
Известия НАН Армении, Математика, том 57, н. 2, 2022, стр. 56 – 69.

FEKETE-SZEGÖ INEQUALITIES FOR CERTAIN SUBCLASSES
OF ANALYTIC FUNCTIONS RELATED WITH NEPHROID

DOMAIN

G. MURUGUSUNDARAMOORTHY

School of Advanced Science, Vellore Institute of technology, Deemed to be University, India
E-mail: gmsmoorthy@yahoo.com

Abstract. The purpose of this paper is to consider coefficient estimates in a class of functions
Mα, λ(q) consisting of analytic functions f normalized by f(0) = f ′(0)− 1 = 0 in the open
unit disk ∆ = {z : z ∈ C and |z| < 1} subordinating with nephroid domain, to derive
certain coefficient estimates a2, a3 and Fekete-Szegö inequality for f ∈Mα, λ(q). A similar
result have been done for the function f−1. Further application of our results to certain
functions defined by convolution products with a normalized analytic function is given, and in
particular we obtain Fekete-Szegö inequalities for certain subclasses of functions defined through
neutrosophic Poisson distribution.
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1. Introduction

Let A denote the class of all functions f(z) of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n,

which are analytic in the open unit disk

∆ := {z : z ∈ C and |z| < 1}

and S be the subclass of A consisting of univalent functions. A function f ∈ S is

said to be starlike in ∆ if and only if

<
(zf ′(z)
f(z)

)
> 0, (z ∈ ∆)

and on the other hand,a function f ∈ S is said to be convex in ∆ if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
> 0, (z ∈ ∆)

denoted by S ∗ and C respectively.

Let f1 and f2 be functions analytic in ∆. Then we say that the function f1

is subordinate to f2 if there exists a Schwarz function w(z), analytic in ∆ with
56
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w(0) = 0 and |w(z)| < 1 (z ∈ ∆), such that f1(z) = f2(w(z)) (z ∈ ∆). We

denote this subordination by

f1 ≺ f2 or f1(z) ≺ f2(z) (z ∈ ∆).

In particular, if the function f2 is univalent in ∆, the above subordination is

equivalent to f1(0) = f2(0) and f(∆) ⊂ f2(∆). The function q(z) = 1 + z − z3

3

maps ∆ onto the region bounded by the nephroid(
(u− 1)2 + v2 − 4

9

)3

− 4v2

3
= 0,

which is symmetric about the real axis and lies completely inside the right-half

plane u > 0. Geometrically, a nephroid is the locus of a point on the circumference

of a circle of radius ρ traversing positively the outside of a fixed circle of radius 2ρ.

It is an algebraic curve of degree six and is an epicycloid having two cusps. The

plane curve nephroid was studied by Huygens and Tschirnhausen around 1679 in

connection with the theory of caustics, a method of deriving a new curve based on

a given curve and a point. In 1692, J. Bernoulli showed that the nephroid is the

catacaustic (envelope of rays emanating from a specified point) of a cardioid for a

luminous cusp. However, the name nephroid, which means kidney shaped, was first

used by the English mathematician Richard A. Proctor in 1878 in his book “The

Geometry of Cycloids”. (For more details see [20] and references cited therein)

Definition 1.1. [20] Let S ∗(q) denote the class of analytic functions f in the unit

disc ∆ normalized by f(0) = f ′(0)− 1 = 0 and satisfying the condition that

(1.2)
zf ′(z)

f(z)
≺ 1 + z − z3

3
=: q(z), z ∈ ∆.

and C (q) if

(1.3)
(

1 +
zf ′′(z)

f ′(z)

)
≺ 1 + z − z3

3
=: q(z), z ∈ ∆.

Further they proved by considering, q(z) as a holomorphic solution of the differential

equation
zq′(z)

q(z)
= 1 + z − z3

3
, z ∈ ∆, q(0) = 0, q′(0) = 1,

i.e.

(1.4) Ωn(z) = z exp

(∫ z

0

q(ζn−1)− 1

ζ
dζ

)
= z+

zn

n− 1
+

z2n−1

2(n− 1)2
+ · · · , z ∈ ∆

plays the extremal role of the class S ∗q as noted by Wani and Swaminathan [20].

