ЛИТЕРАТУРА

1 Манукян Н.В., Андрезсян А.А. Получение железного порошка методом восстановления на основе содового рафинирования // Металлокерамические материалы и изделия: Тр. 5-го респ. научн. техн. семинара. - Ереван, 1969. - С. 63-68

2 Самсонов Г.В., Платкон С.Я. Производство железного ворошка. - М.: Металлургиздат, 1957. - 230 с.

3 Акименко В.Б., Буланов В.Я. и др. Железные порошки. Технология, состав, структура, свойства, экономика. - М.: Наука, 1982. - 184 с.

4. Буланов Б.Я., Кватер Л.И. и др. Диагностика металлических перешков. - М.: Наука, 1983. - 163 с.

5 Родомысельский М.Д. Современные проблемы порошковой металлургия. Киев: Вища школа, 1970. - С. 61-73.

6 Ростовцев С.Т., Симонов В.К. и др. Особенности кинетики и механизма восстановления охиси железа в присутствии некоторых солей щелочных металлов // Механизм и кинетика восстановления металлов: Сб. тр. • М. 1970. • С. 136-142.

ГИУА

20.11.1997

Изв. НАН в ГИУ Армении (сер. ТН). т. І.І. № 1, 1998. с. 112 - 115.

УДК 621.382.1

КРАТКИЕ СООБЩЕНИЯ

С.Х. ХУДАВЕРДЯН, Г.Э. ГРИГОРЯН, В.В. ГРИГОРЯН, К.Б. ГАРИБЯН

О МЕХАНИЗМЕ ФОТОПРОВОДИМОСТИ ДВУХБАРЬЕРНЫХ М-П/ П-М - СТРУКТУР

Մշակված են Շուսկիի երկու արգելքներով ֆոտոտրանգիստուրային կառույվածքներ՝ վերաբյուրեղացված CdTe-ի հիմքով։ Կոստարված են ֆոտոընդունիչ հատկությունների փորձնական և տեսական հետազոտություններ.

Разработаны транзисторные фотоприемные структуры с двумя барьерами Шоттки на основе рекристаллизованной базы CdTe. Проведены теоретические и экспериментальные исследования фотоприемных свойств. Ил. 2. Библиогр. 3 наза.

Transistor photo-receiving structures with Shottky's two-barriers on the recrystalized CdTe base are elaborated. Theoretical and experimental research of photo-receiving characteristics is performed.

107. 2. Ref. 3.

Трехмерные интегральные схемы представляют собой слои кремния на диэлектрике и их монолитное наложение. Эти слои первоначально получают поликристаллическими, затем термическим путем (в основном лазерным) их рекристаллизуют, получая монокристаллические островки, в которых затем создают активные элементы интегральных схем (ИС) [1].

Перспективным является использование во втором слое полупроводников, чьи функциональные возможности расширяют

области применения ИС. Среди них выгодно отличается теллурид кадмия CdTe. Большая ширина его запрещенной зоны обеспечивает малую тепловую генерацию носителей и низкий уровень шумов при комнатной температуре, а время жизни неравновесных носителей заряда достигает значений 10⁻⁴ ...10⁻⁶ с. что обеспечивает высокую фоточувствительность. CdTe получают как n-. так и р-типа проводимости.

Целью настоящей работы является разработка и исследование М-п-CdTe-M- структур, в которых базовая область получается рекристаллизацией поликристаллической пленки CdTe толщиной d≤1 мкм, полученной на слое Ni лазерным напылением, например, по методике, использованной в [2]. Высота барьера Шоттки п-CdTe-Ni по оценке C-V-метрии составляет - 0,8 зВ. Вторым барьерным контактом может служить полупрозрачный слои серебра (рис.1) с высотой барьера - 0,75 зВ. Рекристаллизацию лазерным лучом проводят через защитный слой SM. (или SiO₂), который предотвращает улетучивание одного из компонентов CdTe, сохраняя тем самым их количественное соотношение. После рекристаллизации для второго барьера открываются окна, а перед нанесением металла вытравливается нарушенный поверхностный слой толщиной до 0,1 мкм.

При теоретических исследованиях структур для вычисления фототоков двух противоположно направленных барьеров Шоттки мы исходили из экспоненциального закона поглощения падающего на образец излучения (закон Бугера-Ламперта). Учитывая, что узкая база (d≤1 мкм) целиком охвачена областями объемных зарядов обоих переходов, а также принимая за ширину ОПЗ первого перехода величину х_т, а второго - (d х_т), можно получить выражение для числа разделенных первым (P₁) и вторым (P₂) переходами носителей:

$$P_{1} = S \int_{0}^{\alpha} P_{0} e^{-\alpha x} dx = P_{0} S(1 - e^{-\alpha x}) / \alpha,$$
$$P_{1} = S \int_{0}^{d} P_{0} e^{-\alpha x} dx = P_{0} S(e^{-\alpha x} - e^{-\alpha x}) / \alpha.$$

где Р_о - концентрация у поверхности; S - светочувствительная площадь, α - коэффициент поглощения.

