3 **Мартиросян М.М.** Получение прессованных тонкостенных труб из стеклопластиков // Промышленность Армении -1971 - № 10. - С. 56 - 57

4 Авакян Р.А., Данилова И.Н., Лебедева О.В., Сохолова Т.В. Изучение прочности и деформируемости органопластиков при пропорциональном деформировании и сложном нагружении // Механика композитных материалов. 1983 - № 5 - С 930-933.

5. Мартиросян М.М. Упрочнение оривнтированного стеклопластика при двухосном растяжении // Механика полимеров. - 1976. - № 6. - С 1025 -

1029.

Ин-т механики НАН РА

03.06.1997

П ин НАН и ГИУ Армении (сер. ГП). г. LJ. № 2, 1998, с. 132-137.

УДК 631 171:626+621.837 5

МАШИНОСТРОЕНИЕ

А.К. АМИРЯН

ЗАКОН РАСПРЕДЕЛЕНИЯ НАГРУЗОК МЕЖДУ РЯДАМИ МНОГОРЯДНОЙ ЦЕПИ ГИДРОМЕХАНИЧЕСКОГО ПРИВОДА РАБОЧЕГО ОРГАНА ПЛАНТАЖНОГО ПЛУГА ППН-40

Նկարագրվում է թեր լանչերի վրա աշխատելու համար գյուդատնտեսական ուղանիդ արդանարի բանվորական օրդանների աղղանիդ դիրքի կարգավորումն հարաարանքների կառուցվածքը, որոնցում որպես մեխանիկական մաս կիրառված է շղջացուալիսային փոխանցում (ՇԱՓ)։ Դիտարիքում են ՇԱՓ-ի թագմաշարը շղջայի օրյակների շարբերի միջն բեռնվածրի բաշխնան օրինաբակության բացահասաման ռաղղաթյասը կառուպանում տեղական և փորձիական հետագուտարանների արդյունքները, որոնք երաշխանորվում են ՇԱՓ երի հակագծան մասանակ օգտագործելու համար

Описываются конструкции устройств для регулирования вертикального положения рабочих органов сельскохозяйственных машин при работе на склонах, где в качестве механической части использована цепно-волновая передача (ЦВП) Рассматриваются результаты теоретических и экспериментальных исследований по выявлению закона распределения нагрузок между звеньями по рядам многорядной цепи ЦВП Получены результаты, которые рекомендуется учитывать при проектировании ЦВП.

Ил 3. Табл. 2. Библиогр.. 3 назв.

Designs of devices for regulating the vertical position of agricultural tools that operate on slopes are described, chaln-wave transmission (CWT) is used as a mechanical part. The results of theoretical and experimental researches on revealing the load distribution law between the links according to rows in multirow CWT are considered. When designing a CWT it is recommended to take into account these results obtained.

177. 3. Tables 2. Ref. 3

При освоении горных склонов для обеспечения заданных или оптимальных технологических режимов при работе агрегата с плантажным плугом (с рыхлителем, ямокопателем и другими сельскохозяйственными мацинами и орудиями) возникает необходимость регулирования вертикального положения рабочих

органов в зависимости от изменения кругизны склона. В связи с этим в конструкциях этих машин предусматриваются различные решения, осуществляемые в основном гидромеханическим приводом от надежности работы когорого в значительной степени зависит работоспособность самих почвообрабатывающих машин и агрегата в целом.

С целью повышения надежности, долговечности и качества технологического процесса путем обеспечения разгрузки гидросистемы трактора созданы устройства для регулирования вартикального положения рабочих органов сельскохозяйственных машин и орудий 12, 3], включающие гидродвигатели, кинематически связанные с рабочим органом, и слабженные редукторами с цепноволновыми передачами (ЦВП), которые включены в кинематическую цепь между гидродвигателями и рабочими органами.

Многорядная цепь ЦВП представляет собой статически наопределенную систему, и поэтому для определения усилий в званьях рядов цепи можно воспользоваться теоремой о трех

моментах.

