Р.Е. САРКИСЯН

ИНТЕРАКТИВНЫЕ ПРОЦЕДУРЫ ИДЕНТИФИКАЦИИ И ОЦЕНИВАНИЯ. Сообщение 1. УСЛОВНОЕ ОПЕНИВАНИЕ ПАРАМЕТРОВ РЕГРЕССИОННЫХ СХЕМ

Մշակված են ռեզքեսիան սխեսաների կյարասետքերի որայմանական գնահատմառ դասական խաղի այցորիչու և մեջինարսկան ծրագիր։

Разработаны интерактивный алгоритм и машинизм программа для решения классической задачи условного оценивания параметров регрессионных ехем. Биолиогр., 5 нази

An interactive algorithm and machine programming for solving classical problems (1 conventional evaluation of regression circuit parameters have been developed Ref. 5.

1. Введение Задачи пдентификации и оценивания панли инвроког применение в теории и практике управления, системном апализе, экономике, медицице, поенном планировании. Они являются также важным звеном всего жизненного никла просктирования создания, эксплуатации и совершенствования систем.

В практических приложениях ныбор той или иной ехемы идентификации и оценявания существенно зависят от вида и объема имеющейся априорной информации о структурных и функциональных особенностях исследуемых и проектируемых систем их свойствах и связях в также о тех физических законах которые определяют внутренние причинно-следственные связи, существование и функциониривание систем как единое нелое во взаимодействии с окружающей средой.

Определенная свять существует также между априорнов информанией и выбором конкретных вычислительных процедур для обработки результатов наблюдения и построения устойчивых оценох и выводов [1].

В настоящем сообщении рассматривается одна из классических задач нахождения опенок по методу наименьних квадрагов применительно к регрессионным схемам, когда на оцениваемые параметры наложены определенные функциональные ограничения В качестве эффективной вычислительной процедуры предложена интерактивная поисковая процедура адаптивного тила, разработанная в рамках методов производных по направлению [2].

2 Постановка задачи и процедуры регуляризации. Пусть по результатам наблюдений необходимо построить оценки нараметров статистической модели

$$y_{i} = \beta_{i1} + \beta_{1} x_{i1} + \beta_{2} x_{i2} + \dots + \beta_{in} x_{in} + \varepsilon_{i},$$

$$i = 1, 2, \dots, N,$$
(1)

в которой x_0 , $i=1,\cdots,N;\ j=1,\cdots,N$ фиксированные значения независимых переменных: y, $i=1,\cdots,N$ наблюдаемые значения нависимой переменной (отклика); β_i , $j=0,1,\cdots,N$ оцениваемые независимые нараметры, значения которых удоплетворяют совместной системс $\Delta\beta=c$, где Δ натрина размерности $m\times(n+1)$, c заданный $(m\times1)$ вектор. c $i=1,\cdots,N$ некоррелированные друг c другом случайные величины c нулевым математическим ожиданием и дисперсием σ

В терминах стандартной задачи математического программирования нахождение условных МНК оценок неизвестных

параметров имеет вид

$$E(\beta) = \varepsilon^{\dagger} \varepsilon \to \min_{\beta \in \Gamma' \setminus A\beta \in \mathcal{C}} , \qquad (2)$$

rac
$$\varepsilon = v - x\beta$$
, $y = (y_1, ..., y_N)^T$, $\beta = (\beta_0, \beta_1, ..., \beta_n^T)^T$, $\varepsilon = (\varepsilon_1, ..., \varepsilon_N)^T$, $X = x_0 - i = 1, ..., N_{i-1} = 0, 1, ..., n$, $x_{in} = 1, \forall i$,

Как известно [3, 4], с помощью метода Лагранжа можно получить условную оценку в виде $\beta=(X|X)/(A(X|X)/A^T)^{-1}(c-Ab)+b$, гле $b=(X^TX)^{-1}/X^Ty$ - безусловная МНК-оценка вектора β . Если матрица X|X илохо обусловлена, то полная дисперсия оценок $\sum var(\beta)=\sigma/Tr(X/X)^T$ оказывается слишком большой величиной. Обусловленная ею величина $\sum var(\beta_1)$ также будет большой, поэтому

условная оденка β непригодна для практических целен.

