нанометра до нескольких панометров. При отображении на фотокат од ЭОП интервала длин воли величиной 0,5 нм разрешающая способность регистрирующей системы составляет величину ~ 20000.

Ввод спектров в микро ЭВМ дает возможность их обработки (усреднения спектров нескольких импульсов изличения, пормировка по интенсивности возбуждающего излучения и т. д.)

ЛИТЕРАГУРА

 Фрадков А. И., Зимин Г. П., Кацюба О. А. Система сбора, обработки и регистрации экспериментальной информации на основе микро ЭВМ «Электропика ДЗ-28» // Приборы и техника эксперимента.—1982 № 6 —С. 47-52.

ИФИ АН Армении

28 II. 1989

Нав. АН Армении (сер. ТН), т. ХЦПІ, № 6, 1990, с. 296—301

ГИДРА ВЛИКА

УДК 532.5.032

Р. А. МУРАДЯН, Г. Т. ТЕР-КАЗАРЯН

О ГИДРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИКАХ ПРОТИВОЭМБОЛИЧЕСКИХ КАВА-ФИЛЬТРОВ

Решая уравнение Навьс-Стокса для взякой жидкости, проведен виализ гидродинамических характеристик противоэмболического кана фильтра «РЭПТЭЛА». С помощью полученных мятематических ныражений произведены расчеты для оценки степени помех току крови и охарактеризован ламинарный след, вызванный имплантированным кава фильтром.

Ил 2. Табл. Библиогр.: З назв.

ամապատմանը համար համար համարումը, համաստումը, համաստումը, համար համարումը, համաստիչությունը։ Դերենան համանատիչությունը։ Հայաստվազման աստիչանը և ուսումնասիրված է չհրատվոր ձնարը, որոն։ Հնաևանյն են։

За последние годы в хирургической практике с целью профилактики тромбоэмболия легочной артерии широкое применение получили фильтры крови, имплантируемые в инжнюю полую вену (кава-фильтр). Зарубежными авторами разработаны и применяются кава-фильтры различной конструкции [1, 2]. В клинике факультетской хирургии им. С. И. Спасокукоцкого 2-го МОЛГМИ им. Н. И. Пирогова группой авторов под руоводством акад. АМН СССР В. С. Савельева разработано противоэмболическое устройство нового типа, которое получило название кава-фильтр «РЭПТЭЛА» (рентгено-эпдоваскулярная профилактика тромбоэмболии легочной артерии). Он имеет конусовидную форму и представляет собой обойму, от которой радиально

расходятся 12 металлических ножек, снабженных крючками-фиксаторами. С помощью этих крючков фильтр фиксируется к стенкам нижней полон вены. В зависимости от внутреннего лиаметра инжней полой вены применяются фильтры различных размеров (18,28 и 32 мм). Большинство противоэмболических устройств, в том числе и кава-фильтр «РЭПТЭЛА» получили широкую клиническую апробацию, однако практически неизученными остались их гидродинамические характеристики, что очень важно для оценки изменений гемодинамики в системе нижней полой вены. Ниже, путем математического моделирования кава-фильтра сделана попытка вывести соответствующие математические выражения, с вомощью которых можно оценить степень помех току крови в каждом конкретном случае, возликающих в результате имплантации того или иного противоэмболического устройства. Необходимость в этом вызвана еще и тем, что в медицинской практике не имеются высокочувствительные дифференциальные манометры для измерения местных гидродинамических сопротивлений, вызванных силами трения.

Рассмотрим задачу стационарного ламинарного течения жидкости в трубе кругового сечения с раднусом R при наличия в нем конусообразного кава-фильтра, состоящего из 12 ножек-фиксаторов (рис. 1). Площадь всей конической новерхности равна $S_0 = \pi R I_1$, площадь поверхности фильтра— $S_1 = 12S$, где I_1 длина ножки, S—ее площадь. Ось трубки выберем в качестве оси x и пусть u—постоянная скорость натекающего на фильтр потока жилкости. Скорость жилкости v = v (0, y, z) на участке l направлена ло оси x и является функцией только от координат y и z (в поперечвой плоскости). Давление жилкости в грубке на этом участке меняется от первоначального значения P_1 до P_2 . Уравнение Навье-Стокса для несжимаемой жидкости имеет вид [3]

$$p\left[\frac{\partial v}{\partial t} + (v\Delta)v\right] = F - \operatorname{grad} P + \eta \Delta v, \tag{1}$$

где р -- плотность жидкости, Р – давление в жидкости, у – коэффициент вязкости. F – сила. с которой фильтр действует на единицу массы жидкости. Поскольку рассматривается стационарное течение жидкости, го $\frac{dv}{dt} = 0$. Граничное условие к уравнению (1) состоит в гребовании обращения в пуль скорости жидкости на неподвижных твердых поверхностях трубки (v = 0). В данном случае тензор напряжения несжимаемой жидкости записывается в виде

$$\mathbf{u}_{k} = -P \mathbf{u}_{k} + \eta \left(\frac{\partial v_{i}}{\partial x_{k}} + \frac{\partial v_{i}}{\partial x_{i}} \right), \quad \mathbf{i}, \mathbf{j}, \mathbf{k} = 1, 2, 3,$$

где — символ Кронекера. Уравнение непрерывности удовлетноряется тождественно, а х-компонента уравнения (1) примет вид

$$\frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = \frac{1}{\eta} \frac{\partial P(x)}{\partial x} - \frac{1}{\eta} F_{\pm}.$$
 (2)

причем $F_x = -\frac{\sin a F}{l_1}$ где F_a - сила, действующая на единицу плошади поверхности фильтра в направлении нормали к этой поверх-

ности, а — угол наклона ножки относительно оси х.