Пример определения усилий в звеньях рядов цели приведен для тихоходной ступени редуктора-фиксатора, представляющей собой двухволновую ЦВП, где генератор волн охватывается одним из средних рядов (третьим) четырехрядной втулочно-роликовой цели тива 4ПР по ГОСТ 13562-75 (рис. 1). Два других ряда цели (первый и второй) охватывают передающую блок-звездочку, а крайний ряд (чатвертый) зацеплен с зубъями взаимодействующей звездочки. Передаточное отношение этой ступени 1, = 15.

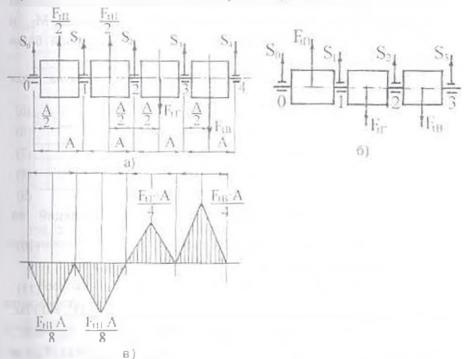


Рис. 1 Схема сил, деяствующих в звеньях рядов цели ЦВП: а - при чатырехрядной цели; б - при трехрядной цели в элюры изгибающих моментов

Окружные силы на передающей звездочке $F_{\rm iff}$, генераторе волн $F_{\rm iff}$ и взаимодействующей звездочке $F_{\rm iff}$ приложены в центрах роликов цепи и рассматриваются как сосредоточенные силы (рис. 1a). Пронумеруем ряды звеньев слева направо. Следовательно, уравнение трех моментов следует представить отдельно три раза для рядов 1, 2 и 3.

При использовании теоремы о трех моментах для указанных

рядов цепи находим величины опорных моментов [1]:

$$M_s = 3\Lambda (13F_{sh} + 3F_{sr} - F_{sb})/448.$$
 (1)

$$M_{\star} = 3A(F_{\rm HI} - 3F_{\rm eff} + F_{\rm dR})/112$$
, (2)

$$M_{\perp} = -3A(F_{ab} + HF_{ab} + 15F_{ab})/448.$$
 (3)

Зная эти величины, можно легко вычислить усилия в звеньях по рядам цепи. С этой целью каждый пролет рассчитываем как отдельную балку, упирающуюся концами (под действием нагрузки в ее пролете и моментов, приложенных по концам). Например, усилие в звене на 1-ом ряду (опоре) неразрезной балки можно определить как сумму реакций на 1-ых опорах двух смежных балок. При этом каждую из них определяют из условий статики.

Общая формула для усилий (реакции) на і-й опоре (ряде цепи),

как известно, имеет следующий вид:

$$S_{i} = S^{0} + (M_{i+1} - M_{i}) / I_{i+1} - (M_{i+1} - M_{i}) / I_{i},$$
(4)

где S - суммарная реакция на 1-ых опорах двух смежных балок под действием заданных нагрузок в пролетах: $(M_{-}-M_{+})/I_{t-1}$ - реакция (усилие) на 1-й опоре левой балки под действием моментов M_{t-1} и M_{+} : $(M_{-}-M_{+})/I_{t-1}$ - реакция (усилие) на 1-й опоре правой балки под действием моментов M_{t-1} и M_{+} :

На основе формулы (4) определяем усилия в звеньях на рядах цели (рис. 1):

$$S_0 = (9F_{iF} - 3F_{iB} - 73F_{iH}) / 448,$$
 (5)

$$S = (9F_{,11} - 27F_{,12} - 145F_{,12})/224, \tag{6}$$

$$S_2 = (68F_{if} - 18F_{if} - 25F_{iff})/112, \tag{7}$$

$$S_3 = (163F_{cB} + 127F_{cF} + 9F_{cH})/224,$$
 (8)

$$S = (179F_{ii} - 33F_{ii} - 3F_{ii})/488.$$
 (9)

Проверим найденные усилия по сумме проекций на вертикальной оси:

$$S_0 + S_1 + S_2 + S_4 + S_4 = F_{01} - F_{02} - F_{03}$$
 (10)