Традиционно для уменьшения дисперсии оценок параметров применяются различные процедуры регуляризации, например, типа (X⁺X + k1)⁺, где k - корректирующий параметр. 1 - единичная матрица, которые приводят к так называемым гребневым оценкам [3]. Последние хотя и не являются несмешенными, однако более устойчивы.

чем некорректированные.

Избежать нежелательных эффектов, обусловленных обращением илохо обусловленных матриц, можно и без корректирующих процедур, а путем анпроксимации исходной задачи условного оценивания спответствующей многокритериальной задачей и применения интерактивных поисковых процедур, использующих лишь информацию о граднентах целевых функций и их маргинальных отношениях.

3. Эквивалентныя многокритериальная задача, С формальноматематической точки зрения условие АВ = с эквивалентно решению

падачи

$$(c - AB)^{T}(c - AB) \rightarrow \min_{\beta \in \mathbb{N}^{+}}$$
 (3)

поэтому задачу условной оптимизации (1) можно апироксимировать двужеритериальной задачей математического программирования

$$f(\beta) = (f_1(\beta), f_2(\beta))^T \to \min . \tag{4}$$

где $f_1(\beta) = \epsilon^T \epsilon$, $f_2(\beta) = (\epsilon - A\beta)^T (\epsilon - A\beta)$. Применим к решению задачи общую стратегию адаптивных интерактивных поисковых процедур, основанных на методах производных по направлению [2].

Пусть β и β - соответствующие решения локальных оптимизационных задач, так что $\beta^+ = b = (X^+ X)^+ X$ у и $A\beta^- = c$ Через β^+ , $k=0,1,\ldots$ обозначим некоторое текущее решение и предположим, что один из критериев, например $f_2(\beta)$, выбран и качестве опорного (наиболее важного) критерия в этом состоянии. Его отметим индексом $f_1=2$, так что $f_1=f_2$. В состоянии градиенты критериальных функций имеют вид

$$S^{T} = \nabla f_{T}(\beta^{k}) = -2X^{T}y + 2X^{T}X\beta^{k}.$$

$$S^{T} = \nabla f_{T}(\beta^{k}) = 2A^{T}c + 2A^{T}A\beta^{k}.$$

Если по мнению лица, принимающего решения, приращения Δf_+ , Δf_+ и Δf_+ , Δf_+ хаковы, что имеет место соотношение $(f^+ + \Delta f_+, f_+) \times (f^+, f^+ + \Delta f_+) \times (f_+ + \Delta f_+, f_+^k)^T$. То мартинальное отношение тамещения между критериями f_+ и f_+ определяются в виле $\mu_{C} = S^{11}e / S^{21}e$ и принадлежит интервалу $[A_1, B_1]$, гле $A_1 = \Delta f_+ / \Delta f_+$, $B_1 = \Delta f_+ / \Delta f_+$, е изправление наисхореншего возрастания функции полезности (точнее, ее условный градиент) Очевидно, что копус предпочтительных направлений $P_0 = \{e \in E^{n+1} / S^{11}e / S^{-1}e \in [A_1, B_1]\}$ является непустым подмиожеством множества направлении спуска обеих критериальных функций $F_0 = \{d \in E^{n+1} / S^{11}d, S^{-1}d \le 0\}$. К тому же в точке β^1 любое направление возможно, т.е. копус аппрокеимации G_0 [5] совпадает со всем пространством E^{n+1} . Следовательно, $F_0 \cap G_0 \cap P_0 = P_0$.

