ZUBUUSUUF GFSNFDBNFUUDFF UQQUBFU UYUYDUUHAUUOHAJBHAAA AKAJEMUA HAYK APMEHUUNATIONAL ACADEMY OF SCIENCES OF ARMENIA JOKJAJЫ QUYNF88UUF REPORTS

Zшипр Том Volume

122

2022

№ 1

MATHEMATICS

УДК 621.391.15

DOI: 10.54503/0321-1339-2022.122.1-7

H. K. Sahakyan, Zh. G. Margaryan

Independent Neighbourhoods of Sets in B^n Groups

(Submitted by academician S. K. Shoukourian 21/I 2022)

Keywords: additive channels, perfect codes, first order neighbourhoods, independent neighbourhoods.

Introduction. Saying B_2^n we mean the set of all vectors having the members of the set $\{0,1\}$ with the length n. We define the sum of two vectors as the sum of corresponding members by modulo 2. For instance, 0110 + 1010 = 1100. It is obvious that $\langle B_2^n, + \rangle$ is a group, having 00...0 as its unit, and $a^{-1} = a$. We define the norm of a vector as the sum of its elements.

Definition 1 (a good set). We call the set $B \subset B_2^n$ ($|B| \ge 2$) a good set for the set A, if for $\forall \alpha, \beta \in B \ (\alpha \ne \beta)$ there $\alpha + \beta \in A$.

For instance, the set $B = \{001,010,110\}$ is good for $A = \{011,111,010\}$.

Definition 2 (a bad set). The set $C \subset B_2^n(|C| \ge 2)$ is bad for the set A, if for $\forall \alpha, \beta \in C \ (\alpha \ne \beta)$ there $\alpha + \beta \notin A$:

For instance, the set $C = \{011,000,111\}$ is bad for the set $A = \{010,101,110\}$.

Definition 3. For a given set D, the following set

$$D^* = \{ x + y \mid x, y \in D, x \neq y \} \tag{1}$$

is called a neighbourhood of the first order, and it is denoted by the asterisk*.

Definition 4. We call the given sets $B, C \subset B_2^n$ a good pair and we denote them by (B, C) if such a set A exists for which B is good and C is bad. And we consider C as a good complement for B.

Property 1. Using the definition of a neighbourhood, we can define the idea of a good pair in another way:

$$\langle B, C \rangle \iff B^* \subset \overline{C^*},$$
 (2)

or in this way, which is the same:

$$\langle B, C \rangle \iff B^* \cap C^* = \emptyset.$$
 (3)

That is, the neighbourhoods of *B* and *C* are independent. We can take as *A* any set that satisfies the condition $B^* \subset A \subset \overline{C^*}$. Note that a good pair is

equivalent to an additive channel [1] (there does not exist $b_1, b_2 \in B$ and $c_1, c_2 \in B$ C for which $b_1 + c_1 = b_2 + c_2$.

It is easily can be seen that $B^* = (B + b)^*$, thus we can always assume that $0 \in B$ and $0 \in C$.

Property 2. One can see from (3) that if $\langle B, C \rangle$ is a good pair, then the pair $\langle B', C' \rangle$ is a good pair as well, for any $B' \subset B$ and $C' \subset C$ sets.

Theorem 1. *The following is true for arbitrary sets B*, *C*:

$$\langle B, C \rangle \iff |B| \cdot |C| = |B + C|,$$
 where $B + C = \{b + c \mid b \in B, c \in C\}.$ (4)

Definition 5. We call the pair (B, C) completely good pair if $|B| \cdot |C| = 2^n$. Respectively, we call C a completely good complement.

Examples can be constructed by viewing Hamming codes [2] and Golay code [3] as a codes in additive channel. There are also examples not related to perfect codes:

```
B = \{000000, 000001, 000010, 000011,
      000100,000101,000110,000111,
      001000,001001,001010,001011,
      010000, 010010, 100000, 100010}
C = \{000000, 101100, 110001, 011111\}
             |B||C| = 2^6.
```

Definition 6. We call $C' \subset L(B)$ a partially good complement for B if $\langle B, \rangle$ C') is a good pair and $|B| \cdot |C'| = 2^r$, where r is the rank of B and L(B) is the linear span of B.