Подставляя значения S_0, S_1, \ldots, S_k в (10), получим

$$(F_{,0} + F_{,0} - F_{,0}) + F_{,0} - F_{,0} - F_{,0} = 0.$$
 (11)

Для редуктора-фиксатора при параметрах $T_{\rm is}=15,\ D_{\rm ov}=0.17$ м, предварительно принимая КПД в зацеплениях передачи $\eta_{\rm is}=0.95,$ получим следующую связь между моментами: $T_{\rm is}=-0.113T_{\rm H}$ и $T_{\rm is}=-0.887T_{\rm H}$ [1]. Следовательно, абсолютные величины окружных усилий имеют вид

$$F_{rr} = 5.8823T_{rr}$$
, $F_{rR} = 5.2176T_{rr}$, $F_{rr} = 0.6647T_{rr}$.

Используя уравнения (5)-(9), определены усилия в звеньях по рядам четырехрядной цепи:

$$S_0 = -0.98T_{ff}$$
, $S_1 = -3.6782T_{ff}$, $S_2 = -1.7480T_{ff}$, $S_3 = 4.4099T_{ff}$, $S_4 = 1.9963T_{ff}$.

Знак указывает на относительное направчение усилий звеньев по рядам цепи.

Нетрудно убедиться, что сумма всех усилий равна нулю $(\sum S_i = 0)$, а нагрузка между рядами распределяется слишком неравномерно. Максимальное усилие испытывают звенья третьего ряда. а затем - первого ряда. Минимальную же нагрузку воспринимают звенья нулевого ряда.

Установлено, что усилия в рядах цепи зависят от передаточного отношения ЦВП и КПД цепного зацепления В качестве критериев для оценки закона распределения нагрузки между рядами звеньев цепи принимаем величины коэффициентов относительных усилий к нагрузке на тихоходном валу:

$$v_i = S_i / T_{\text{fin}} \tag{13}$$

где $T_{\text{пі}} = S_{\text{к.}} D_{\perp}/2$ - крутяший момент на передающей звездочке: $S_{\text{к.}}$ - усилие в канате, наматываемом на барабан насаженного тихоходный вал редуктора: $D_{\perp} = 0.12 M_{\odot}$ - диаметр барабана нагружающего устройства.

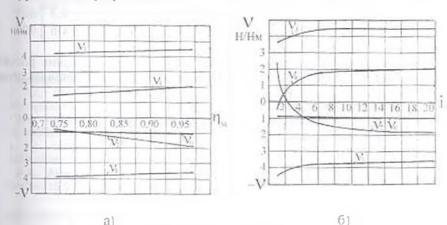


Рис. 2. Графики изменения коэффициентов относительных усилий в зависимости от а КПД цепного зацепления, 6 - передаточного отношения ЦВП

Построены графики коэффициентов относительных усилий в зависимости от КПД цепного зацепления - $V_{\parallel} = \Gamma(\eta_{\rm M})$ при $\tau_{\rm KR} = 15$ (рис. 2a), а также от передаточного отношения ЦВП - $V_{\parallel} = \Gamma(1)$ при $\eta_{\rm M} = 0.95$ (рис. 26).

Аналогично, при рассмотрении сил, действующих в зацеплении, для двухволновой ЦВП грехрядной втулочно-роликовой цепью (рис. 1в) выражения для определения усилий в звеньях по рядам цепи принимают вид

$$S_0 = -2.2723T_{11}$$
, $S_1 = -4.6651T_{11}$, $S_2 = 5.0473T_{11}$, $S_3 = 1.8901T_{11}$ (14)

Сравнением полученных значений для усилий в звеньях трехрядной и четырехрядной цепей (рис. 3) можно установить, что максимальное усилие на звеньях трехрядной цепи на 14,5...26,8% больше, чем на звеньях четырехрядной цепи, а минимальная нагрузка больше в 2,3 раза. Таким образом, при прочих равных условиях четырехрядная цепь будет работать в более благоприятных условиях, чем грехрядная. Это в дальнейшем надо будет учесть при проектировании цепно-волновых передач.

