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Abstract. The problem of minimizing or maximizing the time spent by a controlled
diffusion process in a given interval is known as LQG homing. The optimal control,
when it is possible to obtain an explicit solution to such a problem, is often expressed
as special functions. Here, the inverse problem is considered: we determine, under certain
assumptions, the processes for which the optimal control is a simple power function.
Moreover, the problem is extended to the case of jump-diffusion processes.
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1. Introduction

Let {Xu(t), t ≥ 0} be the one-dimensional controlled diffusion process defined

by the stochastic differential equation

(1.1) dXu(t) = f [Xu(t)]dt+ b[Xu(t)]u[Xu(t)]dt+ σ[Xu(t)]dB(t),

where b(·) is not identical to zero, σ(·) is non-negative and {B(t), t ≥ 0} is a

standard Brownian motion. The random variable

(1.2) T (x) := inf{t > 0 : Xu(t) /∈ (a, b) | Xu(0) = x ∈ (a, b)}

is called a first-passage time in probability. The problem of finding the control u∗(x)

that minimizes the expected value of the cost function

(1.3) J(x) :=

∫ T (x)

0

{
1
2 q[Xu(t)]u

2[Xu(t)] + λ
}
dt+K[Xu[T (x)]],

where q(·) is positive in (a, b) and λ is a real parameter, is a particular LQG homing

problem; see Whittle [8]. If the parameter λ is positive (respectively, negative), then

the optimizer wants the controlled process Xu(t) to leave the interval (a, b) as soon

(resp., late) as possible, taking the quadratic control costs and termination costK(·)
into account. Notice that the optimal control problem considered is time-invariant.

In the general formulation, {Xu(t), t ≥ 0} can be an n-dimensional controlled

diffusion process, and all the functions can depend explicitly on t. The cost function
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can also take the risk-sensitivity of the optimizer into account; see Whittle [9] or

Kuhn [2] and Makasu [7]. Moreover, Lefebvre and Moutassim [6] considered the

case when the uncontrolled process is a Wiener process with random parameters.

In addition to being of theoretical interest, LQG homing problems have many

applications in various areas: financial mathematics, reliability theory, hydrology,

etc. Recently, the author (Lefebvre [3]) has considered this type of problem in the

context of epidemiology. More precisely, he considered a stochastic version of the

classic three-dimensional model for the spread of epidemics due to Kermack and

McKendrick. The aim was to end the epidemic as soon as possible. In practice, no

one knows how long an epidemic will last. Therefore, the final time in this optimal

control problem is indeed a random variable. See also Ionescu et al. [1].

Whittle [8] has shown that, under some conditions, it is sometimes possible to

express the optimal control u∗(x) in terms of a mathematical expectation for the

uncontrolled process {X0(t), t ≥ 0} obtained by setting u[Xu(t)] ≡ 0 in Eq. (1.1).

However, solving the purely probabilistic problem is generally quite difficult, especially

in two or more dimensions.

When an explicit solution to an LQG homing problem can be found, the optimal

control is often expressed in terms of special functions or integrals that can only be

evaluated numerically; see, for instance, Lefebvre [4]. Here, we consider the inverse

problem: we will try to determine what are the problems for which the optimal

control u∗(x) is a simple power function, namely a constant, a linear function of x

or proportional to 1/x. Moreover, we assume that the functions b(·) and q(·) are

also power functions.

To solve an LQG homing problem, we can make use of dynamic programming:

we define the value function

(1.4) F (x) = inf
u[Xu(t)], 0≤t≤T (x)

E [J(x)] .

We can show (see Whittle [8]) that the function F satisfies the dynamic programming

equation

(1.5) 0 = inf
u(x)

{
1

2
q(x)u2(x) + λ+ f(x)F ′(x) + b(x)u(x)F ′(x) +

σ2(x)

2
F ′′(x)

}
.

We deduce from the above equation that the optimal control can be expressed

as follows:

(1.6) u∗(x) = − b(x)
q(x)

F ′(x).
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Hence, substituting this expression for u∗(x) into Eq. (1.5), we obtain that we must

solve the non-linear second-order differential equation

(1.7) 0 = −1

2

b2(x)

q(x)
[F ′(x)]2 + λ+ f(x)F ′(x) +

σ2(x)

2
F ′′(x).

This equation is valid for a < x < b and is subject to the boundary conditions

(1.8) F (a) = K(a) and F (b) = K(b).