Составим уравнение баланса: потери силы на конической поверхности S₀ полностью компенсируются силой, действующей на жидкость со стороны фильтра

$$\Delta P S_0 = (P_1 - P_2) S_0 - F_n S_1. \tag{3}$$

Из уравнения (2) следует, что $\frac{\partial P}{\partial x} = \text{const. поэтому}$

$$\frac{\partial P}{\partial x} = -\frac{\Delta P}{l} = -\frac{P_1 - P_2}{l} = \text{const.}$$

С учетом этого выражения и уравнения (3), из (2) определям полс скоростей жилкости. Для этого выберем начало координат в центре кругового сечения трубки, нведем полярные координаты v = v(r) $(r = 1)v^2 + z^2$) и получим

$$v(r) = \frac{\Delta P}{4\eta l} \left(1 - \frac{\sin 2\eta}{2} \frac{S_0}{S_1} \right) (R^2 - r^2).$$
 (4)

Здесь учитывается, что скорость движения жидкости должна оставаться конечной во всем сечении трубки, включая его центр, а также и условие v = 0 при r = R. Определим явное выражение для силы F_n . Заметим, что сила, действующая на некоторый элемент поверхности, есть поток импульса через этот элемент: = - , сде Π_m - тензор плотности потока импульса, $df_k = n df$ - элемент поверхности с единичным вектором пормали к нему. Учитывая, что на твердой поверхности v = 0, находим силу, действующую на единицу площади поверхности фильтра в направлении нормали и к этой поверхности

$$F_{n} = (Fn) = P_{1} - \tau_{1} \cos \alpha \sin \alpha \frac{\partial \sigma}{\partial r}$$
 (5)

С помощью выражения (3)-(5) определим величину 4P(r) и после ее усреднения в поперечной плоскости у и г окончательно получим

$$f(=,z) = \frac{\Delta P}{P_1} = \frac{1}{RP_1} \int_{0}^{z} \Delta P(r) dr = -\frac{1}{\tau} \frac{\ln|1 - \tau \omega - 1/2\tau (1 - 2\tau)|}{\omega - 1/2\tau (1 - 2\tau)},$$
(6)
$$rac = -\frac{S}{S_0} = \frac{12d}{\tau R}, \quad \tau = \frac{\sin^2 \alpha}{2}.$$

Коэффициент сопротивления кава-фильтра "РЭПТЭЛА" при этом равен

$$1 = \frac{2\Delta \overline{P}}{\rho \mu^2} = \frac{2P_1}{\rho \mu^2} f(\omega, z). \tag{7}$$

4%

В частности, рассчитаем помехи при следующих характеристиках фильтра: ширпна ножки d = 0.4 мм, 1.5 см $\ll l_1 \ll 2.5$ см, $1 \ cm \leq R \leq 1.6 \ cm$, 90 mm b, c, $\leq P_1 \leq 120 \ mm$ b, c, $P_{KD} = 1.5 \ 2 \cdot Cm^{-3}$, и = (4,916 ··· 13,25) с.н.с⁻¹, n = 5,5 МПа.с. Число Рейнольдса при длине ножки l_1 равно $\operatorname{Re} = \frac{pu}{r_1} l_1 = 240.89 l_1 \ cm^{-1} \ (u = 8.833 \ cm^{-1}).$ Расчеты проводились в трех случаях при $P_1 = (90, 105, 120)$ м.м. в. с. соответственно, тогда: $z_1 = 150,84 f(m, z), z_2 = 175,45 f(m, z), z_3 = 175,45 f(m, z), z_3 = 175,45 f(m, z), z_3 = 175,45 f(m, z), z_4 = 175,45 f(m,$ = 200,05 / (w,). Результаты расчетов приведены в таблице. Таким образом, при заданном *d* потерия данления ΔP уменьшается при $w \to 0$ или $l_1 \to R$. В заключении весьма приближенно оценим размеры ламинарного следа, который образуется выше имплантироваиного кава-фильтра (рис. 2). Пусть и - постоянная скорость натекающего на фильтр потока жидкости. Истиную скорость и каждой точке можно представить в виде и + v. На большом расстоянии от фильтра скоресть и заметно отлична от нуля лишь в сравнительно "узкой" области вокруг оси х, которая называется ламинарным следом. Движение жидкости в "следе" значительно завихрено. На значительном расстоянии от фильтра движение жидкости можно считать потенциальным везде, за исключением лишь области следа. В общем случае закон убывания скорости жидкости в следе имеет экспоненциальный вид [3], из него следует, что скорость уменьшается в e=2,718 раз (декремент затухания) на расстоянии порядка X ≃ - иг