Also

(1.5) Υn(z) = exp

(∫ z

0

q(ζn−1)− 1

ζ
dζ

)
= z+

zn

n(n− 1)
+

z2n−1

2(2n− 1)(n− 1)2
+· · · ,
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z ∈ ∆, plays the extremal role of the class Cq as noted by Wani and Swaminathan

[20]. It may be noted from (1.3) of Definition1.1 that the set q(∆) lies in the right

half-plane and it is not a starlike domain with respect to the origin.

Recently, Raina and Sokol [15] have studied and obtained some coefficient inequalities

for the class S ?(z +
√

1 + z2) and these results are further improved by Sokol and

Thomas [19] further the Fekete-Szegö inequality for functions in the class C (q) were

obtained and in view of the Alexander result between the class S ∗(z +
√

1 + z2)

and C (z +
√

1 + z2), the Fekete-Szegö inequality for functions in S ∗(z +
√

1 + z2)

were also obtained. For a brief history of Fekete-Szegö problem for the class of

starlike, convex and various other subclasses of analytic functions, we refer the

interested reader to [18]. Let α ≥ 0, λ ≥ 0 and 0 ≤ ρ < 1 and f ∈ A . We say that

f ∈M(α, λ, ρ) if it satisfies the condition

<
{
zf ′(z)

f(z)

(
f(z)

z

)α
+ λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]}
> ρ.

The class M(α, λ, ρ) was introduced by Guo and Liu [4].

Motivated essentially by the aforementioned works, (see [15, 17] and [1]) in

this paper we define the following class Mα, λ(q) given in Definition1.2. First,we

shall find estimations of first few coefficients of functions f of the form (1.1)

belonging to Mα, λ(q) and we prove the Fekete-Szegö inequality f ∈Mα, λ(q) and

also for f−1 ∈Mα, λ(q). Also we give applications of our results to certain functions

defined through Poisson distribution .

Now, we define the following class Mα, λ(q) :

Definition 1.2. For α ≥ 0, λ ≥ 0 a function f ∈ A is in the class Mα, λ(q) if{
zf ′(z)

f(z)

(
f(z)

z

)α
+ λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]}
≺ 1 + z − z3

3
= q(z); z = reiθ ∈ ∆.(1.6)

Note that by specializing the parameter we get the following subclasses based

on nephroid domain (see [20]).

• M0, 0(q) ≡ S ∗(q) =

{
f ∈ A :

zf ′(z)

f(z)
≺ q(z) = 1 + z − z3

3
, z ∈ ∆

}
• M0, 1(q) ≡ C (q) =

{
f ∈ A :

(
1 + zf ′′(z)

f ′(z)

)
≺ q(z) = 1 + z − z3

3 , z ∈ ∆
}

• M0, λ(q) ≡Mλ(q)

= {f ∈ A : (1− λ)
zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)
≺ q(z) = 1 + z − z3

3
, z ∈ ∆}

• Mα, 0(q) ≡ Bα(q) = {f ∈ A : zf
′(z)

f(z)

(
f(z)
z

)α
≺ q(z) = 1 + z− z3

3 , z ∈ ∆} . .
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2. A Coefficient Estimate

To prove our main result, we need the following:

Lemma 2.1. [8] If p1(z) = 1 + c1z+ c2z
2 + · · · is a function with positive real part

in ∆, then

|c2 − vc21| ≤


−4v + 2, if v ≤ 0,

2, if 0 ≤ v ≤ 1,

4v − 2, if v ≥ 1.

When v < 0 or v > 1, the equality holds if and only if p1(z) is
1 + z

1− z
or one of

its rotations. If 0 < v < 1, then equality holds if and only if p1(z) is
1 + z2

1− z2
or one

of its rotations. If v = 0, the equality holds if and only if

p1(z) =

(
1

2
+

1

2
η

)
1 + z

1− z
+

(
1

2
− 1

2
η

)
1− z
1 + z

(0 ≤ η ≤ 1)

or one of its rotations. If v = 1, the equality holds if and only if p1 is the reciprocal

of one of the functions such that the equality holds in the case of v = 0.

Although the above upper bound is sharp, when 0 < v < 1, it can be improved

as follows:

|c2 − vc21|+ v|c1|2 ≤ 2 (0 < v ≤ 1/2)

and

|c2 − vc21|+ (1− v)|c1|2 ≤ 2 (1/2 < v ≤ 1).