Исходя из этих соображений, наилучиее направление поиска находится путем решения залачи

$$\Phi(d) = \{ -(S^{11}d)^2 / S^{21}d - S^{2T}d \} \rightarrow \max_{d \in \mathbb{R}^{n+1}, |\{d\}| = 1}$$
 (5)

Обозначим ее решение через $e^k = d^k$, а соответствующую пеличину шага по e^k , как решение задачи arg min $\Gamma_2(\beta^* + \sigma e^*)$, $\sigma \ge 0$, через σ_k . Легко установить, что $\sigma_k = (e^1 A e^k - e^{\epsilon \tau} A^T A \beta^\tau) / \|A e^k\|$. При этом новое решение будет равно $\beta^{t+1} = \beta^t + \sigma_t \cdot e^t$. Оно, очевилно, удовистворяет условию $\Delta \beta = e$.

Таким образом, за одну итерацию из произвольной точки β^k попадаем в точку минимума критериальной функции $f_2(\beta)$, что является одним из решений задачи $A\beta=c$.

Во второй итерации в качестве опорного (ведущего) критерия естественно выбрать $f_1(\beta)$, т.е. $J_k=1$, а в качестве направления движения - направление e^k , все точки $\beta(\sigma)=\beta^k+\sigma e^k$ которого

удивлетворяют условию $A\beta=c$ т.е. имеет место равенство $A(\beta^*+\sigma e^*)=c$. Так как $A\beta=c$. получаем, что $Ac^\dagger=0$. В терминах целевой функции $f_*(\beta)$ последнее условие эквивалентно условию $S^{-1}e^*=0$, следовательно, $\mu_{21}=S^{-1}e^*/S^{-1}e^*=0$, $P_0=\{e\in F^{n+1}/S^{21}e/S^{11}e=0\}$, $E_0=\{d\in E^{n+1}/S^{11}d\le 0,\ S^{21}d=0\}$, а цектор e^* совпадает с решением задачи

 $\Phi(\mathbf{d}) = \{ -\mathbf{S}^{\text{Pl}} \mathbf{d} \} \to \max_{\mathbf{d} \in \mathbb{F}_a \mid \|\mathbf{d}\| = 1}$ (6)

Впиду очевидных свойств задачи (6) она имеет слинственное вешение.

Оптимальная величина шага данной итерации равна $\sigma = \mathop{\rm arg\,min} f_1(\beta^* + \sigma e^k) - (X^{\dagger} Y e^{\dagger} - e^{\dagger} X^{\dagger} X \beta^k) / \|X e^k\|^*$, а новое решение принимает вид $\beta^{*+} = \beta^* + \sigma_1 e^k$. Простой проверкой можно убели ься в том, что в точке β^{*-} имеет место условие $S^{*+} e^k = 0$, т.е. она является точкой условного минимума функции f(x).

Гаким образом, применение интерактивной процедуры порождает неагнаправленный вычислительный процесс в результате которого исходная условияя задача оценивания решается за две итерации

Соответствующий вычислительный алгориты имеет вид:

Шат 1 Сформулировать задачу (4) и найти ее докальные решения β и β . Если $A\beta$ = c , остановиться. В противном случае перейти к шагу 2.

Шат 2. Положить k=1, выбрать $f_{\infty}(\beta)$ в качестве опорного критерия в подходящее начальное приближение $\beta^k \in E^{n+1}$. Если $A\beta^{-1} = c$, перейти к шату 5. В прогивном случае - к шату 3.

Uат 4. Вычислить повое решение $\beta^{i-1}=\beta^i+\sigma_ie^i$ и положить k=k+1.

Шаг 5 Выбрать f_1 в качестве опорного критерия, сформировать множество F_0 в решить залачу (6). Пусть e^1 - ее решение, а σ^1 = arg min $f_1(\beta^1+\sigma e^1)$ при $\sigma\geq 0$.

Шат 6. Вычислить $\beta^{*+} = \beta^* + \sigma_1 e^*$ и остановиться. Вектор $\beta = f^{4-1}$ представляет собои условную МНК-опенку параметров модели (1), при котором $f_1 = f_2(\beta^*) = \min f_1(\beta)$ при $\beta \in E^{n+1}$. $A\beta = c$.