Notice that Eq. (1.7) is a Riccati equation for G(x) := F ′(x).

In the next section, we will assume that the optimal control u∗(x) is a certain

power function of x and we will try to determine the value of the functions b(·),
q(·) and K(·) for which this power function is indeed the exact solution to the

optimal control problem. Then, in Section 3, the inverse LQG homing problem will

be extended to the case of jump-diffusion processes.

2. Inverse problem

The functions b(·) and q(·) in LQG homing problems are generally power functions.

Actually, they are often assumed to be respectively a non-zero and a positive

constant. Here, we assume that

(2.1) b(x) = b0x
m and q(x) = q0x

n,

where b0 6= 0 and q0 > 0. Moreover, m,n ∈ {0, 1, 2, . . .}. If a ≥ 0 in the interval

(a, b), then n can be an odd integer; otherwise, it must be an even integer (including

0). In the case of the function K(·), it is often chosen to be identical to zero. In this

paper, it can be any real function.

Case I. Assume first that the optimal control is a constant: u∗(x) ≡ u0. An

important special case is the one when u∗(x) ≡ 0. We then deduce from Eq. (1.6)

that F (x) ≡ F0. Therefore, this solution can only be the exact one if λ = 0.

Moreover, we must have K(a) = K(b) = F0. With these assumptions, it is actually

obvious that the optimizer must not use any control, for any functions b(·), q(·),
f(·) and σ(·).

Next, if u∗(x) ≡ u0 6= 0, we obtain that

(2.2) F ′(x) = −u0
q(x)

b(x)
= −u0 q0

b0
xn−m.

Equation (1.7) becomes

(2.3) 0 = −1

2
u20 q0x

n + λ− f(x) u0 q0
b0

xn−m − σ2(x)

2

u0 q0
b0

(n−m)xn−m−1.
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In the special case when m = n, F ′(x) is a constant and Eq. (2.3) is satisfied if and

only if

(2.4) f(x) = −1

2
u0 b0x

n + λ
b0
u0 q0

.

Furthermore, the final cost must be given by

(2.5) K(a) = −u0 q0a
b0

+ F0 and K(b) = −u0 q0 b
b0

+ F0,

where F0 is a real constant.

Now, there are some conditions on the functions f(·) and σ(·) that must be

satisfied for the uncontrolled process {X0(t), t ≥ 0} to be a diffusion process. For

the applications, the most important cases are the ones when f(x) = f0x
p and

σ2(x) = σ2
0 x

r, where p ∈ {−1, 0, 1}, r ∈ {0, 1, 2}, f0 is a real constant and σ0 is a

positive constant.

Proposition 2.1. Assume that m = n ∈ {0, 1, 2, . . .}. If the conditions in Eq. (2.4)

and Eq. (2.5) are satisfied, where n is such that the uncontrolled stochastic process

{X0(t), t ≥ 0} with f(x) defined in Eq. (2.4) is a diffusion process, then the optimal

control u∗(x) is a non-zero constant u0.

Remark. (i) Notice that there is no explicit condition on the function σ(x). (ii)

When n = 0, the function f(x) is a constant. Then, if σ(x) is also a constant,

{X0(t), t ≥ 0} is a Wiener process. If n = 1 and σ(x) is a constant, then {X0(t), t ≥
0} could be an Ornstein-Uhlenbeck process (if u0 b0 is positive). Finally, if λ = 0,

n = 1 and σ2(x) = σ2
0 x

2, then the uncontrolled process is a geometric Brownian

motion. We see that the optimal control is not equal to zero, even if λ = 0. This is

due to the fact that K(a) 6= K(b). (iii) When n = 1, we have q(x) = q0x. Because

the function q(x) is assumed to be positive in the interval (a, b), we must impose

the additional condition a ≥ 0. (iv) The Wiener process (or Brownian motion) is

the basic diffusion process and the Ornstein-Uhlenbeck process is widely used in

physics and biology, in particular. Geometric (or exponential) Brownian motion is

the fundamental diffusion process in financial mathematics.