We also need the following:

Lemma 2.2. [3] If p1(z) = 1 + c1z+ c2z
2 + · · · is a function with positive real part

in ∆, then

| cn | ≤ 2 for all n ≥ 1 and |c2 −
c21
2
| ≤ 2− |c1|

2

2
.

The class of all such functions with positive real part are denoted by P.

Lemma 2.3. [7] If p1(z) = 1 + c1z+ c2z
2 + · · · is a function with positive real part

in ∆, then

|c2 − vc21| ≤ 2 max(1, |2v − 1|).

The result is sharp for the functions

p(z) =
1 + z2

1− z2
, p(z) =

1 + z

1− z
.
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Lemma 2.4. [6] Let P (z) = 1+c1z+c2z
2+c3z

3+..... be in P then for any complex

number µ, ∣∣∣c2 − µc21
2

∣∣∣ ≤ max{2, 2|µ− 1|} =

{
2, 0 ≤ µ ≤ 2;
2|µ− 1|, elsewhere.

The result is sharp for the functions defined by P (z) = 1+z2

1−z2 or P (z) = 1+z
1−z .

Theorem 2.1. Let α ≥ 0 and λ ≥ 0. If f(z) given by (1.1) belongs to Mα, λ(q),

then

|a2| ≤
1

(1 + α)(1 + λ)
,

|a3| ≤
1

(α+ 2)(1 + 2λ)
max{1,

∣∣(α2 + α− 2(α+ 3)λ− 2

2((1 + α)(1 + λ))
2

)∣∣}.
Proof. If f ∈ Mα, λ(q), then there is a Schwarz function w(z), analytic in ∆

with w(0) = 0 and |w(z)| < 1 in ∆ such that{
zf ′(z)

f(z)

(
f(z)

z

)α
+ λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]}
= q(w(z)) = 1 + w(z)− (w(z))3

3
.(2.1)

Define the function P (z) by

P (z) :=
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + · · ·

it is easy to see that

(2.2) w(z) =
P (z)− 1

P (z) + 1
=

1

2

[
c1z +

(
c2 −

c21
2

)
z2 +

(
c3 − c1c2 +

c31
4

)
z3 + · · ·

]
.

Since w(z) is a Schwarz function, we see that <(p1(z)) > 0 and p1(0) = 1. Let us

define the function p(z) by

p(z) : =

{
zf ′(z)

f(z)

(
f(z)

z

)α
+ λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]}
= 1 + b1z + b2z

2 + · · · .(2.3)

In view of the equations (2.1), (2.2), (2.3), we have

(2.4) p(z) = q

(
P (z)− 1

P (z) + 1

)
.

Hence

1 + w(z)− (w(z))3

3
= 1 +

c1
2
z +

(
c2
2
− c21

4

)
z2 +

(
c3
2
− c1c2

2
+
c31
8

)
z3 − c1

3

24
z3 · · ·

= 1 +
c1
2
z +

(
c2
2
− c21

4

)
z2 +

(
c3
2
− c1c2

2
+
c1

3

12

)
z3 + · · · , z ∈ D.

(2.5)
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Using (2.2) in (2.4), we get,

b1 =
c1
2

and b2 =
c2
2
− c21

4
.

A computation shows that

zf ′(z)

f(z)
= 1 + a2z + (2a3 − a22)z2 + (3a4 + a32 − 3a3a2)z3 + · · · .

Similarly we have

1 +
zf ′′(z)

f ′(z)
= 1 + 2a2z + (6a3 − 4a22)z2 + · · · .

An easy computation shows that{
zf ′(z)

f(z)

(
f(z)

z

)α
+ λ

[
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
+ α

(
zf ′(z)

f(z)
− 1

)]}
= 1 + (1 + α)(1 + λ)a2z + (α+ 2)(1 + 2λ)a3z

2

+

(
α2 + α

2
− (α+ 3)λ− 1

)
a22z

2 + · · · .