В табл. 1 приведены расчетные значения усилий в эвеньях по рядам цепи, полученные опытным путем на специальном стенде для проведения лабораторных экспериментов редукторов с ЦВП.

Расчетные значения усилий в звеньях по рядам цели

_	Расчетные значения усилии в звеньях по рядам цепи												
_	Нагрузка		Усилия в звеньях цепи (на рядах)										
на крюке,		So		S ₁		S ₂		S ₃		S4			
		Qr.	h _o .	So	Ir.	S ₁ ,	h ₂ ,	S ₂ ,	h ₃ ,	S ₃ ,	1141	S4,	
_		H	ММ	H	MM	Н	MM	Н	ММ	H	ММ	H	
-	1	1777,6	0,5	135	1,7	470	0.3	240	2,4	580	2.2	265	
2	2	2802.7	0.7	190	2,4	758	0.4	370	3,4	885	2,8	400	
2	3	3847.5	0.9	271	2,9	975	0.5	460	4.4	1190	3,4	560	
4	1	4887.3	1,1	335	3.7	1290	0,6	600	5,5	1520	3,9	690	
0	5	5961.5	1,2	408	4,1	1460	0.7	700	6,3	1770	4.3	800	
(5	6991,6	1,3	440	4.7	1680	0.8	800	7,1	2015	4.8	920	

На основании опытных данных (табл. 1) произведен расчет коэффициентов распределения усилий между рядами звеньев цепи (табл. 2).

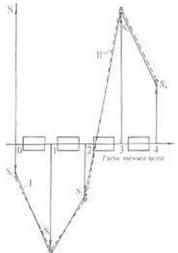


Рис. 3. Распределение сил в звеньях по рядам цепи. Т_П=128,61 *Нм*, п_М=0.95; I - теоретические значения усилий. II - экспериментальные значения усилий.

Как видно, максимальную нагрузку испытывают звенья третьего ряда, затем первого ряда, минимальную нагрузку воспринимают звенья нулевого ряда. Результаты экспериментов совпадают с теоретическими расчетами (расхождение составляет 0,04...1,1% рис. 3).

Таблица 2 Значения коэффициентов v₁ распределения усилий между рядами звеньев цели

Нагрузка на крюке, О _Г . <i>Н</i>		Крутя- щий момент на тихо- ходном валу,	Коэффициенты распределения усилий							
	_	T _{II} . H _M	V ₀	V	٧٠	V ₁	Va			
1	1777,6	128,61	1,05	3.6544	1,8661	4.5097	2,0605			
2	2802,7	203,89	0,9387	3,7177	1.8147	4,3606	1,9618			
3	3847.5	268.64	1 0087	3,6294	1.7123	4.4297	2.0846			
4	4887,3	348,22	0,9620	3.7045	1.7230	4.3650	1.9815			
5	5961,5	404.66	1.0072	3,6079	1,7285	4,3740	1,9769			
6	6991,6	454.87	0.9673	3.6934	1.7587	4,4298	2,0335			
Средние значения коэффициентов			0.9880	3,6880	1,7672	4,4081	2.0165			

ЛИТЕРАТУРА

1. Амирян А.К. Цепно-волновая передача. - Ереван: Наири, 1997. 184 с. 2. А.с. 1327815 СССР МКИ³ А01863/06. Устройство для регулирования вертикального положения рабочих органов сельскохозяйственных мациян А.К. Амирян, К.А. Амирян, Ш.М. Григорян, К.Г. Караханян. (СССР). № 40366714/29-15. Заявл. 11.03.86; Олубл. 07.08.87, Бюл. № 29. - 3 с. 3. А.с. 1662380 СССР, МКИ³ А01863/06. Устройство для регулирования вертикального положения рабочих органов сельскохозяйственных машин / А.К. Амирян, К.А. Амирян (СССР). - № 4430456/15. Заявл. 26.05.88. Олубл. 15.07.91, Бюл. № 26. - 3 с.

Армсельхозакадемия

28.09,1997