There are of course many mathematical cases that can be considered. However,

the most frequent ones for the function b(x) (respectively, q(x)) are those when

m = 0 and m = 1 (resp., n = 0 and n = 2). Since we now assume that m 6= n,

there are three important cases to examine: (m,n) = (0, 2), (1, 0) and (1, 2).

Firstly, with (m,n) = (0, 2), Eq. (2.3) reduces to

(2.6) 0 = −1

2
u20 q0x

2 + λ− f(x) u0 q0
b0

x2 − σ2(x)
u0 q0
b0

x.
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Let λ = 0. Then, we can choose f(x) ≡ f0 and σ2(x) = σ2
0 x, where f0 is such that

(2.7) f0 = −1

2
b0u0 − σ2

0 .

Moreover, we must have a ≥ 0 and the function K(x) must satisfy the conditions

(2.8) K(a) = −u0 q0a
3

3b0
+ F0 and K(b) = −u0 q0 b

3

3b0
+ F0,

where F0 is a real constant.

Secondly, if we choose (m,n) = (1, 0), Eq. (2.3) simplifies to

(2.9) 0 = −1

2
u20 q0 + λ− f(x) u0 q0

b0
x−1 +

σ2(x)

2

u0 q0
b0

x−2.

The most interesting particular solution is when {X0(t), t ≥ 0} is a geometric

Brownian motion with f(x) = f0x and σ2(x) = σ2
0 x

2. Then, the various parameters

must be chosen so that

(2.10) 0 = −1

2
u20 q0 + λ− f0

u0 q0
b0

+
σ2
0

2

u0 q0
b0

.

This time, λ could be any real number. Because the optimally controlled process

{Xu∗(t), t ≥ 0} is also a geometric Brownian motion, with infinitesimal mean

(f0 + b0u0)x, and geometric Brownian motions are strictly positive (or strictly

negative), we should assume that a > 0. Moreover, the function K(x) must satisfy

the following conditions:

(2.11) K(a) = −u0 q0 ln(a)

b0
+ F0 and K(b) = −u0 q0 ln(b)

b0
+ F0,

for a certain constant F0.

Thirdly, when (m,n) = (1, 2), we deduce from Eq. (2.3) that

(2.12) 0 = −1

2
u20 q0x

2 + λ− f(x) u0 q0
b0

x− σ2(x)

2

u0 q0
b0

.

There are two interesting particular solutions: as above, if {X0(t), t ≥ 0} is a

geometric Brownian motion with f(x) = f0x and σ2(x) = σ2
0 x

2, and if λ = 0,

we must have

(2.13) f0 = −1

2
(b0u0 + σ2

0)

and a > 0. Furthermore, {X0(t), t ≥ 0} could be an Ornstein-Uhlenbeck process

with infinitesimal mean f0x and infinitesimal variance σ2
0 , where

(2.14) f0 = −b0u0
2

(< 0) and σ2
0 =

2λb0
u0 q0

(> 0).

Finally, in both cases the conditions

(2.15) K(a) = −u0 q0a
2

2b0
+ F0 and K(b) = −u0 q0 b

2

2b0
+ F0,

where F0 is a real constant, must be satisfied.
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Case II. Assume now that the optimal control u∗(x) is linear: u∗(x) = u0x, where

u0 6= 0. Equation (1.6) then implies that

(2.16) F ′(x) = −u0x
q(x)

b(x)
= −u0 q0

b0
xn−m+1,

so that Eq. (1.7) takes the form

(2.17) 0 = −1

2
u20 q0x

n+2 +λ− f(x) u0 q0
b0

xn−m+1− σ2(x)

2

u0 q0
b0

(n−m+1)xn−m.

Here the special case is when m = n+1; then, F ′(x) is a constant and we find that

Eq. (2.17) is satisfied if and only if (iff) the function f(x) is such that

(2.18) f(x) = −1

2
u0 b0x

n+2 + λ
b0
u0 q0

.

As in Case I, the function K(x) must satisfy the conditions in Eq. (2.5).

Proposition 2.2. Assume that m = n+1 ∈ {1, 2, . . .}. If the function f(x) can be

expressed as in Eq. (2.18), where n is such that the uncontrolled stochastic process

{X0(t), t ≥ 0} is a diffusion process, and if the final cost satisfies both conditions

in Eq. (2.5), then the optimal control u∗(x) is linear: u∗(x) = u0x, where u0 6= 0.