In view of the equation (2.3), we see that

b1 = (1 + α)(1 + λ)a2(2.6)

b2 = (α+ 2)(1 + 2λ)a3 +

(
α2 + α

2
− (α+ 3)λ− 1

)
a22(2.7)

or equivalently, we have

a2 =
c1

2(1 + α)(1 + λ)
,(2.8)

a3 =
1

(α+ 2)(1 + 2λ)

(
c2
2
− c21

4

[
1 +

α2 + α− 2(α+ 3)λ− 2

2 ((1 + α)(1 + λ))
2

])
,

=
1

2(α+ 2)(1 + 2λ)

(
c2 −

c21
2

[
1 +

α2 + α− 2(α+ 3)λ− 2

2 ((1 + α)(1 + λ))
2

])
(2.9)

=
1

2(α+ 2)(1 + 2λ)

(
c2 − vc21

)
where

(2.10) v =
1

2

(
1 +

α2 + α− 2(α+ 3)λ− 2

2 ((1 + α)(1 + λ))
2

)
.

Therefore, we have

|a2| ≤
1

(1 + α)(1 + λ)

and by using the estimate

|c2 − vc21| ≤ 2 max(1, |2v − 1|)
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given in Lemma 2.3,we have

|a3| ≤
1

(α+ 2)(1 + 2λ)
max{1,

∣∣2× 1

2

(
1 +

α2 + α− 2(α+ 3)λ− 2

2 ((1 + α)(1 + λ))
2

)
− 1
∣∣}

=
1

(α+ 2)(1 + 2λ)
max{1,

∣∣(α2 + α− 2(α+ 3)λ− 2

2 ((1 + α)(1 + λ))
2

)∣∣}
Remark 2.1. Let α = 0 and λ ≥ 0. If f(z) given by (1.1) belongs to Mλ(q), then

|a2| ≤
1

1 + λ
,

|a3| ≤
1

2(1 + 2λ)
max{1,

∣∣ 3λ+ 1

2(1 + λ)2
∣∣} =

3λ+ 1

4(1 + 2λ)(1 + λ)2
.

Remark 2.2. Let λ = 0. If f(z) given by (1.1) belongs to Bα(q), then

|a2| ≤
1

1 + α
, and |a3| ≤

1

α+ 2
max{1,

∣∣(α2 + α−−2

2 (1 + α)
2

)∣∣}.
Remark 2.3. (see [20]) Let α = 0 and λ = 0. If f(z) given by (1.1) belongs to

S ∗(q), then

|a2| ≤ 1, and |a3| ≤
1

2
max{1,

∣∣1
2

∣∣} =
1

2
.

Remark 2.4. (see [20]) Let α = 0 and λ = 1. If f(z) given by (1.1) belongs to

C (q), then

|a2| ≤
1

2
, and |a3| ≤

1

6
max{1,

∣∣1
2

∣∣} =
1

6
.

Theorem 2.2. Let 0 ≤ µ ≤ 1, α ≥ 0 and λ ≥ 0. If f(z) given by (1.1) belongs to

Mα, λ(q), then

|a3 − µa22| ≤



1

2ξ

(
− γ

τ2

)
, if µ ≤ σ1,

1

ξ
, if σ1 ≤ µ ≤ σ2,

1

2ξ

( γ
τ2

)
, if µ ≥ σ2,

where, for convenience,

σ1 =
−2τ2 + 2(α+ 3)λ− ρ

2ξ
;σ2 =

2τ2 + 2(α+ 3)λ− ρ
2ξ

;σ3 =
2(α+ 3)λ− ρ

2ξ
,

(2.11) γ := ρ− 2(α+ 3)λ+ 2µξ,

(2.12) ρ := α2 + α− 2,

(2.13) ξ := (α+ 2)(1 + 2λ),
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and

(2.14) τ := (1 + α)(1 + λ).

Further, if σ1 ≤ µ ≤ σ3, then

|a3 − µa22|+
τ2

ξ

(
1 +

γ

2τ2

)
|a2|2 ≤

1

ξ
.

If σ3 ≤ µ ≤ σ2, then

|a3 − µa22|+
τ2

ξ

(
1− γ

2τ2

)
|a2|2 ≤

1

ξ
.

These results are sharp.

Proof. Now by making use of (2.8) and (2.9) , we get

a3 − µa22 =

=
1

(α+ 2)(1 + 2λ)

(
c2
2
− c21

4
−

(
α2 + α− 2− 2(α+ 3)λ+ 2µ(α+ 2)(1 + 2λ)

8 ((1 + α)(1 + λ))
2

)
c21

)

=
1

2(α+ 2)(1 + 2λ)

(
c2 −

c21
2

(
1 +

α2 + α− 2− 2(α+ 3)λ+ 2µ(α+ 2)(1 + 2λ)

2 ((1 + α)(1 + λ))
2

))
where

v :=
1

2

(
1 +

α2 + α− 2− 2(α+ 3)λ+ 2µ(α+ 2)(1 + 2λ)

2 ((1 + α)(1 + λ))
2

)
.