It turns out that the problem of finding a partially good complement is equivalent to the problem of finding a completely good complement.

Theorem 2. Let the set $B(|B| = 2^m)$ be given; to have a completely good complement for B, it is necessary and sufficient to have a partially good complement for B.

When constructing a good pair with given B, it is easily seen that number of existing C sets is dependent on the number of zero-sum subsets in set B, e.g., when n = 3 and $B = \{a, b, c, d\}$ if $a + b + c + d \neq 0$ then there is only one possible C, $C = \{0, a+b+c+d\}$. But if a+b+c+d=0, then there are four possible C sets.

Definition 7. We call $B_0 = \{x_1, x_2, ..., x_k\}$ a subset with zero sum for the set $B \subset B_2^n$ if:

$$0 \notin B_0,$$
 (5) $x_1 + x_2 + ... + x_k = 0.$ **Definition 8.** We denote the number of the zero-sum subsets of the given

set $B \subset B_2^n$ by t_k^B .

Obviously, t_k^B makes sense only if k is less than |B|. We take $t_0^B = 1$. **Property 3**. One can easily see that $t_1^B = t_2^B = 0$. Let us consider the following case: $B = B_2^n (n \ge 2)$. We will write t_k instead of $t_k^{B_2^n}$ for simplicity. The following equation is valid for k > 2:

$$t_k = \frac{C_{2^{n-1}}^{k-1} - (2^n - 1 - (k-2))t_{k-2} - t_{k-1}}{k} . \tag{6}$$

Using (6), we can find all the t_k , because we know t_1 and t_2 (Property 3):

$$t_0 + t_1 + t_2 + t_3 + \dots + t_{2^{n}-1} = 2^{2^{n}-1-n}.$$
 (7)

It turns out that (7) is valid for the general case.

Theorem 3. For any set $B \subset B_2^n$, the sum of the numbers t_k^B is

$$t_0^B + t_1^B + \ldots + t_{|B|}^B = 2^{|B\setminus\{0\}|-\mathsf{rank}(B)}$$
 (8)

Yerevan State University e-mails: hovhannes1417@gmail.com, jiromr@mail.ru

H. K. Sahakyan, Zh. G. Margaryan

Independent Neighbourhoods of Sets in B^n Groups

The paper considers the structural problems and cardinality problems of pairs of non-empty subsets with certain restrictions with respect to the B_2^n space where the sum is by modulo 2. The described subsets are related, in many cases, to the construction of error-correcting codes on additive communication channels, and to the quantitative bounds of their cardinality.

Հ. Կ. Մահակյան, Ժ. Գ. Մարգարյան

Բազմությունների անկախ շրջակայքեր Ֆ խմբում

Դիտարկված են B_2^n տարածության ըստ երկու մոդուլի գումարման նկատմամբ, որոշակի սահմանափակումներով, ոչ դատարկ ենթաբազմությունների զույգերի հզորությունների և կառուցվածքային խնդիրներ։ Նկարագրված ենթաբազմությունները առնչվում և շատ դեպքերում օգնում են ադիտիվ կապի գծերում սխալների ուղղող կոդերի կառուցման և նրանց հզորությունների քանակական գնահատման խնդիրներին։

О. К. Саакян, Ж. Г. Маргарян

Независимые окрестности множеств в группе B^n

Рассмотрены структурные проблемы и проблемы мощности пар непустых подмножеств с некоторыми ограничениями относительно пространства B_2^n , где сумма по модулю два. Описанные подмножества связаны во многих случаях с построением кодов исправления ошибок на аддитивных линиях связи и с количественной оценкой их мощности.

References

- 1. Leontiev V. K., Movsisyan G. L., Margaryan Zh. G. The Reports of NAS RA. 2010. V.110. N 4. P. 334-339.
- 2. Hamming R.W. The Bell System Technical Journal. 1950. V. 29. №2. P. 149-154
- 3. *Golay M. J. E.* Notes on digital coding. IEEE Information Society Newsletter. 1949. V. 37. № 6. P. 657.