Тогда фототоки для первого и второго барьеров соответственно равны

$$I_{\alpha i} = q SP_0 (1 - e^{-\alpha v_n}) / \alpha \tau_n, \tag{1}$$

$$I_{\sigma 2} = q S P_0 (e^{-\alpha S_{\sigma c}} - e^{-\alpha g}) / \alpha \tau_{\rho}, \qquad (2)$$

где q - заряд электрона; Т. - время жизни неосновных носителей в базе.

Общий фототок структуры равен

$$I_{\phi} = I_{\phi 1} - I_{\phi 2} = q S P_{\mu} [(1 - 2e^{-\alpha x_{\mu}} - e^{-\alpha t})] / \alpha \tau_{\mu}, \qquad (3)$$

Рис. 2 а - слектральная зависимость фототока при 1 - 0.5 мкм - 0.3 эВ; 2 - 0.4 мкм - 0.16 эВ; 3 - 0.3 мкм - 0.33 зВ; 4 - 0.2 мкм - 0.5 эВ; 5 - 0.47мкм - 0.05 эВ; 6- лависимость точки инверсии знака фототока от х_m - 1 для СсТе, 2 - для Si

На рис. 2 а представлена спектральная зависимость фототока для CdTe (кривые 1-4). Кривая 5 - это экспериментальная кривая, полученная при исследовании структуры Ag-CdTe-Ni и сохранившая закономерность теоретических результатов. Как видно из рисунка, коротковолновой максимум с уменьшением разности высот двух барьеров смещается в сторону длинных волн. Подобное смещение происходит для точки инверсии фототока. Причем закономерность смещения точки "0" при изменении Δip, или х_т можно получить. приравнивая фототоки (1) и (2). Исходя из вышеизложенного, получим для Х_и:

$$x_{m} = d + 0.5 \ln 2 - \ln(1 + e^{i d}) / \alpha.$$
 (4)

Для CdTe и Si эти зависимости приведены на рис. 26, Увеличение х приводит к увеличению части электронно-дырочных пар, созданных светом и разделенных полем первого перехода. Соответственно увеличивается и коротковолновой фототок. Так как при этом уменьшается (d-x_), то это приводит к уменьшению алинноволнового фототока. Одновременно нарушается условие, при котором результирующий фототок равен нулю. Для того чтобы это условие выполнялось, необходимо увеличить число актов фотогенерации в области тылового перехода. А это возможно только при увеличении длины волны (уменьшении коэффициента поглощения). Как видно из рис. 26, большое изменение точки нулевого фототока как для CdTe, так и для Si происходит в тех областях длин волн, где изменение коэффициента поглощения от длины волны происходит сравнительно медленно (Х~0,6..0,8 мкм для обоих материалов). Действительно, небольшое изменение разницы высот барьеров (или Х.,) приводит к компенсации фототоков обоих барьеров. даже если ошугимо изменяется длина волны падающего на образец излучения. Из рисунка видно также, что инверсия знака фототока в случае СdTe происходит при λ≤0.83 мкм, т.е. ниже области собственного поглощения, а в случае Si-λ≤0,8 мкм. Согласно выражению (4), при больших "d" изменение точки инверсии от х, будет небольшим, что и наблюдалось на эксперименте в структурах с d-5мкм [3]. Причем точка инверсии у них наблюдалась на более длинных волнах, т.е. в области собственного поглощения. Очевидно, это не противоречит нашим рассуждениям, поскольку при широкой базе для обеспечения необходимой величины фототока тылового барьера требуется увеличение глубины поглощения падающего на образец излучения, т.е. плины волны.

Основываясь на результатах исследований, предоставляются возможности создания фотодетекторов с необходимым значением точки инверсии фототока.

ЛИТЕРАТУРА

Акасака й. Тенденция развития трехмерных интегральных схем // ТИИЭР.
1986. - Т. 74, № 12. - С. 120-132.

2. Алексанян А.Т., Казарян Р.К., Матевосян Л.А. Получение сверхтонких полупроводниковых пленок и варизонных структур лазерным напылением // Электронная промышленность. - 1982 Вып. 1 (107). С 56-58.

3. Лосев В.В., Орлов Б.М., Худавердян С.Х. Инверсия знака фототока в диодных структурах на основе n-CdTe // Физика и техника полупроводников. - 1980. - Т. 14. вып. 11. - С. 2288-2289.

ГИУА

24.02.1997