That is simply

v :=
1

2

(
1 +

ρ− 2(α+ 3)λ+ 2µξ

2τ2

)
=

1

2

(
1 +

γ

2τ2

)
.

The assertion of Theorem 2.2 now follows by an application of Lemma 2.1.

To show that the bounds are sharp, we define the functions the functions Fη and

Gη (0 ≤ η ≤ 1), respectively, with Fη(0) = 0 = F ′η(0)−1 and Gη(0) = 0 = G′η(0)−1

by
z(Fη)′(z)

Fη(z)

(
Fη(z)

z

)α
+λ

[
1 +

z(Fη)′′(z)

(Fη)′(z)
− z(Fη)′(z)

Fη(z)
+ α

(
z(Fη)′(z)

Fη(z)
− 1

)]
= q

(
z(z + η)

1 + ηz

)
,

and
z(Gη)′(z)

Gη(z)

(
Gη(z)

z

)α
+λ

[
1 +

z(Gη)′′(z)

(Gη)′(z)
− z(Gη)′(z)

Gη(z)
+ α

(
z(Gη)′(z)

Gη(z)
− 1

)]
= q

(
−z(z + η)

1 + ηz

)
,

respectively. Clearly the functions Kq := q(z), Fη, Gη are members of Mα,λ(q). If

µ < σ1 or µ > σ2, then the equality holds if and only if f is Kq or one of its

rotations. When σ1 < µ < σ2, then the equality holds if and only if f is Kq = q(z2)

or one of its rotations. If µ = σ1 then the equality holds if and only if f is Fη or
63



G. MURUGUSUNDARAMOORTHY

one of its rotations. If µ = σ2 then the equality holds if and only if f is Gη or one

of its rotations. 2

By making use of Lemma 2.3, we immediately obtain the following:

Theorem 2.3. Let 0 ≤ α ≤ 1, and 0 ≤ λ ≤ 1. If f ∈Mα,λ(q), then for complex µ,

we have

|a3 − µa22|

≤ 1

(α+ 2)(1 + 2λ)
max

{
1,

∣∣∣∣α2 + α− 2− 2(α+ 3)λ+ 2µ(α+ 2)(1 + 2λ)

2((1 + α)(1 + λ))2

∣∣∣∣}
=

1

ξ
max

{
1,

∣∣∣∣ρ− 2(α+ 3)λ+ 2µξ

2τ2

∣∣∣∣} ,
where ρ, ξ, τ are as defined in (2.12), (2.13) and (2.14). The result is sharp.

Remark 2.5. (1) For the choice α = 0, and λ = 1, Theorem 2.3, coincides

with the result obtained for the class f ∈ C (q) as

|a3 − µa22| ≤
1

6
max

{
1,

∣∣∣∣3µ2 − 1

∣∣∣∣} .
(2) For the choices α = 0, and λ = 0, Theorem 2.3 reduces to the result for the

class f ∈ S ∗(q) (see [20]) as

|a3 − µa22| ≤
1

2
max {1, |2µ− 1|} .

(3) For the choice of α = 0, Theorem 2.3, reduces the result for the class

f ∈Mλ(q) as

|a3 − µa22| ≤
1

1 + 2λ
max

{
1,

∣∣∣∣−2− 6λ+ 4µ(1 + 2λ)

2(1 + λ)2

∣∣∣∣} .
(4) For the choice of λ = 0, Theorem 2.3, reduces the result for f ∈ Bα(q)

|a3 − µa22| ≤
2

α+ 2
max

{
1,

∣∣∣∣α2 + α− 2 + 2µ(α+ 2)

2(1 + α)2

∣∣∣∣} .
3. Coefficient inequalities for the function f−1

Theorem 3.1. If f ∈Mα,λ(q) and f−1(w) = w+
∞∑
n=2

dnw
n is the inverse function

of f with |w| < r0 where r0 is greater than the radius of the Koebe domain of the

class f ∈Mα,λ(q), then for any complex number µ, we have

| d3 − µd22 |≤
1

ξ
max

{
1, | 2τ2 + ρ− 2(α+ 3)λ+ (4 + 2µ)ξ

τ2
− 1 |

}
,(3.1)

where ρ, ξ, τ are as defined in (2.12), (2.13) and (2.14).