Remark. Again, we can choose any admissible function σ(x). The most interesting

case is when n = 0 and σ2(x) = σ2
0 x

2.

When m = n, Eq. (2.17) becomes

(2.19) 0 = −1

2
u20 q0x

n+2 + λ− f(x) u0 q0
b0

x− σ2(x)

2

u0 q0
b0

.

With n = 0, there are two important solutions: firstly, we can have

(2.20) f(x) =
λb0
u0 q0x

and σ2(x) = −b0u0x2,

provided that b0u0 < 0. If λ = 0, the uncontrolled process is then a geometric

Brownian motion. Secondly, we can also have

(2.21) f(x) = −b0u0
2

x and σ2(x) ≡ 2λb0
u0 q0

(> 0).

This time, if b0u0 > 0, {X0(t), t ≥ 0} is an Ornstein-Uhlenbeck process. Furthermore,

in both cases Eq. (2.15) must be satisfied.

To conclude this part, let us consider the case when m = n− 1 ∈ {0, 1, . . .}; we
deduce from Eq. (2.17) that

(2.22) 0 = −1

2
u20 q0x

n+2 + λ− f(x) u0 q0
b0

x2 − σ2(x)
u0 q0
b0

x.

If λ = 0 and n = 1, we can take f(x) = f0x and σ2(x) = σ2
0 x

2, provided that

a > 0, the conditions in Eq. (2.8) are satisfied and

(2.23) f0 = −1

2
b0u0 − σ2

0 .
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Case III. Lastly, suppose that a > 0 and that the optimal control u∗(x) is inversely

proportional to x: u∗(x) = u0/x, where u0 6= 0. We then deduce from Eq. (1.6) that

(2.24) F ′(x) = −u0
x

q(x)

b(x)
= −u0 q0

b0
xn−m−1.

It follows that Eq. (1.7) becomes

(2.25) 0 = −1

2
u20 q0x

n−2+λ−f(x) u0 q0
b0

xn−m−1− σ
2(x)

2

u0 q0
b0

(n−m−1)xn−m−2.

The function F ′(x) is a constant when n−m = 1. Equation (2.25) is then satisfied

iff

(2.26) f(x) = −1

2
u0 b0x

n−2 + λ
b0
u0 q0

.

As in the previous cases, the termination cost function K(x) must satisfy both

conditions in Eq. (2.5).

Proposition 2.3. Assume that m = n − 1 ∈ {0, 1, 2, . . .} and that the function

f(x) can be expressed as in Eq. (2.26), where n ≥ 1 is such that the uncontrolled

stochastic process {X0(t), t ≥ 0} is a diffusion process. If the two conditions in

Eq. (2.5), with a > 0, are satisfied, then the optimal control u∗(x) is inversely

proportional to x: u∗(x) = u0/x, where u0 6= 0.

Remark. As above, we can choose any admissible function σ(x). When n = 1 and

λ = 0, we have

(2.27) f(x) = −u0 b0
2x

.

Then, if σ2(x) ≡ σ2
0 , the uncontrolled process could be a Bessel process, which is

another important diffusion process. Moreover, if n = 2,

(2.28) f(x) ≡ f0 = −1

2
u0 b0 + λ

b0
u0 q0

.

If we choose σ2(x) ≡ σ2
0 , then {X0(t), t ≥ 0} is a Wiener process.

Let us finally consider the particular case when (m,n) = (0, 2). The conditions

in Eq. (2.15) must then be satisfied. Moreover, Eq. (2.25) reduces to

(2.29) 0 = −1

2
u20 q0 + λ− f(x) u0 q0

b0
x− σ2(x)

2

u0 q0
b0

.

There are two interesting solutions: firstly, we can have f(x) = f0/x and σ2(x) ≡ σ2
0 ,

with

(2.30) f0 = −1

2

(
u0 b0 + σ2

0

)
+ λ

b0
u0 q0

.

Hence, {X0(t), t ≥ 0} could be a Bessel process. Secondly, we can also have

(2.31) λ =
1

2
u20 q0 and f(x) = −σ

2(x)

2x
.
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An important case is the one for which σ2(x) = σ2
0 x

2, so that f(x) = −σ2
0 x/2.

