные нагрузки X_{LH} и X_{CH} вместе с R_{H} , и их изменение не повлияет на ток в нейтральном проводе.

При неполнофазном режиме работы трехфазной цепи (рис.1), т.е. при $R_A = \infty$, указанная схема принимает следующий вид (рис. 3):

Ток в нагрузке R_H (рис. 3) можно определить, если воспользоваться зависимостью (4) при $R_A = \infty$:

$$I_{\rm H} = -U_{\rm J} / X = \text{const.}$$
⁽⁸⁾

Как видно, значение этого тока не зависит от величины сопротивления резистора $R_{\rm H}$. Наглядную схему замещения трехфазной цепи (рис.1) при $R_{\rm H} = \infty$ можно представить схемой рис. 26. Напряжение на зажимах нагрузки будет равно

$$U_{O'O} = -R_H U_{\pi} / X.$$

(9)

Расчеты трехфазной цепи (рис.1) при значениях $R_A = 500 O_M$, 5000 O_M и $R_A = \infty$ с учетом изменения сопротивления нагрузки R_H в диапазоне $0 \le R_H \le 50 O_M$ при $X = 50 O_M$ и $U_A = U_B = U_C = 220 B$ приведены в табл. 1-2. Как видно, ток в нагрузке, помещенной в нейтральном проводе, практически остается неизменным. Абсолютная стабилизация этого тока будет при отсутствии фазы "A". При определенных условиях ток в фазе "A" (рис. 1) также не зависит от значения сопротивления R_A этой фазы:

$$I_{A} = \frac{\left(1 - \sqrt{3} \frac{R_{H}}{X}\right) U_{A}}{R_{H} + R_{A}}.$$
(10)

При $R_H >> R_A$ ток в R_A изменяется незначительно. Полная стабилизация тока I_A будет иметь место при отсутствии нейтрального провода ($R_H = \infty$):

$$I_{A} = \sqrt{3} \frac{1}{X} U_{\phi} = U_{\pi} / X = \text{const}.$$
(11)

Расчеты трехфазной цепи (рис.1) при $R_H = 5000 O_M$ и $R_H = \infty$ в диапазоне $0 \le R_{\text{H}} \le 50 O_M$ при $X = 50 O_M$, $U_{\Phi} = 220 B$ приведены в табл. 3.

Стабилизация тока на отдельных ветвях трехфазной цепи может быть использована в системах автоматизированного электропривода, АСУ, в измерительной технике, в технике сварки и др.

Таблица 1

R _A ,	R _H ,	Ú _{0'0} ,	İ _H ,	İ _A ,	İ _в ,	İ _c ,
Ом	Ом	B	A	A	A	Ă
	50	-325,5	-6,51	1,09	$-2,2\sqrt{3}$ - j4,31	$-2.2\sqrt{3}+i4.31$
$R_A =$	30	-202,6	-6,75	0,85	$-2,2\sqrt{3}$ - j1,85	$-2,2\sqrt{3}+j1,85$
= 500	20	-137,7	-6,88	0,72	-2,2√3 - j0,55	$-2,2\sqrt{3}+j0,55$
Ом	10	-70,2	-7,02	0,58	$-2,2\sqrt{3}+j0,80$	$-2,2\sqrt{3}$ - j0,80
	0	0	-7,16	0,44	$-2,2\sqrt{3}+j2,20$	$-2,2\sqrt{3}$ - j2,20
	50	-374,6	-7,48	0,119	$-2,2\sqrt{3}$ - j5,29	$-2,2\sqrt{3}+j5,29$
$R_A =$	30	-225,3	-7,51	0,089	$-2,2\sqrt{3}$ - j2,50	$-2,2\sqrt{3}+j2,50$
= 5000	20	-150,5	-7,53	0,074	-2,2 √3 - j0,81	$-2,2\sqrt{3}+j0,81$
Ом	10	-75,4	-7,54	0,059	$-2,2\sqrt{3}+j0,69$	-2,2 √3 - j0,69
	0	0	-7,56	0,044	$-2,2\sqrt{3}+j2,20$	$-2,2\sqrt{3}$ - j2,20

Таблица 2

R _A ,	R _H ,	İ _{эк} ,	Ú _{0'0} ,	İ _Η ,	İ _A ,	İ _B ,	İ _c ,
Ом	Ом	A	В	A	A	A	A
	50	-7,6	-380	-7,6	0	-2,2√3 - j5,40	$-2,2\sqrt{3}+j5,40$
$\mathbf{K}^{\mathrm{A}} = \infty$	30	-7,6	-228	-7,6	0	-2,2√3 - j2,36	$-2,2\sqrt{3}+j2,36$
	20	-7,6	-152	-7,6	0	-2,2√3 - j0,84	$-2.2\sqrt{3} + j0.84$
	10	-7,6	-76	-7,6	0	$-2,2\sqrt{3}+j0,68$	$-2,2\sqrt{3}$ - j0,68
	0	-7,6	0	-7,6	0	$-2,2\sqrt{3}+j2,20$	-2,2 √3 - j2,20

Таблица 3

R _H ,	R _A ,	Ú _{0'0} ,	$\dot{I}_{ m H}$,	İ _A ,	İ _B ,	İ _c ,
Ом	Ом	В	A	A	A	A
	50	-158,4	-0,032	7,57	-2,2, √3 - j0,96	$-2,2,\sqrt{3}+j0,96$
$R_{\rm H} =$	30	-7,95	-0,0016	7,60	-2,2, $\sqrt{3}$ +j2,04	-2,2, √3 - j2,04
=5000	20	67,7	0,0135	7,61	$-2,2,\sqrt{3}+j3,56$	-2,2, √3 - j3,56
Ом	10	143,7	0,029	7,63	$-2,2,\sqrt{3}+j5,08$	-2,2 √3 - j5,08
	0	220	0,044	7,64	$-2,2\sqrt{3}+j6,60$	-2,2 √3 - j6,60
	50	-160	0	7,6	-2,2√3 - j1,0	$-2,2\sqrt{3}+j1,0$
$R^{H} = \infty$	30	-8	0	7,6	$-2,2\sqrt{3}+j2,04$	-2,2 √3 - j2,04
	20	68	0	7,6	$-2,2\sqrt{3}+j3,56$	-2,2 √3 - j3,56
	10	143,7	0	7,6	$-2,2\sqrt{3}+j5,08$	-2,2 √3 - j5,08
	0	220	0	7,6	$-2,2\sqrt{3}+j6,60$	-2,2 √3 - j6,60

ЛИТЕРАТУРА

ПО "Айг" Министерства

обороны РА

25.09.1998

^{1.} **Чиликин М.Г., Ключев В.И., Сандлер А.С.** Теория автоматизированного электропривода. - М.: Энергия, 1979. - 615 с.

^{2.} Ильинский Н.Ф. Электроприводы постоянного тока с управляемым моментом. - М.: Энергоиздат, 1981. - 144 с.

^{3.} Москаленко В.В. Автоматизированный электропривод. - М.: Энергоатомиздат, 1986. - 415 с.