Proof. As

(3.2) f−1(w) = w +

∞∑
n=2

dnw
n
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is the inverse function of f , it can be seen that

(3.3) f−1(f(z)) = f{f−1(z)} = z.

From equations (1.1) and (3.3), it can be reduced to

(3.4) f−1(z +

∞∑
n=2

anz
n) = z.

From (3.3) and (3.4), one can obtain

(3.5) z + (a2 + d2)z2 + (a3 + 2a2d2 + d3)z3 + ......... = z.

By comparing the coefficients of z and z2 from relation (3.5), it can be seen that

d2 = −a2, d3 = 2a22 − a3.(3.6)

From relations (2.8), (2.9), and (3.6)

(3.7) d2 = − c1
2(1 + α)(1 + λ)

;

d3 =
1

2(α+ 2)(1 + 2λ)

×

(
c2 −

2 ((1 + α)(1 + λ))
2

+ 4(α+ 2)(1 + 2λ) + α2 + α− 2(α+ 3)λ− 2

4 ((1 + α)(1 + λ))
2 c21

)
;

(3.8)

=
1

2ξ

(
c2 −

2τ2 + 4ξ + ρ− 2(α+ 3)λ

2τ2
c21

)
;

and ρ, ξ, τ are as defined in (2.12), (2.13) and (2.14). For any complex number µ,

consider

d3 − µd22 =
1

2ξ

(
c2 −

2τ2 + ρ− 2(α+ 3)λ+ (4 + 2µ)ξ

2τ2
c21

)
.(3.9)

Taking modulus on both sides and by applying Lemma 2.3 on the right hand side

of (3.9), one can obtain the result as in (3.1). Hence this completes the proof. 2

Remark 3.1. Suitably specializing the parameters in Theorem 3.1 one can easily

state above result for the function classes M0, λ(q) ≡ Mλ(q); Mα, 0(q) ≡ Bα(q);

M0, 0(q) ≡ S ∗(q) and M0, 1(q) ≡ C (q).

4. Application to functions defined by neutrosophic Poisson

distribution

By letting ℘N (z) as the neutrosophic Poisson distribution series we study the

following results (for detaiss see[12, 14]) . As is well known that the classical

probability distributions only deals with specified data and specified parameter

values, while neutrosophic probability distribution gives a more general and clear
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ones. In fact, Neutrosophic Poisson distribution of a discrete variableX is a classical

Poisson distribution of x with the imprecise parameter value. A variable X is

said to have neutrosophic Poisson distribution if its probability with the value

k ∈ N∗ = N ∪ {0} is

NP (x = k) =
(mN )k

k!
e−mN , k = 0.1, 2, 3 · · · .

where the distribution parametermN is the expected value and the variance, that is

to say, NE(x) = NV (x) = mN for the neutrosophic statistical number N = d+ I

(refer to [5] and also see [14]the references cited). Define a power series whose

coefficients are probabilities of neutrosophic Poisson distribution by

Φ(mN , z) = z +

∞∑
n=2

(mN )n−1

(n− 1)!
e−mN zn, z ∈ D.

For f ∈ A, we take the convolution operator ∗ and introduce the linear operator

Λ : A → A defined by

Λf(z) = Φ(mN , z) ∗ f(z) = z +

∞∑
n=2

(mN )n−1

(n− 1)!
e−mNanz

n

= z +

∞∑
n=m+1

Ψ(mN , n)anz
n,(4.1)

where

Ψn := Ψ(mN , n) =
(mN )n−1

(n− 1)!
e−mN .

Specially

(4.2) Ψ2 := mNe
−mN , Ψ3 :=

(mN )2

2
e−mN .