4. Модельный пример и обсуждение результатов. Рассмотрим задачу оценивания нараметров статистической модели $y_i = \beta_i + \beta_i x_{ii} + \epsilon_i$ i = 1...N, при условии связи $\beta_i + \beta_i = 1$. Решим эту вадачу при следующих исходиых данных [3]:

$$y^{T}y = 2286.31; X^{T}y = (\sum y_{x}, \sum x_{y})^{T} = (235.60, 11821, 4320)^{T};$$

$$\begin{bmatrix} N & \sum x_{11} \\ \sum x_{11} & \sum x_{11} \end{bmatrix} = \begin{bmatrix} 25 & 1315 \\ 1315 & 76323.42 \end{bmatrix}$$

Ее безусловное решение равно $b = \beta^{-1} = (13.62, -0.08)^{T}$. Пусть $\beta^1 = \beta^k = (0,0)^T$. Так как в рассмотренном случае A = [-1,1] и c = 1, то получаем выражение для градиентов S' $S^{1} = \nabla f_{+}(\beta^{k}) = 2(235.6, 1183.432)^{T}; S^{2} = \nabla f_{+}(\beta^{k}) = (2, -2)^{T}.$ произвольных 0 ≤ A, < B, < ∞ решение первои итерации равно $e^{\lambda} = (1/\sqrt{5}, 2/\sqrt{5})^{3}, \ \sigma_{\lambda} = \sqrt{5}, \ \beta^{\lambda} = (1, 2)^{3}.$

В новом состояния $S = (4838.4, 284281)^T$, $S^2 = (0.0)^T$. Выбирая для второй итерации в качестве опорного критерий $f_i(\beta)$ и решам соответствующую ползадачу, получаем $e' = (-\sqrt{2}/2, -\sqrt{2}/2)^{T}$. $\sigma = \arg\min f_1(\beta_k + \sigma e^*) = 2.59, \ \beta^{k-1} = (-0.83, \ 0.17)^{\top}.$ Tak kak $A\beta^{k+1} = c$, а $S^{11}d = \nabla f_1(\beta^{k+1})^T$ $d \ge 0$ для всех направлений, для которых Ad = 0, то найденная точка $\beta^{(1)}$ является точкой условного минимума функции $\Gamma_{\epsilon}(\beta) = \epsilon^{+}\epsilon^{-}$ при условии $A\beta = \epsilon$. При этом $\Gamma_{\epsilon}(\beta) = 509.996$. гогда как $f_*(b) = f_* = 20,4291$

Приведенная вычислительная процедура имеет простую геометрическую (интерпретацию: в результате первой итерации из вроизвольной пачальной точки в мы попадаем на поверхность. описываемую условием $A\beta = c$. Движение вдоль нее во второй итерации приводит к искомой точке $\beta = \arg\min t_i(\beta)$ при $\beta \in E^{-1}$ и $A\beta = c$.

Заключение. Задачи оценивания, в которых авриорная информация задана в виде функциональных ограничений, можно интерпретировать в терминах мкогокритериальных задач математического программирования с последующим применением для их решения интерактивных поисковых процедур адаптивного типа. В качестве дополнительной информации при этом лыступает интервальное оценивание маргинальных соотношений между критериями.

ЛИТЕРАТУРА

ГИУА 18.X.1994

^{1.} Современные методы систем /Под ред. Э.П. Эйкхоффа. -М., Мар. 1983. -400 с.

^{2.} Саркисян Р.Е. Адаптивные человеко-машинные процедуры для диалоговых систем: Сообщение 2. Методы производилх по направлению // Изв. АН Арм. ССР. Сер. ГН. - Т. 44, № 5-6, - 1991. - С. 282-287.
3. Себер Дж. Инпейный регрессионный анализ. -М.: Мир. 1980. - 456 с.

^{4.} Рао СР. Линейные статистические методы и их применение. -М.: Наука, 1968. -

^{5.} Базара А., Шетти К. Нелинейное программирование. Теория и адгоритмы, -М= Мир. 1982 - 583 с.