The uncontrolled process is then a geometric Brownian motion. If σ2(x) ≡ σ2
0 , then

{X0(t), t ≥ 0} could again be a Bessel process.

3. Jump-diffusion processes

Let {N(t), t ≥ 0} be a Poisson process with rate α, and {Yi, i = 1, 2, . . .}
be independent and identically distributed (i.i.d.) random variables having the

common probability density function fY (y). In this section, we will extend the

inverse LQG homing problem to the case when {Xu(t), t ≥ 0} is a controlled jump-

diffusion process defined by

Xu(t) = Xu(0) +

∫ t

0

{f [X(s)] + b[Xu(s)]u[Xu(s)]} ds

+

∫ t

0

σ[Xu(s)]dB(s) +

N(t)∑
i=1

Yi.(3.1)

The stochastic processes {N(t), t ≥ 0} and {B(t), t ≥ 0} are assumed to be

independent. Jump-diffusion processes are widely used in financial mathematics,

among other fields.

The ordinary differential equation satisfied by the value function F (x) becomes

an integro-differential equation (see Lefebvre [5]):

0 = −1

2

b2(x)

q(x)
[F ′(x)]2 + λ+ f(x)F ′(x) +

σ2(x)

2
F ′′(x)

(3.2) + α

{∫ ∞
−∞

F (x+ y)fY (y)dy − F (x)
}
.

Moreover, because there can now be an overshoot, the boundary conditions become

(3.3) F (x) = K(x) if x /∈ (a, b).

In the case when the jump size is a constant ε, so that fY (y) becomes the Dirac delta

function δ(y−ε), the above integro-differential equation is reduced to a differential-

difference equation:

(3.4) 0 = −1

2

b2(x)

q(x)
[F ′(x)]2+λ+f(x)F ′(x)+

σ2(x)

2
F ′′(x)+α [F (x+ ε)− F (x)] .

Although Eq. (3.2) is obviously difficult to solve explicitly, by choosing the

functions fY and K appropriately, the variety of problems for which the optimal

control u∗(x) is a power of x is very large. We will present below various examples

of such problems. The same cases for u∗(x) as in the preceding section will be

considered. In financial mathematics, an example of an LQG homing problem might

consist in finding the optimal investment policy when the investor decides to sell
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his/her shares of a given company the first time they reach a certain level, which

is a random time. An optimal solution that is a simple power function is very easy

to implement.

Case I. If u∗(x) ≡ 0, so that F (x) ≡ F0, we saw in Section 2 that we must then have

λ = 0 and K(a) = K(b) = F0, so that the value of the optimal control was obvious.

However, in the case of jump-diffusion processes, we can have u∗(x) ≡ 0 in non-

trivial problems. Indeed, assume that [a, b] = [0, 1] and that Y ∼ U[−2, 2]; that is,
Y is uniformly distributed on the interval [−2, 2]. Then, we have X[T (x)] ∈ (−2, 0]
or [1, 3). Let us define

(3.5) I(x) =

∫ ∞
−∞

F (x+ y)fY (y)dy.

We may write that

I(x) =
1

4

{∫ −x
−2

K(x+ y)dy +
∫ 1−x

−x
F (x+ y)dy +

∫ 2

1−x
K(x+ y)dy

}
=

1

4

{∫ −x
−2

K(x+ y)dy + F0 +

∫ 2

1−x
K(x+ y)dy

}
.(3.6)

Let K(0) = K(1) = F0 (as required), but K(x) ≡ F1 if x ∈ (−2, 0) or x ∈ (1, 3).

We have I(x) = 1
4 (3F1 + F0). We therefore may state that Eq. (3.2) is satisfied if

and only if

(3.7) λ+
3α

4
(F1 − F0) = 0.

Thus, when F1 6= F0, so that λ 6= 0 as well, the optimal strategy is nevertheless to

use no control at all. This example can obviously be generalized.

Remark. The function K(x) is not necessarily continuous. In fact, it is natural to

have a possibly different final cost when there is an overshoot.

Next, in the case when u∗(x) ≡ u0 6= 0, the value function must be of the form

(3.8) F (x) = κ
xn−m+1

n−m+ 1
+ F0,

where

(3.9) κ := −u0 q0
b0

.