For the application of the results given in the previous section, we define the class

M ϕ
α,λ(q), in the following way:

M ϕ
α, λ(q) := {f ∈ A and (f ∗ ϕ) ∈Mα, λ(q)}

where

ϕ(z) = z +

∞∑
n=2

ϕnz
n, (ϕn > 0); (f ∗ ϕ) = z +

∞∑
n=2

ϕnanz
n

and Mα, λ(q) is given by Definition 1.2 and ∗ denote the convolution or Hadamard

product of two series. We define the class Mm
α, λ(q) in the following way:

Mm
α, λ(q) := {f ∈ A and Λf ∈Mα, λ(q)}

where Mα, λ(q) is given by Definition 1.2.

In following theorem,we obtain the coefficient estimate for functions in the class

M ϕ
α, λ(q), from the corresponding estimate for functions in the class Mα, λ(q).
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Applying Theorem 2.2 for the function (f ∗ ϕ)(z) = z + ϕ2a2z
2 + ϕ3a3z

3 + · · · , we
get the next Theorems 4.1 and 4.2 after an obvious change of parameter µ.

Theorem 4.1. Let 0 ≤ α ≤ 1, and 0 ≤ λ ≤ 1. If f ∈M ϕ
α,λ(q), then for complex µ,

we have

|a3−µa22| =
1

(α+ 2)(1 + 2λ)ϕ3
max

{
1,

∣∣∣∣α2 + α− 2− 2(α+ 3)λ

2((1 + α)(1 + λ))2
+
µ(α+ 2)(1 + 2λ)ϕ3

((1 + α)(1 + λ)ϕ2)2

∣∣∣∣} .
Theorem 4.2. Let 0 ≤ µ ≤ 1, α ≥ 0, λ ≥ 0 and ϕn > 0. If f(z) given by (1.1)

belongs to M ϕ
α, λ(q), then

|a3 − µa22| ≤



1

2ξϕ3

(
−γ2
τ2

)
, if µ ≤ σ1,

1

ξϕ3
, if σ1 ≤ µ ≤ σ2,

1

2ξϕ3

(γ2
τ2

)
, if µ ≥ σ2,

where, for convenience, γ2 := ρ− 2(α+ 3)λ+ 2µξ ϕ3

ϕ2
2
,

σ1 :=
ϕ2
2

ϕ3

[
2(α+ 3)λ− ρ− 2τ2

2ξ

]
, σ2 =

ϕ2
2

ϕ3

[
2τ2 + 2(α+ 3)λ− ρ

2ξ

]
and ρ, ξ, τ are as defined in(2.12)(2.13) and (2.14).

Now ,we obtain the coefficient estimate for f ∈Mm
α, λ(q), from the corresponding

estimate for f ∈Mα, λ(q). Applying Theorem 2.2 for the function Λf = z+Ψ2a2z
2+

Ψ3a3z
3 + · · · , we get the following Theorems 4.3 and 4.4 after an obvious change

of the parameter µ as in above theorems.

For Ψ2 and Ψ3 given by (4.2) Theorems 4.1 and 4.2 reduces to the following:

Theorem 4.3. Let 0 ≤ α ≤ 1, and 0 ≤ λ ≤ 1. If f ∈Mm
α,λ(q), then for complex µ,

we have

|a3 − µa22| =
2

(α+ 2)(1 + 2λ)m2
Ne
−mN

×

×max

{
1,

∣∣∣∣α2 + α− 2− 2(α+ 3)λ

2((1 + α)(1 + λ))2
+

µ(α+ 2)(1 + 2λ)

2((1 + α)(1 + λ))2e−mN

∣∣∣∣} .
Theorem 4.4. Let 0 ≤ µ ≤ 1, α ≥ 0, λ ≥ 0 and ψn > 0. If f(z) given by (1.1)

belongs to Mm
α, λ(q), then

|a3 − µa22| ≤



1

ξm2
Ne
−mN

(
−γ2
τ2

)
, if µ ≤ σ1,

2

ξm2
Ne
−mN

, if σ1 ≤ µ ≤ σ2,

1

ξm2
Ne
−mN

(γ2
τ2

)
, if µ ≥ σ2,
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where γ2 := ρ− 2(α+ 3)λ+ µξ
e−mN

, for convenience we write

σ1 := e−mN

[
2τ2 + 2(α+ 3)λ− ρ

2ξ

]
, σ2 = e−mN

[
2τ2 + 2(α+ 3)λ− ρ

2ξ

]
and ρ, ξ, τ are as defined in (2.12), (2.13) and (2.14).