Таблица

I ₁ , см	le		A	- ti	112		R. c.u
2,5	602	0,08	0+152	22,87	26.60	39,33	1
2.4	578	0,09	0,151	22,81	26,56	30,29	
2,3	554	0,09	0,151	22,80	26,52	30,24	
2,2	530	0,10	0,151	22,77	26.18	30,19	
2,1	506	0,11	0,151	22,72	26,43	30,13	
2,0	482	0,12	0,15)	22,67	26,36	30,06	0.1
1,9	458	0.14	0,150	22,60	26,29	29,98	
1,8	434	6,15	0,149	22,53	25,20	29,88	
1,7	410	0,17	0,149	22,44	26.10	29,76	
1,6	385	0,20	0,148	22.34	25,98	29.62	
1,5	361	0,22	0,147	22,22	25,85	29,47	
2,5	602	0.14	0,115	17,36	20,19	23+62	
2,4	578	0,15	0,115	17,31	20,14	22,96	
2,3	554	0,16	0,114	17,26	20,08	22,89	
2,2	530	0,17	0,114	17,20	20,01	22.82	
2,1	506	0,19	0,114	17,14	19,94	22,73	
2,0	482	0,21	0,113	17,07	19,85	22,64	1,3
1,9	45 -	0,23	0.113	16,99	19.76	22,53	
1,8	434	0,26	0,112	16.91	19,67	22,47	1
1.7	410	0,29	0,112	16.83	19,58	22,32	
1,6	385	0,33	0,111	16,77	19,51	22,24	1
1,5	361	0,38	0,111	16,76	19,5)	22,23	
2,5	602	0.20	0,092	13,86	16,12	18,38	1
2.4	578	0,22	0,092	13,81	16.06	18,31	
2,3	554	0,24	0,091	13,75	15,99	18,24	
2,2	530	0,26	0,091	13,69	15,93	15,16	
2,1	506	0.29	0,090	13,64	15,86	18,09	1
2.0	482	0,32	0,090	13.59	15,81	18.03	1,6
1,9	458	0,35	0.090	13,57	15,78	17,99	
1,8	434	0,40	0.090	13,57	15,73	17,83	
1,7	410	0,44	0,089	13,56	15,71	17,80	
1.6	385	0,50	0,088	13.55	15,70	17,78	

Рис. 2.

297

Отсюда средняя длина следа равна $\overline{X} = \frac{w_i R}{12 \eta}$. Оценим порядок величины ширины следа Y_{max} , т. е тех расстояний от оси x, на которых скорость v заметно падает. При этом члены и уравнении Навье-Стокса по порядку величины равны $(v \overline{v}) \overline{v} \sim \frac{u v}{X}$ и $\frac{\eta}{v} \Delta \overline{v} \sim \frac{\eta \overline{v}}{p Y^2}$. Их сравнение дает ширину следа $Y \simeq \left(\frac{X}{2u}\right)^{1/2}$, поэтому $\overline{Y} \simeq = \left(\frac{\eta \overline{X}}{2u}\right)^{1/2} = \frac{R}{2L3}$. Как видно, ширина ламинарного следа растет

пропорционально корню из расстояния до фильтра, например, при $\overline{R} = 1.3$ см получим $\overline{X} = 25.4$ см, $\overline{Y} \simeq 0.33$ см.

Несмотря на то, что сопротивление току крови при имплантации кава-фильтра «РЭПТЭЛА» минимальное, влияние этих изменений на гемолинамику в системе нижней полой вены требует дальнейшего исследования, поскольку замедление скорости кровотока может способствовать локальному тромбообразованию на проксимальной новерхности фильтра и росту тромбоза в ламинарном следе выше фильтра, что и обясияет клинические наблюдения.

Проведенный упрощенный анализ гилродинамических характеритик противоэмболического кава-фильтра «РЭПТЭЛА» позволил вывести соответствующие математические ныражения, которыми можно пользоваться для оценки степени помех току крови и охарактеризовать ламинарный след, вызванные имплантированным кава-фильтром. Это даст возможность не только произвести сравнительную оценку гидродинамических характеристик различных эмболоулавливающих устройств, но и окажет существенную помощь в их усовершенствования.

ЛИТЕРАТУРА

- Grennfield L. J., Merurdy J. R., Brown P. P. et al. A new intracaval filter permitting continued Flow and Resolution of Emboll/Surgery. - 1973. - V. 73 n. 4. - P. 599-603.
- Mohin Uddin K., Smith P. E., Martines L. D. et al. A vena caval filter for the prevention of pulmonary embolies,/Surgery Forum. 1967. - V 18. - P. 2 9-223.
 Ландау Л. Д., Лифшиц Е. М. Гидродинамика-- М.: Наука, 1986. Т. VI - 320 с. Бюраканская астрофиз. обсерват.

АН Армении

3. XI. 1989