For the sake of brevity and simplicity, we will assume that n = m, so that F (x) =

κx + F0. We take again [a, b] = [0, 1], and we choose K(x) = F (x), for x /∈ (0, 1).

Then, if Y ∼ U[−2, 2] (as above), we calculate

(3.10) I(x) =
1

4

∫ 2

−2
[κ(x+ y) + F0]dy = κx+ F0,
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so that we return to the case when there are no jumps, that is, α = 0. Instead, let

us take Y ∼ U(0, 1), which implies that there are only positive jumps. With this

choice, we have

(3.11) I(x) =

∫ 1

0

[κ(x+ y) + F0]dy = κ

(
x+

1

2

)
+ F0 = F (x) +

κ

2
.

It follows that Eq. (3.2) reduces to

(3.12) 0 = −1

2

b20
q0
κ2 + λ+ f(x)κ+

ακ

2
= λ+ κ

(
1

2
b0u0 + f(x) +

α

2

)
.

Therefore, f(x) must be a constant f0 such that the above equation is satisfied,

and we can choose any admissible infinitesimal variance σ2(x). In particular, the

continuous part of the process {Xu(t), t ≥ 0} could be a controlled Brownian

motion.

Case II. We make the following assumptions: the optimal control u∗(x) is of the

form u∗(x) = u0x, where u0 6= 0, the interval [a, b] is [0, 1] and m = n = 0. We have

(3.13) F (x) = κ
x2

2
+ F0 for x ∈ (0, 1).

As above, we choose K(x) = F (x) for x /∈ (0, 1). With Y ∼ U(−2, 2), we obtain

that

(3.14) I(x) =
1

4

∫ 2

−2

[
κ
(x+ y)2

2
+ F0

]
dy = F (x) +

2κ

3
.

Then, Eq. (3.2) becomes

(3.15) 0 = −1

2
q0u

2
0x

2 + λ+ f(x)κx+
κ

2
σ2(x) +

2ακ

3
.

There are numerous important processes for which the above equation holds, including

the cases when the continuous part of {X0(t), t ≥ 0} is an Ornstein-Uhlenbeck

process, or a geometric Brownian motion.

Case III. Suppose that [a, b] = [1, 2], m = 0, n = 1 and u∗(x) = u0/x, where

u0 6= 0. The value function F (x) becomes

(3.16) F (x) = κx+ F0.

With K(x) = F (x) for x /∈ (1, 2) and Y ∼ U(0, 1), we have

(3.17) I(x) =

∫ 1

0

[κ(x+ y) + F0]dy = F (x) +
κ

2
.

Hence, Eq. (3.2) is

(3.18) 0 = −q0u
2
0

2x
+ λ+ f(x)κ+

ακ

2
.

The continuous part of {X0(t), t ≥ 0} could be a Bessel process.
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4. Conclusion

In this paper, we obtained various explicit and exact solutions to LQG homing

problems for important one-dimensional diffusion processes by considering the inverse

problem. Instead of trying to find the solution to the appropriate non-linear second-

order differential equation satisfied by the value function, from which the optimal

control follows at once, we looked for problems for which the optimal control u∗(x)

was either a constant, a linear function of x or inversely proportional to x. We saw

that there are indeed interesting problems for which the exact solution is simple.

We could have considered other cases, but the aim was to present solutions

to realistic problems involving important diffusion processes, such as the Wiener

process and geometric Brownian motion, rather than purely mathematical examples.

Moreover, we could of course consider other particular forms for the optimal control;

for instance, the case when u∗(x) is a quadratic function of x is of interest.

Finally, in Section 3 we presented an extension of the inverse LQG homing

problem to the important case of jump-diffusion processes. Although the equation

satisfied by the value function is much more complicated, we saw that it is possible

to find many interesting examples for which the optimal control u∗0 is a constant or

a power of x.

As a sequel to this paper, we could consider multidimensional LQG homing

problems, either for diffusion or jump-diffusion processes. There are few such problems

that have been solved explicitly and exactly so far in two or more dimensions,

because the equation satisfied by the value function is then a non-linear partial

differential (or integro-differential) equation. Therefore it would indeed be interesting

to find important problems that actually have simple solutions.
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