A variable X is said to be Poisson distributed if it takes the values 0, 1, 2, 3, · · ·
with probabilities e−m, m e−m

1! , m2 e−m

2! , m3 e−m

3! , ...respectively, where m is called

the parameter. Thus

P (X = r) =
mre−m

r!
, r = 0, 1, 2, 3, · · · .

In [13], Porwal introduced a power series whose coefficients are probabilities of

Poisson distribution

K(m, z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−mzn, z ∈ ∆,

where m > 0. By ratio test the radius of convergence of above series is infinity.

Using the Hadamard product, Porwal[13] (see also, [1, 9, 10] introduced a new

linear operator Im(z) : A → A defined by

Imf = K(m, z)∗f(z) = z+

∞∑
n=2

mn−1

(n− 1)!
e−manz

n,= z+

∞∑
n=2

ψn(m)anz
n, z ∈ ∆,

where Since, Imf = z +

∞∑
n=2

ψmanz
n, where ψn =

mn−1

(n− 1)!
e−m, we have

(4.3) ψ2 = me−m and ψ3 =
m2

2
e−m.

Remark 4.1. Suitably specializing the parameters in Theorems 4.3 and 4.4 one

can easily state the results for the function classes associated with neutrosophic

Poisson distribution and Poisson distribution as listed below:

(1) Mm
0, λ(q) ≡Mm

λ (q)

(2) Mm
0, 0(q) ≡ S ∗m(q)

(3) Mα, 0(q) ≡ Bα(q) and

(4) Mm
0, 1(q) ≡ Cm(q)

which are new and not been studied sofar.
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Math. , 8(1), Article 12, 1 – 11 (2007).

[5] I. M. Hanafy, A. A. Salama and K. M. Mahfouz, “Neutrosophic classical events and its
probability”, International Journal of Mathematics and Computer Applications Research
(IJMCAR), 3(1), 171 – 178 (2013).

[6] F. R. Keogh and E. P. Merkes, “A coefficient inequality for certain classes of analytic
functions”, Proc. Amer. Math. Soc., 20, 8 – 12 (1969).

[7] R. J. Libera and E. J. Zlotkiewicz, “Early coefficients of the inverse of a regular convex
function”, Proc. Amer. Math. Soc., 85 (2), 225 – 230 (1982).

[8] W. C. Ma and D. Minda, “A unified treatment of some special classes of univalent functions”,
In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Z. Li, F. Ren, L.
Yang and S. Zhang (Eds.), Int. Press, Cambridge, MA, 157 – 169 (1994).

[9] G. Murugusundaramoorthy, “Subclasses of starlike and convex functions involving Poisson
distribution series”, Afr. Mat. 28, 1357 – 1366 (2017).

[10] G. Murugusundaramoorthy, K. Vijaya and S. Porwal, “Some inclusion results of certain
subclass of analytic functions associated with Poisson distribution series”, Hacettepe J. Math.
Stat., 45 (4), 1101 – 1107 (2016).

[11] S. Owa and H. M. Srivastava, “Univalent and starlike generalized hypergeometric functions”,
Canad. J. Math., 39, 1057 – 1077 (1987).

[12] A. T. Oladipo, “Bounds for Poisson and neutrosophic Poisson distributions associated with
chebyshev polynomials”, Palestine J. Math., 10(1), 169 – 174 (2021).

[13] S. Porwal, “An application of a Poisson distribution series on certain analytic functions”, J.
Complex Anal., Art. ID 984135, 1 – 3 (2014).

[14] A. Rafif, M. N. Moustafa, F. Haitham and A. A. Salama, “Some neutrosophic probability
distributions”, Neutrosophic Sets and Systems, 22, 30 – 37 (2018).

[15] R. K. Raina and J. Sokol, “On coeffcient estimates for a certain class of starlike functions”,
Hacettepe Journal of Math. and Stat., 44(6), 1427 – 1433 (2015).

[16] F. Rønning, “Uniformly convex functions and a corresponding class of starlike functions”,
Proc. Amer. Math. Soc., 118, 189 – 196 (1993).

[17] R. B. Sharma and M. Haripriya, “On a class of a-convex functions subordinate to a shell
shaped region”, J. Anal, 25, 93 – 105 (2016).

[18] H. M. Srivastava, A. K. Mishra and M. K. Das, “The Fekete-Szegö problem for a subclass of
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